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Abstract. Human activity unfolds partly through planning and learnt sequences 
of actions, and partly through reaction to the physical objects and digital data in 
the environment.  This paper describes various techniques related to automatic 
task assistance that take this role of data as central.  Although this brings 
additional  complexity, it also offers ways to simplify or bypass problems in 
task inference that otherwise appear difficult or impossible.  Although the focus 
in this paper is on automated task support, the importance of objects and data in 
understanding tasks is one that applies to other forms of task analysis in the 
design process. 
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1   Introduction 

One morning recently, whilst having breakfast, I served a bowl of grapefruit segments 
and then went to make my tea.  While making the tea I went to the fridge to get a pint 
of milk, but after getting the milk from the fridge I only just stopped myself in time as 
I was about to pour the milk onto my grapefruit!  I am sure everyone reading this has 
made a similar mistake, but it is not just an amusing anecdote; the analysis of such 
mistakes is the grist of human error analysis and equally tells us critical things about 
even error-free tasks. 

Note that not all mistakes are equally likely: I would be unlikely to pour the milk 
onto the bare kitchen worktop or onto a plate of bacon and eggs.  This is a form of 
capture error: the bowl containing the grapefruit might on other occasions hold 
cornflakes; when that is the case and I am standing in the kitchen with milk in my 
hand, having just got it out of the fridge, it would be quite appropriate to pour the 
milk into the bowl. 

In all but the most repetitive, routinised, or organisationally prescribed settings, the 
actual evolution of the goal into human activity is far more complex and situated then 
we can easily capture in simple task-hierarchies and plans.  Real activity involves 
procedural, reactive and consciously considered actions and for over 20 years, many 
in HCI have argued that the complexity of ‘situated action’ renders more formal task 



 

 

or goal analysis incorrect, obsolete and irrelevant.  In contrast, in my keynote at the 
first Tamodia in 2002, I discussed how some of these more contextual or situational 
elements could be drawn into a formal task model: the role of information, other 
people, physical artefacts, triggers for action, and placeholders keeping track of where 
we are in a task [1]. 

This subtle complexity of real human activity is difficult for a human analyst to 
adequately describe in more formal terms; even when that formalisation is properly 
understood to be partial and provisional.  However, this is far worse when the 
‘analyst’ is a machine!  As a human analyst we can ask what is going on in a user’s 
head, but automated analysis typically has only the trace of user actions available and 
no real understanding of human activity and purpose. 

Over the years I have intermittently worked on aspects of task inference and 
automated support of user activity.  In this paper I will reflect on the relation of this to 
more human task analysis and the way they inform one another.  Many of the 
techniques described are being worked on together with colleagues at Lancaster, 
University of Rome "La Sapienza”, University of Athens, University of Peloponnese 
and Universidad Autonoma de Madrid.  I will mention other names explicitly in the 
paper, but in other places when I say “we”, this refers to joint work with various 
colleagues in this group. 

2.  The Best Laid Plans and Reactions 

We’ll start by looking in a little more detail at the milk in the grapefruit error.  
Figure 1 shows a HTA of the task of making a mug of tea. It is subtask 4 that is 
interesting.  It has two further subtasks and one would normally write a plan such as: 

 
Plan 4. 

if  milk not out do 4.1 
then do 4.2 

 

Figure 1.  Making a mug of tea (sorry no teapot) 
 



 

 

 
However, maybe it is more like: 
 

Plan 4. 
if milk not out do 4.1 
when milk in hand do 4.2 

 
The capture error is then understandable as the “eat some cereal” task will also 

have a plan with something like “when milk is in hand pour into bowl”.  
The first version of the plan is really a ‘planned’ plan, or maybe a proceduralised 

one, where the sequence of actions is in some way explicitly or implicitly 
remembered.  However, the second is effectively a stimulus–response reaction based 
on conditions in the environment – the sequenced and hierarchical structure will still 
be there, but are maintained because it unfolds as the human actions interact with the 
environment, not because the order is remembered.  Furthermore, the user may even 
be performing some form of explicit means-end analysis “in order to add milk I need 
a bottle of milk”, … “in order to get a bottle of milk I need to open the fridge”. 

