
ShaMAN: An Agent Meta-Model For Computer Games

Steve Goschnick, Sandrine Balbo and Liz Sonenberg

Interaction Design Group, DIS, University of Melbourne, 3010, Australia
{stevenbg, sandrine, l.sonenberg}@unimelb.edu.au

Abstract. In this paper, we detail recent research on agent meta-models. In par-
ticular, we introduce a new agent meta-model called ShaMAN, created with a
specific focus on computer game development using agent systems. ShaMAN
was derived by applying the concept of Normalisation from Information Analy-
sis, against a superset of agent meta-model concepts from the meta-models in-
vestigated. A number of features are identified, including human-agent locales
and socialworlds, that might be usefully added to a generic AO meta-model.

Keywords. Agent-oriented, Agent Architecture, Multi-Agent Systems, Meta-
model, Agent Meta-models, Agents in Computer Games, HCI.

1 Introduction

Agent-oriented (AO) architectures and methodologies are the main interest area of the
research outlined here, with a focus on the application domain of computer games.
While we are specifically interested in extending current AO concepts to further fa-
cilitate game specification and development, a consequence of this study identifies
possible generic features to add to an AO meta-model.

1.1 Motivation

Computer games invariably have a graphic user interface (GUI) whether they are on
PCs, dedicated game consoles or mobile phones. Additionally, many games are multi-
user over either a proprietary network or the Internet, and as such, some data is often
shared between multiple users. Neither graphic interfaces nor their associated event
models, nor distributed data are well considered in the current AO architectures and
frameworks, but computer games make heavy use of all three.

There is a precedent early on in the Object-oriented (OO) paradigm for an under-
appreciation of these same facets of application programs, which ought to be instruc-
tive for the newer AO paradigm. At about the time that mainstream developers moved
to OO languages, in particular C++ (early 1990’s), GUI interfaces became the default
in mainstream operating systems (OS). GUI and mouse/pointer interfaces made it
necessary for application programmers to handle non-sequential event-handling, a
significant change in programming practice from sequential processing in most char-

acter-based applications. Prior to more modern OO languages such as Java, both the
GUI and event-handling was not a part of the language proper, e.g. C++. For exam-
ple, on the Unix OS events were handled via X-Windows and Motif class libraries.
Thus, the application programmer in the early 1990s moved to an OO paradigm in
language constructs, but their dealings with the GUI and event-driven programming,
initially happened outside of the OO paradigm. So, an event-driven paradigm of pro-
gramming happened concurrently by necessity, but it initially went unheralded in the
shadow of the OO language paradigm.

1.2 A Gap in Agent Architectures

From the start AO has been socially-oriented such that inter-agent communication – a
form of event - is typically allowed for with an Agent Communication Language
(ACL). However, the AO paradigm has followed the initial OO programming lan-
guages, in not doing anything within the architecture or the constructs of the lan-
guages themselves, with regard to the GUI interface or non-agent event-handling.

Fig. 1. Real world and the Object Action Interface Model.

Interaction events and GUI interface objects are at the core of all mainstream com-
puting platforms today, whether it be workstation, desktop, laptop, PDA or mobile
phone. Figure 1 is an adaption of Shneiderman’s Object Action Interface Model [20],
showing a high-level representation of the physical world and what is done on a com-
puter to supplement it, when a user interacts with an application program, via a com-
puter screen and input mechanisms (e.g. mouse and keyboard).

The gap addressed by our research, is to achieve an AO architecture that engages
with the user at the level of a GUI metaphor rendered down to the pixel level (left-
hand side of right box in figure 1), with events down to the keyboard and mouse-click
level, (right-hand side of figure 1). Our architecture is expressed as a meta-model.

1.3 Meta-models

Much of the research discussed here is centred around meta-models expressed in
UML class diagram notation. Meta-models expressed in UML as such are now com-
monly used in both AO [1,12,13] and OO [17] research and development domains: to
represent state-holding entities; to communicate base ideas; and as a useful means to
compare different agent systems or architectures [6,12].

