
Some Thoughts about the Horizontal Development of 
Software Engineers 

Anke Dittmar and Peter Forbrig 

 
Rostock University, 18055 Rostock, Germany 
{anke.dittmar,peter.forbrig}@uni-rostock.de  

Abstract. We argue that current patterns of thought and action in software 
engineering and in HCI will simply be reproduced if we are not able to become 
more aware of their impact on our own behaviour, attitudes and values. We 
suggest that a more balanced and intertwined vertical and horizontal 
development of people can contribute to human-centred design processes. The  
case study presented describes a modest attempt to demonstrate this with future 
software engineers and managers. Though not a spectacular example, it shows a 
small tight network of activities and roles over time with feedback loops to 
facilitate deep reflection, mutual awareness and respect. The paper supports the 
idea of design as an ongoing intervention process beyond problem setting and 
problem solving. 

1   Introduction 

Diaper points out in [1] that “HCI is most closely related to the computing field of 
software engineering” and that “no distinction should ever have been made between 
software engineering and HCI because both are engineering disciplines concerned 
with the same types of systems and their difference is merely one of emphasis, with 
software engineering focusing more on software and HCI more on people.” However, 
“integration of software engineering and user-centred design” is the first topic 
mentioned in the call for papers of this conference. Obviously, there is still a gap 
between the two approaches. The title HCSE even goes a step further by suggesting 
not to focus on users of technology but on humans. 

Why is software engineering  not inherently human-centred? One explanation is 
that there is always a lag between the invention of new technologies and the learning 
of how to use them in a ‘reasonable’ way. This is also reflected in HCI. According to 
Cockton, its focus has expanded from being largely system-centred up to the 1970s, 
then user-centred in the 1980s, context-centred in the 1990s, and now, having a value-
centred focus [2]. Appropriate design approaches have been developed since then to 
improve the design of interactive systems (task-based design, participatory design, 
design rationale, reflective design, end user development,...). On the other hand,  the 
engineering side of system development is  often underestimated today (as stated e.g. 
in [3]). While ten or twenty years ago users and other stakeholders were often seen as  
not able to contribute to the design process (and this view might still prevail in 
software engineering) the HCI field tends to consider now interaction programmers as 



mere executors of other people’s ideas. Maybe this is a kind of counter effect. 
However, it also shows how difficult it is to really accept contributions from different 
fields and different people. It is one thing to understand the rationale behind a new 
approach. It is another thing to internalize those ideas and to bring them into balance 
with existing habits of thought and action. To give another example, we still struggle 
to find a balance between so-called formal, semi-formal, and informal approaches and 
representations, and we are often not even aware that they can share similar 
assumptions which, perhaps, should be questioned first. 

What does it mean to do human-centred software engineering, or maybe value-
centred design or sustainable design? Why, for example, does Thimbleby give at the 
beginning of his book about principles of interaction programming [3] explanations 
about interests behind short production cycles, about toxic waste, time pressure on 
programmers and its consequences? Blevis states in [4] that the material effects of 
current practices of designing and using interactive systems do not reflect a sustain-
able lifestyle. He proposes several design principles to increase our understanding of 
the environmental impact of interaction design. However, he also suggests “that faith 
in technology as usual cannot succeed, and that new thinking is critical to our 
survival.” All this is not new. Einstein is frequently cited (e.g. in [5]): “The world we 
have created is a product of our thinking, it cannot be changed without changing our 
thinking”. 

In this paper, we briefly describe a series of tutorials in requirements engineering 
with graduate students of software engineering and business informatics (Sec. 2). We 
will refer to it as a case study though it was not planned as such. However, its specific 
conditions and its evolution triggered the reflective analysis, and the suggestions for 
learning practices, which are presented in Sec. 3. We argue that it is not enough to 
reflect on external products of design activities. Current patterns of thought and action 
will simply be reproduced if we are not able to become more aware of the impact of 
actual practices on our own behaviour, on our attitudes and values. We suggest that  
deep reflection and a more balanced and intertwined vertical and horizontal develop-
ment of people can contribute to more effective human-centred design processes. 
Though we do not ground this work in a sound qualitative methodology but rather 
remain on a descriptive level we think that our reflective analysis can contribute to a 
more sustainable software engineering culture in which design is understood as an 
ongoing intervention process beyond problem setting and solving. 

