
User Interface Migration between Mobile Devices and
Digital TV

Fabio Paternò1, Carmen Santoro1, and Antonio Scorcia1

1 ISTI-CNR, Via G. Moruzzi, 1

56124 Pisa, Italy
{Fabio.Paterno, Carmen.Santoro, Antonio.Scorcia}@isti.cnr.it

Abstract. In this paper we present a demonstration of the Migrantes
environment for supporting user interface migration through different devices,
including mobile ones and digital TV. The goal of the system is to furnish user
interfaces that are able to migrate across different devices, in such a way as to
support task continuity for the mobile user. This is obtained through a number
of transformations that exploit logical descriptions of the user interfaces to be
handled. The migration environment supports the automatic discovery of client
devices and its architecture is based on the composition of a number of
software services required to perform a migration request.

Keywords: User Interface Migration, Adaptation to the Interaction Platform,
Ubiquitous Environments.

1 Introduction

One important aspect of pervasive environments is the possibility for users to freely
move about and continue interacting with the services available through a variety of
interactive devices (i.e. cell phones, PDAs, desktop computers, digital television sets,
intelligent watches, and so on). In this area, one important goal is to support
continuous task performance, which implies that applications be able to follow users
and adapt to the changing context of users and the environment itself. In practice, it is
sufficient that only the part of an application that is interacting with the user migrates
to different devices.
In recent years, research on issues related to user interfaces in ubiquitous
environments has started (see for example [1] [2] [3]). For instance, a discussion of
some high-level requirements for software architectures in multi-device environments
is proposed in [1], although it is done without presenting a software architecture and
implementation solution for these issues. In our work, we propose a specific
architectural solution, based on a migration/proxy server, able to support migration of
user interfaces associated with applications hosted by different content servers.
More in detail, in this demo, we show a solution for supporting migration of
application interfaces among different types of devices. Such solution is able to detect
any user interaction performed at the client level. Then, we can get the state resulting
from the different user interactions and associate it to a new user interface version that

is activated in the migration target device. In particular, the solution proposed has
been encapsulated in a service-oriented architecture and supports user interfaces with
different platforms (fixed and mobile) and modalities (graphical, vocal, and their
combination). The new solution also includes a discovery module, which is able to
detect the devices that are present in the environment and collect information on their
features. Users can therefore conduct their regular access to the Web application and
then ask for a migration to any device that has already been discovered by the
migration server. The discovery module also monitors the state of the discovered
devices, automatically collecting their state-change information in order to understand
if there is any need for a server-initiated migration. Moreover, we show how the
approach is able to support migration across devices that support various
implementation languages. This has been made possible thanks to the use of a logical
language for user interface descriptions at different abstraction levels [4], which is
independent of the implementation languages involved, and a number of
transformations that incorporate design rules and take into account the specific
aspects of the target platforms.

In the paper we first describe a scenario supported by our demo, next we briefly
describe the underlying architecture, and lastly we discuss an example session
showing the corresponding user interfaces provided to the users.

2 A Scenario Supported by the Demo

The demo regards a user returning home from work, who starts to prepare the
shopping list through a mobile device (while s/he is on the bus or train) and then
when s/he gets at home, s/he may look at what is actually available and realise that
some items are still missing. Then, s/he completes the list by interacting with the
digital TV with large screen while sitting comfortably on the couch.

Thus, using the PDA, the users can access the page dedicated to the products and
specify the category they are interested in (for example “meat”). Depending on the
selected category, the application allows a further refinement of the selection. In our
scenario, the users are allowed to select which kind of meat they want to buy by
means of choosing among beef, poultry and pork. Then, a number of options are
visualised together with the associated amounts, and the user can start to select what
s/he wants to buy. When the user enters home, the smart environment suggests the
user the possibility to migrate the user interface to other devices which have been
recognised as available in the new environment, since the agent-based architecture
has recognised a situation where more comfortable interactions might take place (e.g.:
the user could interact with the desktop PC which has a larger screen, or s/he can
interact with the TV while comfortably sitting on the couch). Then, if the user decides
to migrate the user interface to the digital TV, s/he can continue editing the shopping
list through a larger screen without having to save their selections from the PDA and
login again the application from the new device. After the interface migration, the
user can find the items that were specified before, through the PDA (e.g. the request
for three beef steaks, which was specified using the handheld device) and edit them or

add new ones until lastly they send the request. The text can be entered by selecting a
specific button on the TV controller, which activates a virtual keyboard on the screen.

