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Abstract. Artful processes are informal processes typically carried out
by those people whose work is mental rather than physical (managers,
professors, researchers, engineers, etc.), the so called “knowledge work-
ers”. In this paper we propose the MailOfMine approach, to automati-
cally build, on top of a collection of email messages, a set of workflow
models that represent the artful processes laying behind the knowledge
workers activities.
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1 Introduction

For a long time, formal business processes (e.g., the ones of public adminis-
trations, of insurance/financial institutions, etc.) have been the main subject
of workflow related research. Informal processes, a.k.a. “artful processes”, are
conversely carried out by those people whose work is mental rather than physi-
cal (managers, professors, researchers, engineers, etc.), the so called “knowledge
workers” [1]. With their skills, experience and knowledge, they are used to per-
form difficult tasks, which require complex, rapid decisions among multiple pos-
sible strategies, in order to fulfill specific goals. In contrast to business processes
that are formal and standardized, often informal processes are not even written
down, let alone defined formally, and can vary from person to person even when
those involved are pursuing the same objective. Knowledge workers create in-
formal processes “on the fly” to cope with many of the situations that arise in
their daily work. Though informal processes are frequently repeated, they are
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not exactly reproducible even by their originators – since they are not written
down – and can not be easily shared either. Their outcomes and information are
exchanged very often by means of email conversations, which are a fast, reliable,
permanent way of keeping track of the activities that they fulfill. Understand-
ing artful processes involving knowledge workers is becoming crucial in many
scenarios. Here we mention some of them:

– personal information management (PIM), i.e., how to organize one’s own
activities, contacts, etc. through the use of software on laptops and smart
devices (iPhones/iPads, smartphones, tablets). Here, inferring artful pro-
cesses in which a person is involved allows the system to be proactive and
thus drive the user through its own tasks (on the basis of the past) [1, 2];

– information warfare, especially in supporting anti-crime intelligence agen-
cies: let us suppose that a government bureau is able to access the email
account of a suspected person. People planning a crime or an act out of law
are used to speak a language of their own to express duties and next moves,
where meanings may not match with the common sense. Although, a system
might build the processes that lay behind their communications anyway, ex-
posing the activities and the role of the actors. At that point, translating the
sense of misused words becomes an easier task for investigators, and allows
to infer the criminal activities of the person(s) under suspicion;

– enterprise engineering : in design and engineering, it is important to preserve
more than just the actual documents making up the product data. Preserving
the “soft knowledge” of the overall process (the so-called product life-cycle)
is of critical importance for knowledge-heavy industries. Hence, the idea here
is to take to the future not only the designs, but also the knowledge about
processes, decision making, and people involved [3, 4, 5].

The objective of the approach, proposed here, is to automatically build a set
of workflow models that represent the artful processes laying behind the knowl-
edge workers activities, on top of a collection of email messages. There are many
advantages out of this work. First of all, the unspecified agile processes that
are autonomously used become formalized: since such models are not defined a
priori by experts but rather inferred from real-life scenarios that actually took
place, they are guaranteed to respect the true executions (often Business Process
Management tools are used to show the discrepancy between the supposed and
the concrete workflows). Moreover, such models can be shared, compared, pre-
served, so that the best practices might be put in evidence from the community
of knowledge workers, to the whole business benefit. Finally, an analysis over
such processes can be done, so that bottlenecks and delays in actual executions
can be found out.

The approach we want to pursue involves many research fields at a time, each
one concerning a phase of the overall processing. We make use of object matching
algorithms to obtain clusters of related email conversations. Every cluster is
subsequently treated by text mining information extraction procedures, in order
to find out which tasks email messages are about. Process mining is used to
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abstract process models representing the workflows, which the sets of subsumed
tasks were considered traces of.

Our approach is named MailOfMine.
Here we also discuss how we addressed the challenge of showing artful pro-

cesses to users, that are knowledge workers mainly, through a graphical interface
which is flexible, functional and easy to understand. It is designed to be validated
and further improved in collaboration with them. A user-centered methodology
is going to be applied, not only to the development of the graphical interface,
but also to the specification of the visual notation that describes the processes.

The remainder of the paper is organized as follows. Section 2 describes the
adopted process model, and Section 3 presents the approach. Section 4 focuses
on the techniques adopted for email clustering and their validation. Section 5
presents the visual notation for artful processes and the proposed user interface
of the tool. Section 6 discusses and compares the relevant related work. Finally,
Section 7 concludes the paper and outlines the future activities.