2   Case Study 

The case study is about tutorials supplementing the requirements engineering lectures 
(RE) at Rostock in summer 2007. Participants were 15 graduate students of software 
engineering and business informatics. They were familiar with programming, formal 
specifications and with software engineering methods. They also had done an 
internship. The focus of such tutorials is on the early stage in a user-centred design 
process. Their nature is partly shaped by the following constraints. The participation 
is optional. The main interest of most students is neither in RE nor in HCI. Even in 
their industrial training, many had no experience of any deep requirements analysis. 



Students get no marks or points and their participation is not a prerequisite for other 
courses or examinations. Hence, the focus of a tutorial is more on the activities in the 
11-12 weekly meetings (each about 90 minutes) and less on the production of precise 
specification documents (though documents are produced). We do not insist on 
training in particular methods by using specific, independent examples. Instead, a 
single ‘problem’ is used throughout the semester. Some of the methods and 
techniques which were introduced in lectures are chosen to approach the problem. 
They are mostly applied in a sketchy way. In addition, the meetings are used to reflect 
personal activities, to see improvements and alternative approaches, and to discuss 
pros and cons of the artifacts in use. 

The reported case study was about analysing the software engineering course (SE) 
for second-year students at our department in order to find out how to better support 
student projects. Both authors are involved in the SE course as well. We could ask our 
colleagues and students to ‘act’ as participants. We also chose this topic because of 
the obviously different, and partly conflicting, views of the stakeholders. The 
following description is based on material created during the tutorials and on the notes 
of the tutor. Sometimes the first person is used to emphasize that it is the perspective 
of the tutor (one author). 

First Meeting 
The students were asked to work in groups and develop initial ideas of how to tackle 
the analysis. Most participants started by reflecting their own past experiences with 
the SE course. Some students discussed, for example, whether the goal of a project is 
to learn about object-oriented software development or to work in a team. One of 
them said: I am sure, if you went to one of the teachers right now to ask them about 
the goals of these projects they would make up a story. The whole group agreed on 
conducting semi-structured interviews with the teaching staff involved and with 
second-year students. Two students were asked to prepare a test interview with the 
tutor (who also was SE tutor). Eleven students were asked to make appointments with 
the teachers. 

Interviews 
The test interview in the second meeting might have helped to make sense of the 
grading scheme or to understand better the work of tutors. However, it was also 
obvious that the questions had to be revised to get more insights. The revised list 
guided the interviews of the other four tutors and the lecturer. Generally, all 
interviews were recorded. They were transcribed (with differences in detail). We used 
Stud.IP (a learning management system with wiki support at our university) to store 
and access audio files and all other documents. In the third meeting, we listened to a 
40-minute interview with one of the tutors. In the subsequent meetings only 
transcriptions were used. We did not perform a thorough analysis. Instead, we rather 
used the interviews for a kind of ‘informed dialogue’ between ourselves about the SE 
course and about project work in particular. 

The tutors were asked to help us contacting one or two of their project groups. In 
another meeting we divided into three groups to prepare a list of questions for 
students. One group wrote down ‘ad hoc’ questions. Another group was asked to 



develop a simple task model from the student’s perspective before writing down their 
questions. The third group created a list of artifacts used in the SE course and 
developed questions on this basis. Then, all questions were gathered, selected, and 
grouped. Finally, four interviews with at least three students of a group (and two 
interviewers) were conducted. In one case, the whole group was present. The 
interviews took from 40 to 70 minutes. At that time, I suggested that we should try to 
organize a ‘workshop’ at the end of the RE course. 

Brainstorming 
The following list shows an extract from suggested improvements at the ‘brain-
storming session’ in the 7th meeting. Based on this list, we planned the last four 
meetings. The group decided to invite teachers but not students for a final workshop 
“SE 2.0”. All invited people were present. 