3 The Migration between Mobile Device and Digital TV

The main characteristics of migration are: device change, adaptation, and continuity.
The basic idea is that people would like to freely move and still be able to continue to
perform their tasks and thus the interactive part of an applications should be able to
follow them and adapting to the changing context of use.
Our migration environment is based on a service-oriented architecture involving
multiple clients and servers: the architecture is aimed at providing interoperability
between the different services, which can be also combined for delivering composite
services, as it happens in the migration support. We assume that the desktop version
of the considered applications already exists in the application servers. In addition, we
have a migration platform, which is composed of a proxy service and a number of
specific services and can be hosted by either the same or different systems.
The main services that have been identified to compose the migration platform:

• the Discovery Manager, which includes the functionalities for discovering
the available devices and update the device list accordingly;

• the Migration Manager/Proxy is the core of the system: it handles the
communication with the other modules, also including proxy functionalities.

• the Reverse Engineering, is in charge of reversing the desktop
implementation into a logical user interface description;

• the Semantic Redesign module, which transforms the logical description of
the user interface designed for the source platform into a logical description
of the user interface for the target migration platform;

• the State Mapper, which updates the final user interface with the values of
the current state, which have been saved at the time the request of migration
occurred;

• The UIGenerator, which reifies the logical concrete description into an
implementation language for the target platform.

The process starts with the source and target devices notifying their presence to the
Discovery Manager, which is in charge of discovering the available devices and
updating the list of devices accordingly, also showing their characteristics. Indeed, in
order to allow for a good choice of the target device, information about the devices
that are automatically discovered in the environment is displayed and saved. Such
information mainly concerns device identification and interaction capabilities and, on
the one hand, it enables users to choose a target migration device with more accurate
and coherent information on the available targets and, on the other hand, it enables the
system to suggest or automatically trigger migrations when the conditions for one
arise. Thus, both the system and the user have the possibility to trigger the migration
process, depending on the surrounding context conditions.
Users have two different ways of issuing migration requests. The first one is to
graphically select the desired target device in their migration client. Users only have
the possibility of choosing those devices that they are allowed to use and are currently

available for migration. The second possibility for issuing migration requests occurs
when the user is interacting with the system through a mobile device equipped with
an RFID reader. In this case, users could move their device near a tagged migration
target and keep it close from it for a number of seconds in order to trigger a migration
to that device. In this case, in addition to a spatial threshold used to indicate when the
user is sufficiently close to trigger a migration, a time threshold has been defined in
order to avoid accidental migration, for example when the user is just passing by a
tagged device. This second choice offers users a chance to naturally interact with the
system, requesting a migration just by moving their personal device close to the
desired migration target, in an easy manner. Migration can also be initiated by the
system, skipping explicit user intervention in critical situations when the user session
could accidentally be interrupted by external factors. Alternatively, the server can
provide users with migration suggestions to improve the overall user experience.
The migration clients are supposed to access the various applications through the
proxy available within the Migration Manager. Indeed this module works as a proxy
since it is in charge of intercepting the clients’ request of accessing a page, retrieving
such a page from Internet and saving it locally together with the referred entities
(images, CSS files, etc.). Afterwards, the Migration Manager receives from the source
device the request for migration (which specifies the source device, the target device,
and the page that has to be migrated), and it triggers the sequence of actions needed
for fulfilling such a request. It is worth noting that the application that triggers the
migration – the so-called ‘Migration Client’- can be contained in an application which
is separated from the web browser. For instance, in the current implementation, the
migration request is activated through a separate C# program which allows the user to
select the devices available for migration (see Figure 1, Left).

Figure 1: Left, The Migration Client Interface, Right, the Application User Interface.