2 The Process Model

In this section, we present the process model adopted for describing the mined
artful processes. After a clarifying example, we will discuss technical and theo-
retical implications of our assumptions.

2.1 Definitions

Definition 1 (Actor). An actor is the subject directly or indirectly taking part
in the progress of a work. She is called contributor when her collaboration is
either proven by the participation to the collaborative communications or by the
production of outcomes. Otherwise, she is named spectator.

The spectator is the person who receives messages but does not reply, i.e., is
among the recipients but is never a sender during the discussion. Nonetheless,
her presence is perhaps fundamental, since she is a stakeholder, or a manager
controlling the thread though having no reason to intervene (“no news, good
news”).

Definition 2 (Task). A task is an elementary unit of work. Each task is con-
nected to (i) its expected duration, (ii) zero or more outcomes, and (iii) one or
more actors. A task is called productive when linked to one or more outcomes.
Otherwise, it is named clarifying.

Clarifying tasks are not less important than productive ones. Often they are
crucial to define, e.g., aim and methodology of the further steps. The outcome
is whatever adds a bit of information to the exchanged knowledge among ac-
tors. In our context we simplify the definition by considering document oriented
outcomes, i.e., we consider as new products of the tasks only those documents
which are attached to the email body.
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Definition 3 (Activity). An activity is a collection of tasks or (recursively)
other activities.

Definition 4 (Key Part). A key part is each unique piece of text belonging to
the email messages exchanged in a communication. Thus, given a collection of
duplicated pieces of text (coming from the same or different email messages in
the thread), just a single representative is selected as key part.

For instance, HTML signatures used by the sender of the email, quotations
of previous email messages used in replies, etc., are all examples of redundant
information that may appear in a communication thread, but will be filtered
out by means of the key part concept. On the other hand, any piece of text not
appearing in any other email message in the discussion thread will be interpreted
as key part.

Definition 5 (Indicium). An Indicium is any communication thread, or part
of it, attesting the execution of a task, an activity, or a process instance.

Indicia are key parts sets (or sets of key parts sets) containing any evidence
that a task, or an activity, or a process instance, has been performed or is being
performed.

Definition 6 (Process Scheme (Process) and Process Describing
Grammar (PDG)). A process scheme (or process for short) is a semi-
structured set of activities, where the semi-structuring connective tissue is rep-
resented by the set of constraints stating the interleaving rules among activities
or tasks. Such a set of constraints, formulated on top of activities and tasks, is
named Process Describing Grammar (PDG).

Constraints do not force the tasks to follow a tight sequence, but rather
leave them the flexibility to follow different paths, to terminate the enactment,
though respecting a set of rules that avoid illegal or non-consistent states in the
execution.

2.2 On the Process Describing Grammar

Let us consider every possible task 2 in a process as a character of an alphabet.
Activities are thus structured actions which are either allowed or not to be
executed in a process, as characters may or may not appear inside a string. The
execution of some activities can imply others to be implied, at any point in time,
as well as production rules enable the modification of the string expression in
case a given sequence of characters is reached.

In this paper, we argue that each constraint useful to define declarative mod-
els for artful processes is expressible through regular grammars [6]. Regular
grammars are recognizable through Finite State Automata (FSA) [7] (either

2 In the following, we focus on task identifiers, omitting, for sake of readability, details
about duration, actors and outcomes. Hence, we identify tasks by their names only.
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deterministic or non-deterministic [8]). Constraints on the process always hold
and must be respected altogether at each point in time. This means that the
intersection of all the constraints must always hold. In other words, the FSA
recognizing the correct traces for processes (i.e., accepting the valid strings) is
the intersection of all the FSAs composing set of constraints (it is known that
such grammars are closed to the operation of intersection [9]). Thus, we consider
each task as a terminal character in the PDG. Each constraint on tasks is a PDG

itself. An activity is thus a PDG built as the intersection of all of the constraints’
PDGs.

In order to define the process scheme, we shift to regular expressions, which
are an equivalent way to describe regular grammars (and accepting FSAs as
well). Regular expressions are closed to their operators, thus we are able to
recursively define activities as the intersection of constraints on activities. The
process scheme, in turn, is the intersection of constraints on activities.

