
Task-based Development Methodology for

Collaborative Environments

Maik Wurdel*1, Daniel Sinnig**, Peter Forbrig*

* University of Rostock, Department of Computer Science, Rostock, Germany

{maik.wurdel, peter.forbrig}@uni-rostock.de

**Concordia University, Faculty of Engineering and Computer Science, Montreal, Canada

d_sinnig@encs.concordia.ca

Abstract. The paper presents a task-based development methodology for

collaborative applications. According to our methodology a collaborative task

model may be used during analysis, requirements and design. In order to ensure

that analysis information is correctly translated into subsequent development

phases a refinement relation is proposed supporting the incremental

development of task specifications. The development methodology is

exemplified by a case study in which interactive support for a conference

session is developed.

Keywords: Collaborative Task Models, Development Methodology,

Refinement, Tool Support

1 Introduction & Background Information

In modern software engineering, the development lifecycle is divided into a series of

iterations. With each iteration a set of disciplines and associated activities are

performed while the resulting artifacts are incrementally perfected and refined. The

development of cooperative applications is no exception to this rule. Analysis level

models are further refined into requirements- and/or design level models, finally

resulting in a complete specification of the envisioned collaborative application.

In this paper we define a development methodology for collaborative systems

covering the phases from analysis to design. Such an integrated development

methodology will serve as a blueprint for practitioners to derive an iterative

development process according to which collaborative task models are stepwise

refined. For this purpose we analyze the various roles that collaborative task models

may play in software development. Moreover, we define a refinement relation for

collaborative task models. The practical applicability of our development

1 Supported by a grant of the German National Research Foundation (DFG), Graduate School

1424, Multimodal Smart Appliance Ensembles for Mobile Applications (MuSAMA)

methodology is demonstrated by a case study in which we develop interactive support

for a conference session.

Within the domain of human-computer interaction collaborative task models are

widely used for the specification of collaborative (multi-user) interactive systems.

Among the most popular ones is Collaborative ConcurTaskTrees (CCTT) [1]. In

CCTT modeling starts with the creation of a task model for each involved role in the

cooperation. Additionally, a so called "coordinator model" is developed to specify the

temporal dependencies of tasks involved in the cooperation. CCTT is suitable for

situations where only one actor is fulfilling one role simultaneously. Often, however,

this is a too rigid constraint. In order to overcome this shortcoming, we have

developed the collaborative task modeling language (CTML) [2]. It is based on the

idea that the behavior of an actor can be approximated through her role. CTML

incorporates concepts for the specification of interrelation between different actors

based on roles, where the behavior of a role is defined by collaborative task

expressions. Collaborations of actors are specified by means of an OCL-like notation

used to specify preconditions based on the state of the tasks of the involved actors.
The remainder of the paper is structured as follows: in Section 2 we review key

principles of CTML, which will serve as foundation for the presented approach.

Additionally a refinement relation, based on meta-operators for CTML specifications

is proposed. Section 3, the core part of this paper, presents a methodology for the

incremental and iterative development of CTML models which is guided by a

refinement relation for CTML specifications. In Section 4 we exemplify our

methodology by elaborating a small case study. Finally we conclude and give an

outlook to future research avenues.

2 The Collaborative Task Modeling Language

Similar to [1], CTML is based on a role-based approach for modeling cooperative

task models. Formally, a CTML model is a tuple consisting of a set of actors, a set of

roles and a set of collaborative task expressions (one for each role) where each actor

belongs to one or more role(s). Each collaborative task expression has the form of a

task tree, where nodes are either tasks or temporal operators. Each task is attributed

with an effect and a precondition. An effect denotes a state change of the system or

environment as a result of task execution. A precondition adds an additional

execution constraint to a task. In particular a task may be performed only if its

precondition is satisfied. Conditions can be either defined over the system state or the

state of other tasks (a task life cycle is defined in terms of a state chart [2]), which

potentially may be part of another task definition. Both, preconditions and effects are

needed to model collaboration and synchronization across collaborative task

expressions. The development and simulation of CTML specifications is supported by

the tool CTML Editor and Simulator, first introduced in [2].