1.3.1 Agent Concepts
Given that there is currently no universally accepted single meta-model for AO
systems, when we first looked to agent concepts and architectures with computer
games in mind, we examined the meta-models of several agent architectures and
methodologies - AAII [16], GAIA [22,23], Tropos [1,11], TAO/MAS-ML [5],
ROADMAP [13,14], ShadowBoard [8,9] - to explore the commonalities and
differences between them. In addition, given our identification of a gap in the AO
paradigm at the input device event level, we studied several well-known meta-models
from the Task Modelling field, with its roots in the interaction between human users
and computational devices, covered elsewhere [10].

1.3.2 Normalisation
A technique from Information Analysis (IA) used to improve ER models [2] that did
not crossover into the later OO paradigm is the concept of Data Normalisation [15].
In this process derived from relational mathematics by Codd [3], the ER model is put
into normal form. The model resulting from normalising a preliminary model, is
considered to be in a state ideal for future change, and one that causes the least
anomalies to operations upon the state held in the current entities. It is usually applied
in IA to a model as a quality control procedure, however, Normalisation can also be
used as a bottom-up design technique enabling the analyst to methodically deduce a
well-formed model from a set of relevant concepts. In this research we applied it to a
superset of the agent concepts found in agent and task meta-models, and arrived at a
normalised agent meta-model named ShaMAN. From the perspective of a multi-agent
system at runtime, a normalised meta-model is best for insertion, update and deletion
of state information as it is happening in real-time.

Fig. 2. The ShaMAN Agent Meta-model (with insert of a concrete game Locale).

1.3.3 Overview
In Section 2 we introduce the ShaMAN agent meta-model. To explain some of the en-
tities in it, we present two groupings of the entities from the meta-model in detail, and
then describe the flexibility it brings to building applications. In Section 3 we com-
pare the concepts from the ShaMAN meta-model with those other agent meta-models
investigated. In Section 4 we conclude and look to future work related to ShaMAN.

2 The ShaMAN Meta-model

We arrived at the ShaMAN meta-model depicted in figure 2 by taking concepts from
a number of existing AO meta-models and a number of Task Analysis meta-models
[10] – analysed them for similarities and differences, added some extra requirements
from the games application genre, and then normalised the resultant set of entities.
The following sections describe some aspects of the ShaMAN meta-model in more
detail.

2.1 Locales for Computer Games

Computer games invariably interact with the player through the usage of a human-
machine interface, for example a screen of one size or another. The Locale sub-
section of ShaMAN lets us model the visual metaphors and the screen interaction
between player/user and screen characters of a game, right in the AO model itself,
rather than leaving it to some other paradigm such as OO. While some agent meta-
models do have constructs for the agent environment, none of those investigated
specifically model the computer screen as the primary representation of that
environment.

In ShaMAN, this screen representation of an agent’s environment is called a
Locale - in homage to Fitzpatrick’s [7] definition of a Locale as a generalised abstract
representation of where members of a Social World [21] inhabit and interact. Figure 3
represents the sub-section of the ShaMAN meta-model that represents Locales within
games.

A Locale entity may have sub-locales within hierarchies of Locales. Locale is a
generic concept representing some spatial construct presentable on the screen, e.g.
room, outdoor area, sections of a board-game - suitably broad enough for novel game
interfaces.

Fig. 3. The Locale sub-section of the meta-model.

The insert in figure 2 is a concrete example of a Locale. It depicts the bedroom of a
player’s character within a game, which is represented as a Locale in ShaMAN. The
HotSpot entity represents any area on the screen that is interactive, in the sense that
whenever the user either clicks or passes over that area on the screen (or has the focus,
from a keystroke point-of-view), certain interaction between the user and the game
may take place. Whether the game presents a 2D or 3D scene, or an abstraction, the
interaction with a standard display is 2D and involves area. The HotSpot entity has
two relationships with Locale, one named to and the other named from – enabling
navigation between Locales.