We finally summarize the concepts introduced so far, from a hierarchical
recursive point of view. Tasks are terminal characters, building blocks of con-
straints on tasks. Constraints are regular expressions, equivalent to regular gram-
mars. Activities are regular expressions which are equivalent to the intersection
of the constraints’ regular grammars. Constraints can be formulated on top of
activities, being regular expressions themselves. The process scheme is the inter-
section of constraints defined on top of activities.

Being the regular grammars expressible by means of regular expressions,
we can consider each constraint as a regular expression (corresponding to an
accepting FSA). Moving to this domain, we can compose more complex regular
expressions as if each constraint was a building block and thus compose them.

Here, we adopt the Declare [10] taxonomy of constraints as the basic lan-
guage for defining artful processes in a declarative way. But whereas in Declare
constraints are translated into LTL formulas, we express each constraint through
regular expressions, as shown in Table 1.

For sake of brevity, there we used the POSIX standard shortcuts. Therefore,
in addition to the known Kleene star (*), concatenation and alternation (|)
operators, we make use here of (i) the . and [^x] shortcuts for respectively
matching any character in the alphabet, or any character but x, and (ii) the
+ and ? operators for respectively matching from one to many, or zero to one,
occurrences of the preceding expression.

The Existence(m, a) constraint imposes a to appear at least m times in
the trace. The Absence(n, a) constraint holds if a occurs at most n − 1 times
in the trace. Init(a) makes each trace start with a. RespondedExistence(a, b)
holds if, whenever a is read, b was already read or is going to be read
(i.e., no matter if before or afterwards). Instead, Reponse(a, b) enforces it
by forcing a b to appear after a, if a was read. Precedence(a, b) forces
b to occur after a as well, but the condition to be verified is that b was
read - namely, you can not have any b if you did not read an a before.
AlternateResponse(a, b) and AlternatePrecedence(a, b) both strengthen re-
spectively Response(a, b) and Precedence(a, b). The “alternation” is in that
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Constraint Regular expression Example

Existence constraints

Existence(m,a) [^a]*(a[^a]*){m,}[^a]* bcaac for m = 2
Absence(n, a) [^a]*(a[^a]*){0,n}[^a]* bcaac for n = 3

Init(a) a.* accbbbaba
Relation constraints

RespondedExistence(a, b) [^a]*((a.*b)|(b.*a))*[^a]* bcaaccbbbaba
Response(a, b) [^a]*(a.*b)*[^a]* bcaaccbbbab

AlternateResponse(a, b) [^a]*(a[^a]*b)*[^a]* bcaccbbbab
ChainResponse(a, b) [^a]*(ab[^a^b]*)*[^a]* bcabbbab

Precedence(a, b) [^b]*(a.*b)*[^b]* caaccbbbaba
AlternatePrecedence(a, b) [^b]*(a[^b]*b)*[^b]* caaccbaba

ChainPrecedence(a, b) [^b]*(ab[^a^b]*)*[^b]* cababa
CoExistence(a, b) [^a^b]*((a.*b)|(b.*a))*[^a^b]* bcaccbbbaba
Succession(a, b) [^a^b]*(a.*b)*[^a^b]* caaccbbbab

AlternateSuccession(a, b) [^a^b]*(a[^a^b]*b)*[^a^b]* caccbab
ChainSuccession(a, b) [^a^b]*(ab[^a^b]*)*[^a^b]* cabab

Negative relation constraints

NotChainSuccession(a, b) [^a]*(a[^a^b])*[^a]* bcaaccbbbba
NotSuccession(a, b) [^a]*(a[^b]*)*[^a^b]* bcaacca

NotCoExistence(a, b) [^a^b]*((a[^b]*)|(b[^a]*))? caacca

Table 1: Semantics of Declare constraints as regular expressions

Constraint Regular expression Example

Existence constraints

Participation(a) ≡ Existence(1, a) [^a]*(a[^a]*)+[^a]* bcaac
Unique(a) ≡ Absence(2, a) [^a]*(a)?[^a]* bcac