2.1 Refinement of CTML Specifications

Refinement is a formal process which transforms one specification into another such

that required properties of the original specification are preserved [3]. In support of an

iterative development methodology we propose, in this section, a refinement relation

for CTML models. In [4] we presented a formal approach to define and check

refinement between (non-collaborative) task model specifications. In what follows,

we extend the approach to CTML specifications in a straightforward manner.

Refining collaborative task models can be achieved using two different instruments:

Structural and behavioral refinement.

Structural Refinement: The refined CTML model may contain more detailed

information than its base model. This is achieved by further refining the atomic units

(i.e. the leaf tasks) of the superordinate model. It is, however, important to retain type

consistency. Refined tasks need to revise their task type if necessary according to the

added subordinate tasks. An exception to this rule are tasks that have been marked

with the deep binding meta-operator (will be explained in the context of behavioral

refinement). These tasks cannot change their task type and the respective subtasks

need to be chosen such that type consistency is ensured.

Behavioral Refinement: Whether a behavioral refinement is valid or not depends

on the usage of meta-operators in the respective CTML models. Unlike temporal

operators, meta-operators do not determine the execution order of tasks, but define

which tasks must be retained or may be omitted in the refining CTML model. We

distinguish between three different meta-operators: shallow binding (�), deep binding

(�), and exempted binding (�). All three operators denote tasks which need to be

preserved in all subsequent refining CTML models. While in the case of shallow

binding subtasks may be omitted during refinement, in the case of deep binding all

subtasks need to be preserved. Tasks attributed with the exempt binding operator have

been newly introduced during design and should be preserved in all subsequent

refinements.

Details of the algorithm implemented to check refinement can be found in [4].

3 Development Methodology

Current software engineering processes advocate iterative development lifecycles

during which artifacts are incrementally perfected and refined [5]. The development

of collaborative task models is no exception to this rule. We believe a CTML model is

best developed in five steps:

1. Definition of roles and corresponding collaborative task expressions

2. Animation and validation of these sub-specifications

3. Specification of the environment including actors, associated roles and devices

4. Annotation of tasks with precondition and effects

5. Animation and validation of the entire specification

Instead of creating the entire model at once, which can be quite overwhelming, we

suggest to first define (1) and test (2) the involved roles and their individual

collaborative task expressions. Both steps can be performed iteratively. In case of an

unsatisfying animation the developer typically adapts the underlying specification and

restarts the simulation. Next (3) the designer defines the environment and involved

actors. Additionally (4) task specifications are completed by adding preconditions and

effects based on the analysis of the dependencies between actors and roles. Finally (5)

the entire specification consisting of several “concurrently” executing task

expressions can be tested and animated. This sequence is to be repeated until the

simulation exhibits the expected behavior. Please note that in each stage it is possible

to return to any previous step to revise made design decisions, based on evaluation

results. Each of the above steps is fully supported by our tool CTML Editor and

Simulator.

Fig. 1 indicates that throughout the development lifecycle of a collaborative

application different “versions” of a CTML model are used. As will be detailed next,

the usage and role of the CTML model vary, depending on the development stage

within which it is utilized.

Analysis: The purpose of analysis is to understand the user’s behaviors, their

collaborations and interactions. Consequently, the analysis CTML model captures the

current work situation and highlights elementary domain processes as well as exposes

bottlenecks and weaknesses of the problem domain. As portrayed in Fig. 1, the focus

is on the actual users while the envisioned interactive system is not yet taken into

account.

Fig. 1. CTML in the Development Lifecycle

Requirements: When moving to the requirement stage the analysis information is

further refined by taking into account the support of the envisioned interactive

application. Correspondingly requirements level CTML models specify the

envisioned way tasks are performed using the system under development. That is,

tasks that were formerly performed by the user may now be taken over by the

envisioned interactive system. Generally, the artifacts gathered during requirements

specification are part of the contract between stakeholders about the future

application.

Design: During design, the various tasks of the requirements model are

“instantiated” to a particular target device by taking into account its interaction

capabilities. Typically, new design specific, tasks are also introduced. An example of

such a design specific task for a conference session management system (will be

introduced in Section 4) is “Register Presenter”. This task was not part of the analysis

or requirements model, but is needed during design such that the session management

system is able to keep track of the participating presenters.