1. registration: choice of project topic, group formation, 
2. more relations between documents of a project, 
3. management tool for teaching staff, 
4. announcement of the SE course, e.g. invitation of the first-year students to 

the final project presentations, 
5. more milestones in the second phase of the project (summer semester), 
6. more exchange between project groups, e.g. mutual testing, code reviewing... 

Specifying Requirements 
In the 8th meeting, we began to explicitly describe requirements. We used different 
techniques such as use cases and paper prototypes. Prepared material facilitated the 
meetings. For example, an entity-relationship diagram encouraged consideration of 
flexible graduation schemes, and helped to find requirements on a management 
system for tutors. Fig. 1 shows the revised version of the “rough QOC” developed 
during the discussion about future registration practices for student projects. 

3   A Reflective Analysis 

Development is often understood as ‘vertical’ improvement of individuals though 
supported by social interaction and collaboration [6]. However, vertical development 
also needs a horizontal movement across social worlds. The T-model (e.g. [7]) is 
well-known but not necessarily practised in education. The � can stand for the vertical 
and the  for the horizontal development. Engeström mentions ‘contact zones’ as 
places where people and ideas from different cultures meet, collide and merge. “It is 
this inability to ever understand another world that has great developmental signifi-
cance” [6]. Participatory design supports this idea. Authors like Schön initiated a 
transformation of design by promoting a “reflective practice” with argumentation 
processes and an intertwined goal shaping and problem solving [8]. 
 



 
Fig. 1. QOC diagram (8th meeting). 

Sec. 2 may have already shown that the way we organize the tutorials is rooted in 
these ideas. They can be seen as complementing ‘classrooms’ and project work. 
Students are neither evaluated nor forced to create a ‘visible product’. The idea is to 
support a horizontal development but with a ‘starting point’ which is familiar to the 
participants (requirements engineering is part of software development). There are 
few pre-defined roles and goals. There is no pre-established agenda. The idea is to 
create a continuous conversation about current and envisioned practices in a certain 
working system. A conversation which is guided by early design techniques, most of 
them well-known or even developed in the HCI field. The focus is on a continuous 
experience and less on the creation of ‘perfect’ artifacts. Mistakes are allowed. It is 
also allowed to use suggested techniques in a sketchy way. Perhaps this facilitates a 
combination of child-like playfulness and adult-like rationality as recommended in 
[9]. 

The  case study might be used to illustrate several points. For example, none of the 
students was trained in conducting interviews. Of course, we made mistakes. The first 
tutor showed some surprise when students started to record the interview. We never 
forgot again to ask and to emphasize that we don’t want to ‘test’ the interviewees. 
Suggestive questions were asked. One interviewer asked a tutor: Do you REALLY 
read the documents of student’s project? What can he answer? As mentioned, 
interviews were not thoroughly analyzed. However, it is possible to hand out and 
discuss a description like the following (it only takes five minutes). “The interviews 
were recorded and transcribed. Analysis included open coding for thematic analysis, 
selective coding and constant comparison between analysis products and raw data...”. 
Students can recognise themselves in the description but also see that much more 
knowledge, experience, and work(!) is required. Perhaps, this helps to create a deeper 
understanding of other stakeholder’s activities, an appreciation of diverse viewpoints, 
and mutual respect. 
 



In the specific study described in Sec. 2, the authors were responsible for the RE 
course. Participants were graduate students in software engineering and business 
informatics. They analysed a basic course in software engineering with activities of 
second-year students, the authors, and other tutors. Most of them attended this basic 
course some semesters ago. Hence, students were teachers and teachers were learners 
in a way. Who were the users and who the developers, who the observers and who the 
observed? As it turned out, a ‘frame’ was set up which was convenient to support 
- multiple, sometimes blurred roles and actions with multiple motives, 
- intertwined vertical and horizontal development, 
- deep reflection, 
- mutual respect and shared understanding, 
- the idea of design as ongoing intervention. 