End(a) .*a bcaaccbbbaba

Table 2: Additional constraints in MailOfMine

you can not have two a (b) in a row before b (after a). ChainResponse(a, b)
and ChainPrecedence(a, b), in turn, specialize AlternateResponse(a, b) and
AlternatePrecedence(a, b), both declaring that no other symbol can occur
between a and b. The difference between the two is in that the former is
verified for each occurrence of a (b must immediately follow), the latter
for each occurrence of b (a must immediately precede). CoExistence(a, b)
holds if both RespondedExistence(a, b) and RespondedExistence(b, a) hold.
Succession(a, b) is valid if Response(a, b) and Precedence(a, b) are ver-
ified. The same holds with AlternateSuccession(a, b), equivalent to the
conjunction of AlternateResponse(a, b) and AlternatePrecedence(a, b),
and with ChainSuccession(a, b), w.r.t. ChainResponse(a, b) and
ChainPrecedence(a, b). NotChainSuccession(a, b) expresses the impossi-
bility for b to occur immediately after a. NotSuccession(a, b) generalizes the
previous by imposing that, if a is read, no other b can be read until the end of
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the trace. NotCoExistence(a, b) is even more restrictive: if a appears, not any
b can be in the same trace.

In addition to the constraints above, we also consider the ones described
in Table 2. Taking inspiration from the relational data model cardinality con-
straints, we call (i) Participation(a) the Existence(m, a) constraint for m = 1
and (ii) Uniqueness(a) the Absence(n, a) constraint for n = 2, since the former
states that a must appear at least once in the trace, whereas the latter causes a
to occur no more than once. End(a) is the dual of Init(a), in the sense that it
constrain each string to end with a. Beware that End(a) would be clueless in a
LTL interpretation, since LTL is thought to express temporal logic formulae over
infinite traces. On the contrary, it makes perfectly sense to have a concluding
task for a finite process, expressed by means of a regular automaton.

We recall here that the graphical syntax proposed for these constraints is
presented in Section 5.

2.3 An Example

Let us suppose to have an email archive, containing various process instances
indicia, and to focus specifically on the planning of a new meeting for a research
project. We suppose to execute the overall technique explained in Section 3, and
we report the possible result, starting from the list of tasks in activities (Process
Description 1).

Process Description 1 Activities and tasks list
Activity: 〈Flight〉

Task: boF l (“bookFlight”): Productive
Actors: {Y ou: Contributor, F lightCompany: Contributor}
Duration: 2 hrs.

Activity: 〈Agenda〉
Task: prAg (“proposeAgenda”): Productive

Actors: {Y ou: Contributor, Community: Spectator}
Duration: 4 dd.

Task: rqAg (“requestAgenda”): Clarifying
Actors: {Participant: Contributor, Community: Spectator}
Duration: ⊥

Task: coAg (“commentAgenda”): Clarifying
Actors: {Participant: Contributor, Community: Spectator}
Duration: ⊥

Task: cnAg (“confirmAgenda”): Productive
Actors: {Y ou: Contributor, Community: Spectator}
Duration: 2 dd.

Activity: 〈Accommodation〉
Task: esHo (“establishHotel”): Productive

Actors: {Organizer: Contributor, Community: Spectator}
Duration: ⊥

Task: boHo (“bookHotel”): Productive
Actors: {Y ou: Contributor, Hotel: Contributor}
Duration: 2 dd.

The “bookFlight” task is supposed to be retrieved by confirmation email
messages received by the user when the booking is completed. The 〈Flight〉 ac-
tivity is composed by this task only. 〈Agenda〉 is supposed to be slightly more
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complex instead. We suppose that a final agenda will be committed (“confir-
mAgenda”) after that requests for a new proposal (“requestAgenda”), proposals
themselves (“proposeAgenda”) and comments (“commentAgenda”) have been
circulated in the group (Community, as identified in the Actors list). Finally,
〈Accommodation〉 is the activity related to the reservation of rooms, in a hotel
located where the meeting will take place (or nearby). Beyond the confirma-
tion email messages received by the user when the booking is completed (indicia
for the “bookHotel” task), the “establishHotel” stems from the email messages
informing about the hotel arranged by the meeting organizers.

The reader may notice that sometimes Y ou appears among the Actors. We
suppose it to be the special identifier adopted whenever the owner of the email
archive is a Contributor. In case she is only a Spectator (see, e.g., “requestA-
genda”), such an information is not reported, since it is redundant (if the owner
were not among the recipients, there should have been no way to access email
messages related to that task). The usage of ⊥ as Duration stands for an un-
known value: whenever there is only one indicium related to a task (i.e., only
one email message proving its execution, for each activity indicium), no inference
about Duration can be performed.

The aforementioned tasks and activities are bound to the following con-
straints. In order to express them, we use the base set introduced before in this
Section, starting with the existence constraints of Process Description 2.