When moving from analysis to requirements to design, the collaborative task

model is further refined since application and design specific information is added.

With each refinement step it is important to verify that the refining model is a valid

refinement of its base specification. The interpretation of what constitutes a valid

refinement depends on the artifacts involved, as well as on their purpose in the

software lifecycle.

4 Case Study

In this section we showcase the application of the presented development

methodology by elaborating a small case study which has as its goal the development

of interactive tool support for a conference session. For this purpose let us consider

the following scenario:

Before starting the session Peter, the chairman, connects his notebook to the

projector installed in the conference room and switches to presentation mode.

Afterwards he starts the session by introducing himself and giving a short

introduction about the presentations to be given during the session. Then, Peter gives

the floor to the first speakers, Daniel and Maik, who give a joined presentation.

Daniel connects his notebook to the projector and starts the presentation by briefly

introducing the general approach. The technical details are explained by Maik. His

slides are stored on his own notebook, which has to be connected to the projector

before he presents his ideas. Afterwards, Daniel resumes the talk by giving the

conclusion and an outlook for future research which results in an additional

reconfiguration of the notebook and the projector. After finishing the talk the

chairman asks for questions from the plenum which are answered by the speakers.

The subsequent talks are given in ordinary manner until Peter closes the session.

Based on our experiences such a scenario is quite common. The technical burden

of state of the art computing devices leads to a tedious and error prone configuration

process. But pure automation does not solve this problem. From our point of view a

thorough analysis of the collaboration of the actors involved in this process is able to

expose where automation is really helpful. The question to be addressed is: “What is

the appropriate assistance in the current situation for the actual actor?”

Clearly the scenario shows that actors involved in a joint presentation have to

synchronize and agree on who is taking the control of the presentation. Daniel and

Maik must not perform the task “Present” concurrently. This is a key collaboration

constraint and hence should be taken into account in any corresponding collaborative

task model. In Fig. 2 the analysis level CTML model for the joint presentation is

given. It is role-based and represents how involved presenters perform their joint

presentation. As already hinted by the afore-mentioned scenario, a presenter has to

gain control and set up the equipment before presenting his slides. After finishing

her/his part the presenter surrenders the control and hence enables other actors to

present their parts.

Fig. 2. Analysis Task Model for the Role “Presenter”

The interplay between gaining and surrendering control is modeled using the

effects given in Table 1. The effect of an actor performing the task

that for all other presenters the

the execution of the task “Surrender Control” enables the “Gain Control” task to all

participating presenters among which

the presentation.

Table 1. Effects of Analysis Task Model for

Task
(1.) Gain Control
(2.) Surrender Control

Before moving to the requirements stage, we have to ensure that pivotal domain

specific tasks are preserved in all subsequent refining models. This is done by the use

of meta-operators which have been introduced in the previous section. In the context

of this case study, the important tasks to be retained are “

and “Surrender Control

During the requirement stage new aspects come into play. Compared to the

analysis model, the envisioned work situation is enriched by taking into account the

support of interactive devices. In our case the interactive support consists of a remote

presenter device and a steerable projector. The former can be used to navigate through

the slides but also to surrender and gain control of the presentation. The latter can

soft-switch between multiple input sources and projection surfaces and hence, can

relieve the presenters from manually setting up the equipment (e.g. connecting the

laptop to the projector).

As depicted in Fig.

in terms of structure and behavior. The task “

refined into interaction and application subtasks denoting how the control of the

presentation is gained using the envisioned software system. In particular the

execution of the subtask “Assign Control” assigns the control of the remote presenter

device and thus to its user. The “

since presentations given with the new system are

newly introduced remote presenter device.

task has the effect that the input source of the steerable projector is set to the current

actor’s laptop. Note that for the sake of simplicity the necessary preconditions and

effects are not shown.