We can arrange these types of sequenced activity by whether they are explicit or 
implicit and whether they are pre-planned or environment-driven: 

 

 pre-planned environment-driven 

explicit (a) following known plan 
of action 

(b)  means–end analysis 

implicit (c) proceduralised  
or routine actions 

(d)  stimulus–response 
reaction 

 
From watching a user we often cannot tell which of these is the reason for a 

particular sequence of observed actions. While these are very different in terms of 
cognitive activity, they are virtually indistinguishable from behaviour alone. 

Now we might assume that a well-practiced user will learn frequently repeated 
tasks: that is, even if the user starts off with an explicit plan (a) or are means-end 
driven (b), they will eventually end of with proceduralised or routine actions (c) – 
practice makes perfect.  Certainly this is true of repeated actions in sports and music. 

However, theorists advocating strong ideas of the embodied mind would argue that 
we are creatures fitted most well to a perception–action cycle and where possible are 
parsimonious with mental representations allowing the environment to encode as 
much as possible. 

 
“In general evolved creatures will neither store nor process information 
in costly ways when they can use the structure of the environment and 
their operations on it as a convenient stand-in for the information-
processing operations concerned.” ([2] as quoted in [3]) 
 



 

 

Clark calls this the “007 principle” as it can be summarised as: “know only as much 
as you need to know to get the job done” [3]. 

In the natural world this means, for example, that we do not need to remember 
what the weather is like now as we can feel the wind on our cheeks or the rain on our 
hands.  In a more complex setting this can include changes made to the world (e.g. the 
bowl on the worktop) and even changes made precisely for the reason of offloading 
information processing or memory (e.g. ticking off the shopping list). Indeed this is 
one of the main foci of distributed cognition accounts of activity [4]. 

It is not necessary to take a strong embodied mind or even distributed cognition 
viewpoint to see that this parsimony is a normal aspect of human behaviour – why 
bother to remember the precise order of doing things to make my mug of tea when it 
is obvious what to do when I have milk in my hand and black tea in the mug?   

Of curse parsimony of internal representation does not mean no internal 
representation.  The story of the grapefruit bowl would be less amusing of it happened 
all the time.  While eating breakfast it is not unusual for me to have both a grapefruit 
bowl and a mug of tea out at the same time – so why don’t I make the same mistake 
every morning?  In fact I do have some idea of what follows what (plan) and also 
have some idea that I am “in the middle of making my tea” (context, schema). 

Together these factors: environment, plans, context inform the actions we perform 
in the world. 

We will look at each of these factors and how they impact automatic inference and 
support of users’ tasks. 

3.  Environment – data driven interaction 

In ubiquitous computing, the instrumentation of the environment is a major issue in 
itself and so inferring user behaviour from the environment is very difficult.  In 
contrast, in the purely digital world of the desktop or web, we have, in principle, 
relatively easy access to the complete digital environment.  This makes certain forms 
of data-driven interaction particularly easy. 

One form of this are “data detectors”, which usually use some form of textual 
analysis to identify potential key terms, dates, etc. in small bodies of text such as 
email messages, or your current selection. The initial work on data detectors occurred 
in the late 1990’s when there were a number of other data detector projects at Intel 
(SRA) [5], Apple [6] and Georgia Tech (CyberDesk) [7]. The Apple work led to the 
inclusion of Apple Data Detectors in the operating systems (and still there albeit often 
unused). When activated (and when using a compliant application) small contextual 
menus appear over selected words/phrases in the text of the current document or 
email. 

At around the same time I was involved in the development of onCue [8], a small 
“intelligent” toolbar.  This sat at the side of the screen and watched for changes to the 
clipboard (through copy-paste); when the clipboard changed, onCue would alter its 
icons to suggest additional things that the user might like to do with the clipboard 
contents. For example, if the user selected a person’s name various web-based 
directories would be suggested, if instead a table of numbers were selected, graphs 
and spreadsheet options would be suggested. 