Vertical and Horizontal Development 
SE projects are basically guided by the waterfall system life cycle. In a way, the older 
students ‘observed’ their own activity of two or three years ago but now through the 
lenses of their increased knowledge and skills in software engineering. Some of the 
suggested early design techniques are not yet applied in the ‘real world’ of software 
development. They require an understanding and  skills which are often not conveyed 
in ‘traditional’ software engineering. The case study might be a modest example of an 
intertwined vertical and horizontal development. The  in the above mentioned T-
model is deeply related to the � and yet different ways of thinking and acting are 
needed. 

Deep Reflection 
In [10], ongoing and off-loop reflection is required for a professional participatory 
design process. Off-loop reflection is seen as an opportunity to reify and discuss past 
experiences, and to establish a firm link to possible future practices. As already 
described, both forms of reflections were evoked. Two small examples from the 8th 
meeting about new registration practices for projects may serve for illustration. One 
group of participants applied use cases [11], the other used the concept of “rough 
QOC” [12]. Then, we looked at the notes of both groups to compose a proposal. The 
‘nature’ of the approaches literally emerged. The use case with its focus on action 
sequences looked like a ‘first-best solution’ in comparison with the QOC diagram. 
Though the three questions in Fig. 1 seem to be trivial they don’t have simple 
answers, let alone a best one. However, look at Fig. 1 again to understand the 
following situation in the QOC discussion (written from the tutor’s perspective who 
‘served’ as QOC scribe to record the discussion): One  student said that there are 
fewer conflicts and more continuous work if students can form their own groups. They 
know each other, their skills and so on. So, I drew a solid line between the 
appropriate option and the criterion. Then, another student said that he is not sure 
about that argument. It could also be a handicap to be friends and work in a team. I 
changed to a pencil and drew a dashed line between the same option and the same 
criterion. After two more arguments I drew a big question mark over this part of the 
paper. A student asked: Are we allowed to do it?! I said: Of course. This is a sheet of 
paper and we write and draw what we want to. This led us to a 10 minutes 



‘philosophical’ talk about modeling, programming, the need for intertwining different 
activities in software design and so on. One student described, for example, some of 
his problems with modeling. There is a term for that: premature commitment to 
structure. This situation may reveal much about how we teach and live with cognitive 
artifacts like methods. Is it allowed to draw a circle in a diagram which normally 
consists of rectangles and arrows? Or, is it allowed to perform step 4 of a method 
before step 2? And doing this without rejecting the whole method? It looks like a 
paradox. On the one hand, there is often rejection of methods or rules, on the other 
hand, a kind of faith in them. 

Mutual Respect and Shared Understanding 
We think one reason why the students became engaged in the analysis was that they 
were not detached observers. For example, the interviews were sometimes more like 
an exchange of experience and knowledge. One interviewer explained to a group who 
didn’t use a version management system what it is good for. Of course, the partici-
pants were more experienced and had better understanding than the second-year 
students. However, they were still students and saw us as teaching staff though in a 
more relaxed way. We think there was much potential in this tension. The group 
started to see their own assumptions and was sometimes a kind of mediator. This 
might be illustrated by the following interview situation: The students started to 
complain about a tutor (not theirs). The interviewer said he notices it but it has no 
consequences for anyone. The students said that they would like to let us know about 
it. The interviewer said: “Okay, this analysis is about improving the SE course. And 
teachers who are not committed will be chained to the wall and whipped. You are all 
invited to come.” Laughter and the interview could continue.  