Analysis Task Model for the Role “Presenter”

The interplay between gaining and surrendering control is modeled using the

effects given in Table 1. The effect of an actor performing the task “Gain Control”

that for all other presenters the “Gain Control” task becomes disabled. Conversely

the execution of the task “Surrender Control” enables the “Gain Control” task to all

participating presenters among which, one presenter will be able to “Gain Control” of

Effects of Analysis Task Model for “Presenter”

Effect
Gain Control Presenter.allInstances.Gain Control.disable

ender Control Presenter.allInstances.Gain Control.enable

Before moving to the requirements stage, we have to ensure that pivotal domain

specific tasks are preserved in all subsequent refining models. This is done by the use

ch have been introduced in the previous section. In the context

of this case study, the important tasks to be retained are “Gain Control”,

Surrender Control” and therefore are marked with the shallow binding operator

During the requirement stage new aspects come into play. Compared to the

analysis model, the envisioned work situation is enriched by taking into account the

support of interactive devices. In our case the interactive support consists of a remote

device and a steerable projector. The former can be used to navigate through

the slides but also to surrender and gain control of the presentation. The latter can

switch between multiple input sources and projection surfaces and hence, can

e presenters from manually setting up the equipment (e.g. connecting the

laptop to the projector).

As depicted in Fig. 3 the requirements level task model refines the analysis model

in terms of structure and behavior. The task “Gain Control” has been stru

refined into interaction and application subtasks denoting how the control of the

presentation is gained using the envisioned software system. In particular the

execution of the subtask “Assign Control” assigns the control of the remote presenter

device and thus to its user. The “Present” task is now regarded as an interaction task

since presentations given with the new system are requiring the interaction with the

newly introduced remote presenter device. The execution of the “Setup Equipment”

has the effect that the input source of the steerable projector is set to the current

actor’s laptop. Note that for the sake of simplicity the necessary preconditions and

The interplay between gaining and surrendering control is modeled using the

Gain Control” is

onversely,

the execution of the task “Surrender Control” enables the “Gain Control” task to all

one presenter will be able to “Gain Control” of

Before moving to the requirements stage, we have to ensure that pivotal domain

specific tasks are preserved in all subsequent refining models. This is done by the use

ch have been introduced in the previous section. In the context

, “Present”

binding operator.

During the requirement stage new aspects come into play. Compared to the

analysis model, the envisioned work situation is enriched by taking into account the

support of interactive devices. In our case the interactive support consists of a remote

device and a steerable projector. The former can be used to navigate through

the slides but also to surrender and gain control of the presentation. The latter can

switch between multiple input sources and projection surfaces and hence, can

e presenters from manually setting up the equipment (e.g. connecting the

refines the analysis model

” has been structurally

refined into interaction and application subtasks denoting how the control of the

presentation is gained using the envisioned software system. In particular the

execution of the subtask “Assign Control” assigns the control of the remote presenter

” task is now regarded as an interaction task

the interaction with the

The execution of the “Setup Equipment”

has the effect that the input source of the steerable projector is set to the current

actor’s laptop. Note that for the sake of simplicity the necessary preconditions and

Fig. 3. Requirement Task Model for

In order to ensure that the requirements are preserved in subsequent design models

the tasks “Gain Control” and “Present” are marked with the

operator. This guarantees that each of these tasks including the subtasks is carr

to the design stage. Additionally “Surrender Control” keeps being marked with the

shallow binding operator.

During design, the focus is put on tasks related to the specific interaction with the

newly introduced system. Fig.

study. In particular the task “Request Control” has been further refined with subtasks

which take into account concrete interactions with the remote presenter (e.g. “Press

Request Button”). The same appli

technology related tasks are introduced. In the context of the case study the presenter

has to register her/his remote presenter device to the system (“

before it can be used. The “Register Pres

exempted binding operator, denoting that it should be preserved in all subsequent

refinements.

Fig. 4. Design Task Model for the Role “Presenter”

We conclude this section by noting that for each phase (i.e. analysis, requirements

and design) we interactively animated the developed CTML models using the

CTML Editor and Simulator. This was particularly helpful in gradually refining the

model until the envisioned behavior was achieved. A snapshot of the interactive

animation of the requirements level task model is depicted on the right hand side of

Fig. 5. On the left hand side a snapshot of the tool in specification mode is given.