 

 

The internal architecture of onCue consisted of two main kinds of components, 
recognisers and services, linked by a blackboard-like infrastructure. The recognisers 
examined the clipboard contents to see if they were a recognised type (post-code, 
name, table, etc.). The services instead responded to data of particular types (e.g. 
single word for dictionary, post code for mapping web site) and were activated when 
clipboard contents were recognised to be that type. This separation (itself building on 
CyberDesk [7]) was an important difference from most other systems where the two 
were linked as it meant that services could easily be added for previously recognised 
types adding to the potential for third party additions (through small XML “Qbits”).  

OnCue used the clipboard as its focus as the clipboard is usually the only truly 
application-independent source of data on a GUI plat- form. Ideally onCue would 
have fitted more closely into applications, but this is hard without per-application 
coding, even Apple found this despite controlling the platform!  For exactly the same 
reasons, Citrine, another recent application in the data-detector tradition, is based 
purely on intelligent clipboard-to-clipboard interactions, offering intelligent 
transformations between types of clipboard content [9].  

Citrine is part of a recent small resurgence in work on data detectors, including 
headlines a few years ago due to disputes about Microsoft SmartTags. Yahoo! also 
have ways for web developers to include context-sensitive searches into their web 
pages keyed on phrases in the page contents, and Amazon have recently announced a 
similar mechanism to link to books and other products. More interesting compared 
with these more hand-crafted links is the CREO system [10]. CREO takes several 
large ontologies of general knowledge and uses these to build indices of critical words 
and phrases. As the user browses the web a plug-in looks for matching words in the 
web pages visited and adds contextual links to web based interactions concerning the 
topic of the words. The information for this is also used to allow the user to train the 
systems to do new actions by example.  

The mode of operation of CREO is reminiscent of an older body of work that 
started over 15 years earlier in the HyperText community, where notions of external 
linkage were important. Microcosm [11] developed at Southampton pioneered the use 
of automatic links. This used an index of key terms attached to a particular content. 
When the user viewed a document any key terms present in the index became live 
links in the document. Note that, with the exception of CREO, most of the data 
detectors, including onCue, rely on largely syntactic/lexical matching using regular 
expressions or other patterns whereas Microcosm was lexicon based.  

Snip!t (www.snipit.org) is a web-based system allowing users to bookmark 
sections of a web page rather than just the URL of the page itself [12].  It has been 
developed intermittently over a period of about 5 years based on initial user studies of 
bookmarking showed that users want to be able to recall a portion of a page [13]. This 
is now more common in tools such as Google Notebook and various annotation 
services such as Bricks [14] and MADCOW [15]. Snip!t inherits the recogniser–
service architectire of onCue but running server-side rather than on a user’s own 
machine.  This allows it to access larger data sources, like Citrine and Microcosm, 
and so it performs a mixture of lexicon look-up and syntactic recognizing of suitable 
types, including hybrids.  For example if a word matches one of the common names 
from a US census dataset of first names, it triggers a full syntactic analysis to check 
whether the surrounding text is really a name. 



 

 

In many ways these data detector and related services are very much like a butler 
who, seeing you in the kitchen holding a pint of milk and a mug of black tea, says 
“would you like me to pour milk in your tea, sir?”  However, the above systems all 
have little if any adaptation to the user, so are like an absent-minded butler who 
always asks the same even though you never take milk in your tea. 

In order to make this kind of data-detector more individual, in the TIM project we 
are connecting this data detector technology with a personal ontology [16].  A 
personal ontology is an explicit store of personal information such as friends, work 
colleagues, projects, papers, and addresses, including the connections between them.  
There are various usability issues relating to how one encourages a user to produce 
and maintain such and ontology, but in general the process will be semi-automatic.  
The GNOWSIS project [17] has found that by mining very explicit desktop data such 
as address books, email messages etc. it is possible to build at least part of the data we 
would want to see in such an ontology. 

 If one assumes that such a personal ontology exists, then the terms in the ontology 
can be matched in text alongside public information sources such as gazetteers.  So as 
well as recognising that Pisa is a City, it will also recognise that “Fabio” is the first 
name of an academic in my personal ontology and then be able to suggest things that 
are appropriate for an academic such as looking him up in DBLP. 