A HotSpot may also link to an OnSiteResource entity. These are Resources that
live in the Resource entity (which may involve a hierarchy of Resources). Resources
are typically programmed entities that are not Agent-oriented. E.g. clicking on the
digital clock on the bedside table opens a window that displays a fully-functioning
clock object, which is a Resource. OnSiteResource is an associate entity – a

representation that allows the same Resource to be used in multiple Locales, e.g. a
clock in many rooms drawing upon the same programmed code. Resource may also
represent real objects in the real world, such as in a robot or a sensor application
based upon the ShaMAN meta-model.

A HotSpot may also have a relationship with the entity LinkCondition, which in
turn links to a Goal via a relationship called has-hurdle. This allows the game
developer to enforce conditions to be met. Locale is also linked to the entities
Attendee and Inhabitant. Attendee is an associative entity that records all occupants in
a particular Locale over time, retaining a record of when agents (or human avatars)
entered and left a Locale. It is linked to the agent’s Role during that occupation via
AgentRole, and also to the SocialWorld they were engaged in when they did so. This
history aspect of the Attendee is usefull in providing and/or recording a back-story for
any particular agent-oriented game character – a necessary aspect of realistic game
creation.

2.3 The Goals, Roles, Responsibilities and Tasks of Agents

Computer games often have the need for intelligent, intentional, proactive and autono-
mous game characters that interact both with the human players and with other char-
acters in a game. These properties are the harbingers of AO systems, and the sub-
group of entities from ShaMAN meta-model in left and centre of figure 4, represent
the entities that appear most frequently (but not consistently) in one form or another,
in many of the agent meta-models that we examined.

Fig. 4. Goals, Roles and Tasks in ShaMAN.

Figure 4 shows five entities in this sub-model of ShaMAN that have hierarchies of
sub-elements of the same type, namely: Goal, Role, Agent, Task and SocialWorld.
The associate entity between Goal and Role called Responsibility represents the
responsibilities of a particular Role. A given Responsibility instance is fulfilled via an
instance in the AgentRoleGoal entity, by being enacted or performed by an Agent that
takes on that Role. An Agent may have many Roles via AgentRole.

Goals will often have sub-goals in a hierarchy of goals to be achieved. One such
sub-goal will be associated with a matching sub-role, and an agent will be assigned
via an instance of the AgentRole entity. During execution of a ShaMAN application,
sub-agents can be called upon in a downward direction via the need to achieve the
sub-goals of parent goals, which is termed goal-driven execution. Or, they can be

called upon from below, where a SpeechAct has been sent from further down the sub-
agent chain, and the upper level goal has to be solved or rerun, termed data-driven
execution. Data-driven execution often eventuates when a sub-agent retrieves new
information from an external service such as a Web service, or from another agent
across agent hierarchies or across Social Worlds.

Table 1. ShaMAN meta-model comparison with other agent architectures and meta-models

ShaMAN KGR /BDI GAIA V1 GAIA V2 RoadMap Tropos MAS-
ML

DigitalFriend

 AgentRole Role Role (pointers) Play AgentRole

 Percept Percept

 Event Event Event

 SocialWorld
(tree)

Acquaintan
ce

System Organisation,
Pattern

 Actor/
Social
Agent

Organisat
ion

 SocialRole System Actor/
Position

Ownershi
p

 Member

 Item

AgentRoleGo
al

Capability,
Service

Services,
Activity

Service,
Activity

Services Dependenc
y

Actions AgentRoleGoal

 Task (tree) Activity Activity Plan Task

 SpeechAct Interaction Activity Message SpeechAct

 ActionType Action,
performativ
e

 Action

 SpeechFlow Acquaintan
ce,
Permissions
, Protocols

Protocol,
Acquaintance
model5

Protocol Protocol MessageFlow

 Resource
(tree)

Resource Resource Resource Protocol
(tree)