Design as Ongoing Intervention 
Even in a “reflective design practice” with an intertwined goal shaping and problem 
solving the problem is still the main underlying concept - whether wicked or tame. In 
contrast, the idea of design as an ongoing process of a double intervention “in the 
Earth’s cycles and processes, and simultaneously in the human culture of needs and 
techniques” [13] may be better supported by Bohm’s idea of embedding problem 
solving into awareness of paradoxes. What is called for in the case of a paradox is not 
some procedure that solves the problem. Rather, it is to pause and to give attention to 
it in order “to bring the root of the paradox into awareness” [14]. Bohm suggests that 
the treatment of paradoxes as problems and the attempt to solve them does not 
contribute to their dissolving but results in “ever-increasing confusion”. In the case 
study presented there are paradoxes between education and practice, between the 
desire of students to get good (individual) marks and yet to learn teamwork, between 
methods and actual situations... Take note that the brainstorming session was in the 
second half of the tutorial. We think that the relatively long first phase was an 
important experience for the participants. It helped to suspend activities of problem 
solving and to become aware of paradoxes. Perhaps this resulted in more ‘modest’ 
suggestions for changes at the workshop. Some of them are considered in the actual 
SE course, some of them were the basis for actual SE project topics. 



4   Summary 

“[T]hrough centuries of habit and conditioning, our prevailing tendency is now to 
suppose that ‘basically we ourselves are all right’ and that our difficulties generally 
have outward causes, which can be treated as problems” [14]. The paper is not about 
another method ‘to bridge the gap’ between SE and HCI. It looks instead for ways to 
facilitate a cooperative internalisation of non-familiar ideas and perspectives in order 
to question and change one’s own practices. The case study presented describes a 
modest attempt to demonstrate this with future software engineers and managers. 
Though not a spectacular study it is a small example of a relatively tight network of 
activities and roles over time with feedback loops supporting deep reflection, mutual 
awareness and respect (including self-awareness and self-respect). We are not able to 
validate our suggestions but we would like to encourage others to look for ‘seeds’ for 
adaptations in their own (design) attitudes and activities. Human-centred software 
engineering has to be treated as paradox, not as problem. There are no answers in 
terms of solutions (or methods). Design concepts and methods like those mentioned in 
this paper are artifacts that can guide this process. However, they cannot free humans 
from the need to be aware of the actual situation and the need to adapt it in a sensitive 
way. This includes the questioning and revision of the very same artifacts. 

References 

1. Diaper, D.: Understanding Task Analysis for Human-Computer Interaction. In: Diaper, D., 
Stanton, N.A. (eds.): The handbook of task analysis for human-computer interaction. 
Lawrence Erlbaum Associates (2004) 

2. Cockton, G.: A Development Framework for Value-Centred Design. In: Proc. CHI 2005, 
ACM Press (2005) 

3. Thimbleby, H.: Press On: Principles of interaction programming. MIT Press (2007) 
4. Blevis, E.: Sustainable Interaction Design: Invention & Disposal, Renewal & Reuse. In: 

Proc. CHI 2007, ACM Press (2007) 
5. Ackoff, R.L.: Transforming the Systems Movement. In: ICSTM 2004, 

www.acasa.upenn.edu/RLAConfPaper.pdf 
6. Engeström, Y.: Development as Breaking Away and Opening Up: A Challenge to Vygotsky 

and Piaget. In: Swiss Journal of Psychology 55 (1996), 126-32  
7. Dix, A.: Controversy and Provocation. (Keynote) In Proceedings of HCIE2004, The 7th 

Educators Workshop: Effective Teaching and Training in HCI (2004) 
8. Schön, D.A.: The reflective practitioner: how professionals think in action. Harper Collins 

(1983) 
9. Dix, A. Being playful: learning from children. In: Proc. IDC’03: Interaction Design and 

Children, ACM Press (2003) 
10. Bødker, S., Iversen,O.: Staging a Professional Participatory Design Practice - Moving PD 

beyond the Initial Fascination of User Involvement. In: Proc. NordiCHI (2002) 
11. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2001) 
12. Buckingham Shum, S., MacLean, A., Bellotti, V., Hammond, N.: Graphical Argumentation 

and Design Cognition. In: Human-Computer Interaction, 12(3), (1997) 
13. Knapp, R.: Sustainable Design.  

http://diac.cpsr.org/cgi-bin/diac02/pattern.cgi/public?pattern_id=798 
14. Bohm, D.: On Dialogue. Routledge (1996) 