4.  Context – what to do and what to do it to 

Of course a human aide would not only know about you as an individual (such as 
whether you like milk in your tea), but also know something about what is happening 
to you now (such as making tea or making pancakes). 

Context recognition and context awareness have become especially important in 
ubiquitous and mobile computing where interactions with the world are central, but 
also in purely digital domains such as adaptive hypertext, and e-learning.  It may be 
useful even in purely digital settings to know, for example, whether the user is 
stressed or relaxed, with colleagues or on her own. However, this paper will focus on 
context that can be inferred from the digital domain itself. 

To do this, we take the personal ontology and then use spreading activation in 
order to represent what are the ‘hot spots’ in the ontology at any particular moment 
[18].  Spreading activation has its roots in cognitive psychology [19] and so has the 
potential to model context in a way somewhat resembling a human.  The basic idea is 
that when an event or document refers to some entity in the ontology it becomes 
‘activated’ (say I have an email from Vivi, then  the entity representing Vivi gets an 
initial high activation).  The algorithm then ‘spreads’ the activation by making entities 
connected to Vivi a little activated, then those connected to these slightly less active 
entities.  There are problems, such as loops in the ontology, which can set up self-
reinforcing feedback, but these can be controlled with care in the detailed algorithms. 

Now imagine I receive a second email that mentions “George”.  I may know 
several people called George, so on its own any form of digital assistant can at best 
suggest it is one of a long list.  However, with the spreading activation, the George 
who is part of the same project and in the same country as Vivi will be ‘hotter; than 
others and so be the first suggestion.  Also if the next action I am performing requires 



 

 

a city name, then an assistant can pre-complete the form with “Athens” as a 
suggestion as this is the city that is most highly activated. 

 

 

Figure 2.  Spreading activation through a personal ontology 
 
A related approach is being used to create declarative representations of the 

relationship between web form fields [20].  Whenever a user enters test into form 
fields an automated system records the contents and then attempts to infer the 
relationship between the fields.  If the fields are completely unrecognised it can do 
nothing (although this would be an appropriate point to suggest that the users store the 
data in their personal ontology!)  However, if several form fields are found in the 
personal ontology, then an algorithm searches for ‘best’ paths between the fields.  

There are typically several such paths hence the need for weighting.  For example 
“Lancaster University” is related to “Alan Dix” by being his institution, but also the 
institution of Devina his work collegue.  That is we have two possible paths: 

(a) name_of / Person  / member / Institution / has_name 
(b) name_of / Person  / colleague / Person  / member / Institution / has_name 
The system would give the first of these a higher weight because it is ‘shorter’ 

based on number of relationships traversed and their branching factors.  Potentially, 
this could also use the current activation to weight more highly paths through ‘hot’ 
entities. 

Next time the user comes to the form, the system knows not only what data was 
entered before (as in standard browser auto-completion), but also the relationship 
between them in abstract terms.  So if the user enters Antonella into the first field, the 
system traverses path (a) and auto-completes the second field not with “Lancaster 
University” (the last value entered), but with “University of Rome” as that is the name 
of the institution that Antonella is a member of.  



 

 

5.  Sequence – from traces to plans 

Performing a task leads to some observable trace of actions.  This trace of real activity 
is often the meeting point of different views of the world.  Even if we disagree on 
interpretations of events, we can often (although not always!) agree on what actually 
happened.  For this reason, in earlier work, I have referred to traces as a “ubiquitous 
semantics” for different user interface formalisms from task analysis to system 
models [21]. 

One way to view an HTA is as a grammar over this trace of actions.  Personally I 
have found this a useful way to teach about task analysis, and have included this in 
the teaching materials for the Human–Computer Interaction textbook (although not 
yet in the actual text) [22,23].   As an illustration, figure 3 shows a simple HTA of 
cleaning a house and figure 4 shows how this can be used to build a ‘parse tree’ of a 
trace of actual actions (trace on the left, parse tree on the right).  Note that unlike a 
textual grammar, the task grammar includes interleaved activities (the instance of task 
4 “empty the dust bag” in the middle of the execution of task 3 “clean the rooms”). 