Resource Object Resource

 Agent-
Resource

Service Permissions Permissions Dependenc
y

 AgentResource

 Ontology
(tree)

 Knowledge-
Component

 Ontology (tree)

 List Knowledge ResourcList

 Locale (tree) Environment Environment-
Zone

 Environm
ent

 Attendee

 Inhabitant Inhabit

 OnSite

 Resource

 HotSpot

 Link-
Condition

R,A,D,I,T,Rt A,D,I A,D A,D R,A,D,Rt R,A,D,I R,A,D R,A,D,I,Rt

Note 1. R,A,D,I,T,Rt lifecycle phases: Requirements, Analysis, Design, Implementation, Testing, Run-
time.
Note 2. The DigitalFriend V1 tool [9] is an implementation of the ShadowBoard agent architecture [8].
Note 3. AO models for Prometheus [18] and GoalNet [19] were in the study but not here, for space rea-
sons.

2.4 Social Worlds in ShaMAN

Individual Agents can be members of one or more SocialWorlds. Their membership
begins with an instance in the Member entity. Agents are related to the Member entity
via the AgentRole entity. SocialWorld’s have a number of SocialRoles, such as
‘Captain’ or ‘Treasurer’, which is useful in the design phase before specific agents are
instantiated.

3 A Comparison of Agent Meta-Models

Our motivation for collecting and comparing agent meta-models was for their agent
concepts, as the primary input into a normalisation process, to arrive at a well-formed
agent meta-model. Hence our initial interest in the comparison was analytic only.

Table 1 is a comparative format representing a sub-set of agent concepts that we
used as input into the meta-model normalisation process in deriving the ShaMAN
entities (the first table column). All models have some entity similar to the
ShaMAN’s Goal, Role, Responsibility and Agent, so these have been excluded from
the table in this paper. Even so, a particular comparison (e.g. ShaMAN’s Goal(tree)
and Tropos’s Soft Goal/Hard Goal) only approximately equates the concepts.
Sometimes a comparison is close in meaning, other times it is close in name but
distant in meaning, and sometimes there is wide variance in both name and the
semantics. In the full study we did examine each twin comparison of concept in
detail, but it cannot be presented in this paper for space reasons.

What is more useful in this paper is to highlight where ShaMAN has entities that
have little or no comparison across the other agent meta-models examined. The darker
shaded cells in the table shows that entities around Locale are unique to ShaMAN.
Similarly, the lighter shaded cells show several of the entities related to SocialWorld
are unique to ShaMAN. These entities were discussed explicitly above in the
discussion of figures 3 and 4.

4 Conclusions and the Future

Agent-oriented architectures and frameworks lend themselves well to Human-Centred
Software Engineering, given that several of them are derived from branches of
psychology and mentalistic notions (e.g. BDI – from Folk Psychology; ShadowBoard
– from Analytical Psychology). We set out to extend current AO concepts to further
facilitate game specification and development. While the entities unique to ShaMAN
were introduced specifically for that purpose, most of them have a more generic
usage, particularly for intelligent applications, with multiple users, many agents and
rich user interfaces. It has not been our intent to develop a generic agent meta-model,
however others are endeavouring to define an all-inclusive agent meta-model: Hahn et
al [12] demonstrate the usefulness of the MDA (model driven architecture, see OMG
[17]) approach to software development with AO tools. Fischer et al [6] propose that
a unified agent meta-model is a worthy goal and could provide interoperability

between many of the current disparate agent meta-models, methodologies and
technology platforms. Theirs is a work-in-progress that we intend to align ShaMAN
development with, as much as possible.