Process Description 2 Existence constraints on the example tasks and activ-
ities
Activity: 〈Flight 〉 : [0, ∗]

Task: boFl : [1, ∗] i.e., {Participation(boF l)}
Activity: 〈Agenda 〉 : [1, 1] i.e., {Participation(〈Agenda〉), Uniqueness(〈Agenda〉)}

Task: prAg : [0, ∗]
Task: rqAg : [0, ∗]
Task: coAg : [0, ∗]

Init(coAg )
Task: cnAg : [1, 1] i.e., {Participation(cnAg), Uniqueness(cnAg)}

Activity: 〈Accommodation 〉 : [0, 1] i.e., {Uniqueness(〈Accommodation〉)}
Task: esHo : [0, 1] i.e., {Uniqueness(esHo)}
Task: boHo : [1, 1] i.e., {Participation(cnAg), Uniqueness(boHo))}

In Process Description 3 we report the relation constraints holding in this
example process.

Process Description 3 Relation constraints on the example tasks and activities
Activity: 〈Agenda 〉
Response(rqAg, prAg )
RespondedExistence(coAg, prAg )
Succession(prAg, cnAg )

CoExistence(〈Flight 〉, 〈Accommodation 〉)
RespondedExistence(〈Agenda 〉, 〈Accommodation 〉)
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3 The MailOfMine Approach

Fig. 1: The MailOfMine approach

The MailOfMine approach (and the tool we are currently developing)
adopts a modular architecture, the components of which allow to incrementally
refine the mining process, as in Figure 1. We describe it into three parts: (i) the
preliminary steps, from the retrieval of email messages to the reconstruction of
communication threads; (ii) the extraction of key parts, the activities and tasks
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indicia detection, and the tasks definition; (iii) the final steps, from the activities
definition to the final mined process extraction.

Section 5 describes the design rationale for the graphical representation of
the mined process.

3.1 Preliminary Steps and Email Clustering

First of all, we need to extract email messages out of the given archive(s).
Archives are compliant to different standards, according to the email client in use,
hence the component for reading the messages is intended to be plug-in based:
each plug-in is a component able to access multiple standalone applications’
archive formats (e.g., Mozilla Thunderbird, Microsoft Outlook, etc.) and/or on-
line providers (e.g., Gmail, Yahoo! Mail, etc.). The outcome is the population of
a database, on the basis of which all the subsequent steps are carried out.

The first of them is the clustering of retrieved messages into extended com-
munication threads, i.e., flows of messages which are related to each other. The
technique that is used to guess such a connection is based not only on the Sub-
ject field (e.g., looking at “Fwd:” or “Re:” prefixes) and the SMTP headers
(e.g., reading the “In-Reply-To” field), but on the application of a more complex
object matching decision method. Such indicators, though likely trustworthy,
might be misleading: (i) in the everyday life, it is a common attitude to reply to
old messages for talking about new topics, which may have nothing to do with
the previous one; (ii) conversely, it may happen that a new message is related
to a previous, though written and sent as if it were a new one. The technique is
detailed further in Section 4.

Once the communication threads are recognized, we can assume them all as
activity indicia candidates.

After the clustering phase, messages are analyzed in order to identify key
parts. I.e., email messages are cleaned up from signatures and quotations citing
some text already written in another message within the thread, by the usage of
a combination of the techniques described in [11] and [12]. The key parts are the
text remaining in bodies and subjects once such filtering operation is performed.

3.2 Identifying Activities

Once messages and key parts in threads are gathered, MailOfMine can build
activity indicia as the concatenation of all the key parts (artificial text). Then,
the clustering algorithm is used again, this time to identify the matches between
activity indicia. E.g., let us suppose to have (i) a thread Tdel41 related to the
writing of Deliverable 4.1 for a research project, (ii) another thread Tdel52 related
to the writing of Deliverable 5.2 for the same research project, and, finally, (iii) a
Tair dealing with an airplane flight booking, for the next review meeting. Thus,
the algorithm is expected to cluster as follows: {Tdel41, Tdel52}, {Tair}. Its output
represents the set of activities.

By taking into account the set of activities and the key parts (task indicia can-
didates), the clustering algorithm checks for matching key parts, identifying them
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as tasks. E.g., let us suppose to have (i) a key part kairData specifying the booked
airplane data, (ii) another key part kairBook containing the confirmation of the
booking, and, finally, (iii) a kdel41: “Please find attached Deliverable 4.1”. Thus,
the algorithm is expected to cluster as follows: {kairData, kairBook}, {kdel41}.