Requirement Task Model for the Role “Presenter”

In order to ensure that the requirements are preserved in subsequent design models

the tasks “Gain Control” and “Present” are marked with the deep binding

operator. This guarantees that each of these tasks including the subtasks is carr

to the design stage. Additionally “Surrender Control” keeps being marked with the

shallow binding operator.

During design, the focus is put on tasks related to the specific interaction with the

newly introduced system. Fig. 4 portrays the corresponding task model for our case

study. In particular the task “Request Control” has been further refined with subtasks

which take into account concrete interactions with the remote presenter (e.g. “Press

Request Button”). The same applies for “Surrender Control”. Additionally,

technology related tasks are introduced. In the context of the case study the presenter

has to register her/his remote presenter device to the system (“Register Presenter

before it can be used. The “Register Presenter” task has been attributed with the

operator, denoting that it should be preserved in all subsequent

Design Task Model for the Role “Presenter”

We conclude this section by noting that for each phase (i.e. analysis, requirements

and design) we interactively animated the developed CTML models using the

CTML Editor and Simulator. This was particularly helpful in gradually refining the

l the envisioned behavior was achieved. A snapshot of the interactive

animation of the requirements level task model is depicted on the right hand side of

. On the left hand side a snapshot of the tool in specification mode is given.

In order to ensure that the requirements are preserved in subsequent design models

deep binding meta-

operator. This guarantees that each of these tasks including the subtasks is carried on

to the design stage. Additionally “Surrender Control” keeps being marked with the

During design, the focus is put on tasks related to the specific interaction with the

portrays the corresponding task model for our case

study. In particular the task “Request Control” has been further refined with subtasks

which take into account concrete interactions with the remote presenter (e.g. “Press

”. Additionally,

technology related tasks are introduced. In the context of the case study the presenter

Register Presenter”)

enter” task has been attributed with the

operator, denoting that it should be preserved in all subsequent

We conclude this section by noting that for each phase (i.e. analysis, requirements

and design) we interactively animated the developed CTML models using the tool

CTML Editor and Simulator. This was particularly helpful in gradually refining the

l the envisioned behavior was achieved. A snapshot of the interactive

animation of the requirements level task model is depicted on the right hand side of

. On the left hand side a snapshot of the tool in specification mode is given.

Fig. 5. CTML Editor and Simulator in Specification and Animation Mode

6 Conclusion & Future Work

In this paper we presented a development methodology for collaborative task models.

In particular, we proposed a set of steps for the incremental development of CTML

models. Each step is supported by our tool the CTML Editor and Simulator. We

explored the different roles of a CTML model within the development lifecycle of a

collaborative application. In particular we proposed a development methodology

according to which an analysis level CTML model is further refined to a requirements

and design level model. Finally we validated and illustrated our proposed

development methodology by elaborating a small case study, which had as its goal the

development of interactive support for a conference session.

As future work we are currently investigating how CTML can be integrated into

state of the art model-based UI development processes for collaborative

environments. Another future avenue deals with the enhancement of the CTML

Editor and Simulator with model checking capabilities such that the tool will be able

to prove certain properties of a CTML model (e.g. livelock and deadlock freedom)

and mechanizes the verification of refinement between CTML specifications.

References

1. Mori, G., F. Paternò;, and C. Santoro, CTTE: Support for Developing and Analyzing Task

Models for Interactive System Design. IEEE Trans. Softw. Eng., 2002. 28(8): p. 797-813.

2. Wurdel, M., D. Sinnig, and P. Forbrig, Towards a Formal Task-based Specification

Framework for Collaborative Environments, in CADUI 2008. 2008: Albacete, Spain.

3. Bowen, J. and S. Reeves. Refinement for User Interface Designs. in FMIS 2007. 2007.

Lancaster, UK.

4. Wurdel, M., D. Sinnig, and P. Forbrig, Task Model Refinement with Meta Operators, in

DSV-IS 2007. 2008: Kingston, Canada.

5. Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development (3rd Edition). 2004: Prentice Hall PTR.