References

1. Bresciani, P., Perini, A., Giorgini, P., Guinchiglia, F. & Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems, 203-236 (2004)

2. Chen, P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM Transac-
tions on Database Systems, 1, 9-36 (1976)

3. Codd, E. F.: A relational model of data for large shared data banks. Communications of the
ACM, 13, 377-387 (1970)

4. Cossentino, M.: Different perspectives in designing multi-agent systems. In: AgeS’02 ,
workshop at NodE’02, Erfurt, Germany (2002)

5. Da Silva, V.T. and De Lucena, C.J.P.: From a Conceptual Framework for Agents and Ob-
jects to a Multi-Agent System Modeling Language. Autonomous Agents and Multi-Agent
Systems, 9, 145-189. Kluwer, The Netherlands (2004)

6. Fischer, K., Hahn, and C., Madrigal-Mora, C.: Agent-oriented software engineering: a
model-driven approach. International Journal of Agent-Oriented Software Engineering, vol.
1, no 3/4, pp. 334-369 (2007)

7. Fitzpatrick, G.: The Locales Framework: Understanding and Designing for Wicked Prob-
lems. London: Kluwer Academic Publications (2003)

8. Goschnick, S.B.: ShadowBoard: an Agent Architecture for enabling a sophisticated Digital
Self. Thesis, Dept. of Computer Science, University of Melbourne, Australia (2001)

9. Goschnick, S.B.: The DigitalFriend: the First End-User Oriented Multi-Agent System,
OSDC 2006, the third Open Source Developers' Conference, Dec 5-8, Melbourne, Austra-lia
(2006)

10. Goschnick, S., Balbo, S. & Sonenberg, L.: From Task to Agent-Oriented Meta-models, and
Back Again. In: Tamodia-2008, Pisa, Italy (2008)

11. Guinchiglia, F., Mylopoulos, J. & Perini, A.: The Tropos Software Development Method-
ology: Processes, Models and Diagrams. In: AAMAS-02, ACM (2002)

12. Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesaeter, B., Berre, A. and Zinnikus, I.: Meta-
models, Models, and Model Transformations: Towards Interoperable Agents. In: K. Fischer
et al (eds.) MATES 2006, LNAI, vol. 4196, pp. 123-134. Springer (2006)

13. Juan, T. & Sterling, L.: The ROADMAP Meta-model for Intelligent Adaptive Multi-Agent
Systems in Open Environments. In: 4th International Workshop on Agent Oriented Soft-
ware Engineering, Melbourne (2003)

14. Juan, T., Pearce, A. & Sterling, L.: ROADMAP: Extending the Gaia Methodology for
Complex Open Systems. In: Autonomous Agents and Multi-Agent Systems AAMAS-02
(2002)

15. Kent, W.: A Simple Guide to Five Normal Forms in Relational Database Theory. Commu-
nications of the ACM 26(2), pp 120-125, February (1983).

16. Kinny, D., Georgeff, M. & Rao, A.: A Methodology and Modelling Technique for Systems
of BDI Agents. In: Van de Velde, W. & Perram, J. W. (eds.) The Seventh European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World. Berlin, Springer-Verlag
(1996)

17. OMG: MDA Guide Version 1.0.1. http//www.omg.org/docs/omg/03-06-01.pdf (2003)
18. Padgham, L. & Winikoff, M.: Prometheus: A Methodology for Developing Intelligent

Agents. AOSE Workshop, AAMAS-20, Bologna, Italy (2002)

19. Shen, Z., Li, D., Miao, C. & Gay, R.: Goal-oriented Methodology for Agent System De-
velopment. International Conference on Intelligent Agent Technology, IAT-05 (2005).

20. Shneiderman, B.: Designing the User Interface, Strategies for Effective Human-Computer
Interaction, Third Edition, Addison-Wesley, USA (1997)

21. Strauss, A.: A Social World Perspective. Studies in Symbolic Interaction, Vol 1, 119-128
(1978)

22. Wooldridge, M., Jennings, N. R. & Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems, 3, 285-312 (2000)

23. Zambonelli, F., Jennings, N. R. & Wooldridge, M. J.: Developing Multiagent Systems: The
Gaia Methodology. ACM Transactions on Software Engineering and Methodology, 12, 417-
470 (2003)