Hence, each set is a task indicium for one task. The analysis, though, does
not terminate here. In order to understand whether the task under investigation
is clarifying or productive, MailOfMine checks (i) if any document-oriented
outcome in the original email messages was attached; (ii) if key parts contain
Speech Acts [13], according to the technique proposed by [14]. If at least one
of the listed conditions holds, it is productive. Otherwise, it is considered as
clarifying. The detection of Speech Acts is supposed to be assisted by the experts,
who are required to provide a dictionary of keywords of their domain field, as in
[14]. For further information on the relation between Speech Acts and workflows,
see [15]. The task name will be given as a rule of thumb by the conjunction of
verbs and dictionary keywords composing the Speech Acts, although the user
will be able to customize it at her wish.

3.3 Mining the Process

For each thread (activity indicium), tasks are put in sequences respecting the or-
dering of the task indicia (key parts with a Speech Act), given by the timestamp
of the email they belong to. Tasks appear in many traces then, being the indicia
potentially found in different threads. Thus, threads with email messages are
turned into traces of enacted tasks. MailOfMine searches for execution con-
straints between tasks, stemmed from these traces, though an algorithm used in
purpose, named MINERful (presented in [16] and detailed in [17]). The inter-
section of the mined constraints on tasks constitutes the PDG of activities.

Once activities and tasks are recognized, a supervised learning process takes
place, in order to cluster activities into processes. This step cannot be fully per-
formed by the system, since no linguistic connection could exist among related
activities. E.g., the activity of drawing slides and the reservation of the air-
plane could sound completely apart, though those slides could be the material
to present at a review meeting, hold in the city that the airplane was booked to
reach.

The activity grammar would not be exposed to the user, of course. Instead,
the threads are shown as witnesses for the activity; hence, the user associates
part of them to different processes, and the learner associates all the related
activities to processes. The choice of the name to be assigned to activities and
processes is left to the user.

Once processes are identified, MailOfMine performs the second step for
the construction of the PDG, i.e., the mining of production rules among activi-
ties inside the same proces. For each activity indicium (thread), a timeframe is
defined as the window between the timestamps of the first and the last email in
the thread. Thus, traces are composed by ordering activity indicia belonging to
the same process, on the basis of their timeframe. These traces are the input for
MINERful to run again.
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4 Email Clustering

In this section we describe how we tackle the problem of performing a Similarity
Clustering (SC) of email messages. The purpose of such a clustering step is
to identify groups of related email messages to be used for finding tasks that
compose process activities. To face the SC problem, we exploit a previously
proposed Object Matching (OM) algorithm [18], providing ad-hoc extensions
for the task at hand. Here we briefly illustrate the rationale for adopting an
OM algorithm to cluster email messages. From an abstract point of view, OM
and SC share the common objective of classifying data-object pairs according to
an hidden (i.e. not self-evident) property; for OM, the relevant hidden property
to be discovered is if two objects “do represent – or not – the same real-world
entity”, whereas, for SC, one needs to asses if two objects “do belong – or not – to
the same group”. Moreover, in order to infer the class the pairs belong to, both
OM and SC rely on pairwise distance (or, equivalently, similarity) measures.
With respect to the choice of the specific OM algorithm [18], we point out that
it relies on its fully automated nature and on its independence on the specific
data object representation. Lastly, we remark that the statistical properties at
the basis of the chosen algorithm are perfectly valid for the SC problem.

We decided to adopt an Object Matching technique, rather than classical
Clustering, due to the fact that it extends the Record Linkage field (see Sec-
tion 6). Coming from the database domain, RL produced dedicated frameworks
and tools to cope with textual issues, over the years. For instance, one of their
mandatory requirements was to be resilient to typos. Clustering techniques are
focused on the similarity grouping of numerical entities, such as points or vectors
in N-dimensional spaces, instead. Therefore, we exploit an algorithmic machinery
developed to deal with text-related challenges.

We implemented our Similarity Clustering as a four steps procedure:

1. in the first step, we chose a representation format for email messages, in
order to translate them into processable data objects;

2. the second step consisted of the definition of a specific distance metric to
compare email objects;

3. as a third step, we ran a decision algorithm whose output was a set of email
pairs declared as “matches”, i.e. – in the present context – belonging to the
same cluster;

4. the fourth and last step implied the application of a function performing a
transitive closure among “match” pairs in order to build email clusters.