Once the Proxy receives the Web page from the concerned Application Server, the
Proxy modifies it by including JavaScript functions that are aimed at collecting
information about the state of the migrating page, and afterwards it sends to the Web

browser of the source device (PDA). The JavaScript functions that are automatically
inserted by the proxy server are in charge of collecting the information that describes
the state of the migrating page by accessing its DOM. The information is collected
into a string formatted following a XML-based syntax and submitted to the server
together with the IP of the target device. This information is sent to the server through
an AJAX script. The reason for this is that only the application running on the client
device can access the DOM and the AJAX callback can transmit the data without
requiring any additional explicit action from the user.

Figure 2: The Application User Interface Migrated into the Digital TV.

The Migration Server, after receiving the request of migration by the source

device, interrogates the Migration Client of the target device asking about its
availability/willingness for accepting a migrating UI: if the migration is accepted, the
environment detects the state of the application modified by the user input (elements
selected, data entered, ..) and identifies the last element accessed in the source device.
Then, the Migration Manager gets information about the source device and,
depending on such information it builds the corresponding logical descriptions, at a
different abstraction level, by invoking the Reverse Engineering service of our
system. At this point, the Migration Manager asks the Discovery Manager
information about the target device in order to understand for which platform the
redesign process has to be carried out. Indeed, the result of the reverse engineering
process, together with information about source and target platforms is used as input
for the Semantic Redesign service, in order to perform a redesign of the user interface
for the target platform. This part of the migration environment transforms the logical
description of the desktop version into the logical description for the new platform.

This solution allows the environment to exploit semantic information contained in the
logical description and obtain more meaningful results than transformations based
only on the analysis of the specific implementation language used for the final UI.
Once the application presentation to activate on the target device is identified, the
Migration Manager asks the State Mapper to adapt the state of the concrete user
interface with the values that have been saved previously. Then, once the concrete
user interface adapted with the new values has been obtained, the reification of such a
logical description into the final user interface for the target platform is performed by
the UIGenerator module and lastly, the resulting page is sent to the browser of the
target device in order to be loaded and rendered. Figure 2 shows the UI migrated into
the Digital TV. It is possible to see that the values entered in the source device (see
Figure 1) have been preserved in the user interface generated for the target device,
and the users can continue from the point they left off. As for the implementation for
the digital TV, it involves the generation of a file in a Java version for digital TVs
representing a Xlet, which is downloaded on the Set-Top-Box. In our demo we use a
Set Top Box Telesystem TS7.2 DT, which supports Multimedia Home Platform
(MHP 1.0.2), an open middleware system standard for interactive digital television,
enabling the execution of interactive, Java-based applications on a TV-set. It is worth
pointing out that in this example we considered migration from PDA and the Digital
TV, but the approach can be extended for any platform, providing that exists a Web
desktop application version and the opportune software modules (migration client, UI
generator,..) are provided taking into account the characteristics of the considered
devices (available interaction resources, implementation languages supported, …).

4 Conclusions

In this paper we describe a system for enabling user interface migration through
different devices: UI logical descriptions (with associated transformations) have been
exploited for supporting the migration mechanisms, together with various
technologies (e.g. AJAX scripts) for saving the current state of the user interface.
Ongoing work is dedicated to further enrich the data associated with the current state
of the user interface in order to support continuity in a wider set of user’s interactions.

References

1. Balme, L. Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: a Software
Architecture Reference Model for Distributed, Migratable and Plastic User Interfaces. In:
Proceedings EUSAI ‘04, LNCS 3295, Springer-Verlag, 2004, 291-302.

2. Bandelloni R., Mori G., Paternò F., Dynamic Generation of Migratory Interfaces,
Proceedings Mobile HCI 2005, ACM Press, pp.83-90, Salzburg, September 2005.

3. Luyten, K., Coninx, K. Distributed User Interface Elements to support Smart Interaction
Spaces. In: IEEE Symposium on multimedia. Irvine, USA, December 12-14, (2005).

4. Mori G., Paternò F., Santoro C.: Design and Development of Multi-device User Interfaces
through Multiple Logical Descriptions. In: IEEE Transactions on Software Engineering
August (2004), Vol 30, No 8, IEEE Press, 507-520.