This can be applied to practical task analysis.  In his thesis work, Stavros 
Asimakopoulos has used the “HTA as grammar” approach to supply chain forecasting 
[24].  Interviews with system developers and forecasters included accounts of actual 
forecasting activity (for the developers, envisaged; for the forecasters, from 
experience).  These (partial) activity sequences were then matched against a 
normative task analysis based on the literature allowing an analysis of discrepancies 
between normative and actual tasks. 

 

 

Figure 3.  HTA for cleaning a house (from [22] 
 



 

 

 

Figure 4.  Parsing a trace using an HTA (from [23] and [24]) 
 
This approach can be used inductively too, and indeed direct observation is one of 

the normal sources for task analysis.  As an analyst one is looking at a sequence of 
actual actions and attempting to infer a hierarchical (or other) structure on those 
actions.  To do this the analyst uses a combination of common sense, domain 
knowledge and interaction with users in order to ascertain that, for example, putting 
money in a slot is part of parking a car. 

For automated analysis this becomes far more complicated – I have been told that 
the general problem of inferring a hierarchical grammar from a sequence is 
computationally hard (either NP or at least nk for some large ‘k’!). However, in 
practice things are not quite as bad as this suggests.  Indeed various forms of 
action/tasks inference have been common in the literature with the heyday in the early 
1990s.  The most well known example is Allan Cypher’s Eager [25], but there have 
been many such systems using various algorithms including neural networks and 
hidden Markov models [26,27,28]. In recent years certain (albeit limited) forms of 
task inference can be found in commercial systems such as auto-completion of lists in 
Microsoft Office or form auto-fill features in web browsers … but the former 
emphasises the need to put any such ‘intelligent’ features within an appropriate 
interaction framework. (See “appropriate intelligence” in [29], especially the principle 
that one should design foremost for the times when the intelligence, inevitably, fails 
and make interaction graceful at such times.). 

In some cases data-focused interactions can give rise to emergent task sequencing: 
if the output of a basic user action is some form of data, then this becomes the locus 
for the next action, etc.  However, data linkages can also be used to make the job of 
inferring structure from tasks sequences easier.  

One of the problems in inferring task structure from traces of user activity is that 
we interleave different tasks.  I may be writing a paper, but occasionally reading or 
writing an email while I do so, or maybe taking a break to play a game of solitaire.  
Email reading on its own is perhaps one of the most challenging domains as perforce 
the mails arriving are related to different higher-level tasks and yet they typically get 
read in arrival order not a task at a time. 

This is similar to the case in the kitchen where I maybe alternating between making 
tea, serving grapefruit and chatting to my wife.  Although the milk is somewhat 
problematic, it is obvious that boiling the kettle is connected with making the tea 
because the water from the kettle goes into the mug not the grapefruit bowl.  That is 



 

 

the shared physical objects in the environment can be used to establish links between 
low-level actions. 

We can do the same thing in the digital domain.  If we keep track of what digital 
objects are produced or used by different user actions then this creates a linkage 
between them.  For example, if I copy a date from an event in my calendar and paste 
it into a hotel booking form, I create an implicit link between the two actions.  

If the user types the data, things become more difficult.  For example, if the result 
of a search produced “Miguel” and then I typed “Madrid” into a text box.  However, 
here the algorithm described at the end of the previous section again comes into play 
and offers a way to establish potential relationships through the personal ontology. 

Now, assuming we have these data links between low-level actions, we can start to 
‘pull out the threads’ of tasks from the undifferentiated interleaved sequence of 
actions.  This is a bit like finding one end of a string of pearls in a jewellery box and 
gently pulling the whole string (see Fig. 5).  In principle these data links could take 
place days, weeks or months later and still be detectable. 

 

 

Figure 5.  Pulling out task threads form interleaved user actions 
 
Once this thread has been pulled out we have a task sequence that is not confused 

by interleaved activities of other kinds and thus far more amenable to further analysis.  
For example, if a sequence of low-level actions A, B, C is detected and action A is 
later performed then the option of performing actions B ad C can be proposed.  
Furthermore the fact that we have the data link between them means we can auto-
complete the parameters of the subsequent actions.  Of course, given this sequence, 
some of the more sophisticated inference techniques in the programming by example / 
by demonstration literature can be used [28].  The crucial thing is that data linkage 
turns what seems like a near impossible problem into a relatively simple one. 