This procedure is detailed in the following together with some test results.

4.1 Email Object Representation and Distance Metric Definition

In order to compare email objects we first defined a representation format for
each email message. Specifically, we considered each email as a record consisting
of: (i) some header fields, (ii) the body and (iii) the names of attached files (if
present).
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We observe that, according to RFC 5322 and RFC 3864 (http://www.ietf.
org/rfc.html), each message has exactly one header, which is structured into
fields. Some of these fields are mandatory (such as the message id), others are
instead optional but indicated as common. Among such common header fields,
we took into account the ones listed in the following; for each of them we also
specify the chosen representation format:

– emailIdentifier: this is a string associated to each email that permits its
unique identification.

– Sender: email address of the sender represented as a string.
– Receivers: email addresses represented as strings and concatenated into a

unique string.
– Subject: represented as one single string.

Having as objective to build clusters consisting of email exchanged to accomplish
a specific task, we found reasonable to merge Sender and Receivers fields into
one single field SenderReceivers. This is because the clusters we want to de-
termine are, in a sense, invariant with respect to the email exchange direction,
as they are instead focused on the actions performed by means of such email
exchanges.

As far as the body, we chose to consider it as a piece of free text and we
represented it as one single string.

Finally, email attachments were taken into account by considering their
names. More specifically, we represented attachments by a unique string,
AttachmentsNames, resulting from the concatenation of the names of all the
present attachment files 3.

On the basis of the representation choices described above, all the email fields
but the body could be compared by means of traditional string metric distances
(see [19] for a survey). In our experiments, we used the Levenshtein distance for
these fields.

The body is an exception as it is a piece of free text rather than a (more
or less) structured text field like the others4. The set of the bodies in an email
collection is considered as a corpus of documents. As a first step, each body is
regarded as a bag of words (“terms”). Then, we build a Term-Document matrix.
To each term of a body a weight was assigned, based on the traditional TF-IDF
metric [20]. Each body is in this way represented by a vector of a vector space and
hence easily comparable to the other bodies. To such a scope, we use the cosine
distance function. The distance so obtained will be referred as VSM distance (as
it is based on the Vector Space Model [21]). TF-IDF was considered appropriate
because of its ability to increase the importance of a term proportionally to the

3 Given the disparate type of possible attachment files (e.g. video, images, etc.) a
generalized approach that exploits attachment contents has not been considered as
viable.

4 Though the subject can contain more than one word, we decided to consider it too
as a structured field. Indeed, since typically subjects are not long unstructured texts,
text mining techniques are unnecessary, or even not suitable, for their comparison.

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
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term frequency inside the document, while penalizing terms that are found to
be very common in the corpus.

Our choices for email representation and the distance functions used for each
field are summarized in Table 3, below.

Table 3: Email fields used for comparison and related distance functions

Field Distance Field Distance

Subject Levenshtein SenderReceivers Levenshtein
AttachmentsNames Levenshtein Body VSM

4.2 Experimental Results

The testbed for our SC application consisted of two experiments. The first one
worked on a small collection of 101 email messages, in order to be able to conduct
a manual evaluation of the quality of the obtained clustering results. The second
experiment worked instead on a larger collection of 1337 email messages, includ-
ing the previous, in order to test the practical feasibility of our approach with a
realistic mailbox dimension. The analyzed set of email messages represents the
collection of messages exchanged during the development of a European research
project that one of the authors was involved in. The smaller collection was the
part of email messages sent or received in a given frame of the project lifetime.

In the first experiment, the 101 input email messages generated 5050 email-
pairs. Our decision algorithm declared 98 pairs to belong to the same group.
The transitive closure performed on the set of such 98 “matching” email-pairs
determined 21 non overlapping and non trivial (that is containing at least 2 email
messages) clusters: these were the final output produced by our SC algorithm.
The output clusters size ranged from 2 to 11 email messages and the email
messages involved in the clusters are found to be 68 out of 101.

To assess the quality of the obtained result, we manually analyzed the input
email messages and the output clusters: we identified only 1 false positive cluster,
whereas no false negatives were found. The false positive cluster involved two
email messages, which happened to have the same sender and receivers, and
almost completely overlapping short bodies. The very encouraging information
is that no false negative was found, thus it seems there is no need to re-iterate
it over times to recover from a possible information loss.