Of course nothing is as trivial as that and there are some complications.  The task 
thread is a data flow and so may not be a simple sequence, but instead DAG (directed 
acyclic graph) with time-based total ordering.  Also any inferred data linkages mean 
that there is a level of uncertainty associated with the detection of threads, leading to 
several potential task threads with some level of confidence associated with each. 

In principle it would also be possible to infer a level of hierarchical structure, either 
through the temporal structure, by looking for common sub-sequences of actions; or 
through the data structure, by looking at braches in the DAG.  However, this seems an 



 

 

appropriate level to rely more strongly on the user.  When a sequence of actions is 
suggested an option can be “name it”.  As this the point, the task sequence is being 
used, and so is an appropriate moment to request small (but optional) additional user 
effort.  If the user does this, it means that (i) the user has effectively agreed that these 
actions form a meaningful task chunk which can then be treated as atomic in further 
inference and (ii) the chunk has a meaningful name that can be used in future 
suggestions, or even to share with others. 

6.  Discussion 

A key theme in this paper has been the interplay between data and action.  Taking this 
seriously allows us to consider various forms of automated task support that would 
otherwise seem difficult or impossible.  This is not to say that we should adopta 
purely data-oriented view, but by that using data-focused analysis alongside ways to 
capture or inference more sequential or structured plans, we both create more robust 
inference and make the detection of structure easier.  All of this is set within the 
context of interaction, some of which we can attempt to infer, and some, such as the 
deeper intentions of the user, we need to defer to the user’s own decisions and control.  
Indeed, as we saw especially in the final discussion of the preceding section, we are 
likely to obtain more reliable results if we consider an ongoing dialogue of suggestion 
and observation rather than a more ‘waterfall’ approach of observe, infer then 
automate.  Furthermore, such inference processes could easily operate symbiotically 
alongside more user-initiated scripting such as Apple Automator or Yahoo! Pipes, 
further increasing user control whilst still offering rich assistance. 

With the exception of task threading, the work described in this paper is mostly 
implemented, but as distinct units, and we are working on bringing this together, 
within a unified architecture.  For various reasons intelligent and adaptive interfaces, 
whilst continuing to have their strong advocates, got a bad name in the general HCI 
community for many years.  Some of this was due to factors that still need to be 
treated with care: inappropriate choice of algorithms; the prevailing “user in control” 
ethos of direct manipulation; and detailed design issues, not least the lack of 
‘appropriate intelligence’ in that often software is designed well for the test cases 
where it produced good results, but copes less well when the results are less clear.  
However, some of the problems were simply due to the limited computational power 
available 15 years ago – intelligent algorithms are typically expensive algorithms.  
With each PC one thousand times more powerful than during this early blossoming, 
and the raw computational power in the internet rivalling a (single) human brain, the 
times seem pregnant for more automated (but not autocratic!) assistance. 

While the focus of the work described here is automated task assistance, broader 
lessons for human analysis and task design also emerge.  We started with a non-
automated, non-digital example of tea, milk and grapefruit.  The focus on artefacts 
and physical objects as part of the task is central to understanding the errors that 
occur; and of course are also valuable for re-designing tasks and environments to 
prevent those errors occurring.  The artefact-focus has also proved very powerful in 
uncovering long-term or complex tasks in the non-digital world [30].  Back in my 
keynote at the first Tamodia, I emphasised the importance of explicitly including 



 

 

artefacts and environment (both physical and digital) within task analysis.  In this 
paper I have principally shown how taking into account the world of data can help the 
computer to predict, suggest and automate aspects of user tasks.  If this can help the 
computer, it can help people.  While there are exceptions (e.g. [31,32]), many forms 
of task analysis still portray the user’s plans as largely pre-ordained and un-reactive 
… effectively a disembodied user thinking and acting without recourse to the world. 
If the role of artefacts and data is fully represented in task analysis then this could 
lead to better systems designs that make available prompts and external resources to 
users; so that users’ own choices and actions become easier, less cognitively taxing 
and less error prone: designing for the embodied user. 
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