Out of the 893116 pairs generated by the 1337 input email messages of the
second test, our decision algorithm declared 2974 email-pairs to belong to the
same group. The transitive closure performed on the set of such 2974 “matching”
email pairs determined 230 different clusters. The output clusters size ranged
from 2 to 39 email with a mean of 4.6, and the email messages involved in the
clusters were found to be 1060 out of the original 1337.

Given the size of our second experiment, building a “gold-standard” clus-
tering solution by manual inspection was clearly unmanageable. Therefore, we
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were not able to evaluate the quality of our clustering results directly, that is in
terms of false positives and false negatives. As an alternative, we rather tried to
get a feeling of the goodness of our reconstructed email clusters as a mean for
identifying tasks. To this end, we first asked the owner of the mailbox archive
to provide us a small user-generated dictionary of relevant and common terms
in the research-projects domain (like, e.g., “deliverable”, “workpackage”, “meet-
ing”, . . . ); the dictionary we received had 56 entries. Next, we treated the bodies
of the email messages belonging to each identified cluster as a corpus of docu-
ments and assigned to each word inside such corpora its TF-IDF weight. Then we
selected, for each cluster, the top-30 TF-IDF weighted words as representatives
of the related e-mail conversation. We manually stemmed them to singular nouns
and infinitive verbs (e.g., “deliverables” was turned into “deliverable” as “asks”
into “ask”). Lastly, we applied an intersection operation between each of the
30-word-sets per cluster and the 56 entries of the user-generated dictionary. The
outcome of such an exercise seems quite encouraging, as 214 of the 230 clusters
(i.e., 93%) turned out to be represented by at least one of the domain-specific
dictionary words.

5 Process Visualization

The literature dealing with the representation of processes typically aims at vi-
sualizing the process all at once, by means of diagrams that show the complete
grid of interconnections among activities. Here we propose a change in the view-
point. We want to model artful processes as a collection of constraints, through
the declarative approach. Being highly flexible, this kind of representation does
not necessarily impose a pre-defined strict order on activities, neither explicit
nor implicit. For instance, one can state that a task a implies the execution
of another task b afterwards (see Section 2.3), with no specification provided
if a is not performed, meaning that b can be done or not during the process
instance run. In other words, the process schema itself can change according to
the things that may have happened before. This is why we do not consider as the
best suitable solution adopting a static graph-based global representation alone,
on one hand: a local view should work better in conjunction with it. On the other
hand, no knowledge worker is expected to be able to read and understand the
process by reading the list of regular-expression based constraints: a graphical
representation, easy to understand at a first glimpse, must be used.

The process schema and the running processes are respectively modeled
through (i) a set of diagrams, representing constraints on workflows (static view:
Section 5.1) and (ii) an interactive evolutionary graphical representation for the
visualization of running instances (dynamic view: Section 5.2). Furthermore, we
propose two complementary views on constraints: (i) a local view focusing on
one activity at a time and (ii) a global view providing a bird-eye sketch of the
whole process schema.

As activities are basically collections of tasks (thus, they can be single tasks
too), which have to be compliant with the same constraints as tasks, in the
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following we will consider tasks only, for sake of simplicity. The same statements
remain valid for activities, though. For sake of simplicity and readability of
figures, we adopt one-character identifiers for tasks, though they are going to
adhere in practice to the naming rules described in Section 3.2, as the graphical
representation of artful processes presented here is intended to be the core of
the user interface for the visualization of the mined processes in MailOfMine.

5.1 Process Schema

The local view. It is very hard to show a process schema all at once and keep
it easily readable, due to the high flexibility of the declarative representation.
Thus, given that the declarative approach is based on constraints, we collect
all of those related to every single task, i.e., where the task (e.g., e) is either
(i) directly implied (e.g., if d is done, then e must be done), or (ii) directly
implying (e.g., if e is done, no matter when, f was done before or must be
done in the future). The directly adverb is used due to the need not to make
things too much complicated and to follow the idea of having a local view only.
For instance, the process is such that if d is done, then e must be performed;
moreover, the enactment of c implies that d can not be done further. If we look
at the constraints directly affecting e, the latter rule is not taken into account. In
fact, if c is not performed, nothing is imposed on d. This is an example providing
a hint on the rationale: for sake of readability, we want to avoid the confusion
coming from too many cross-implications to consider at a time.

The representation of relation constraints is based on three main degrees
of freedom, namely (i) time, (ii) implication, (iii) repeatability. The time is
considered here as a discrete ordered set of steps the tasks can take place in. We
ideally consider each task as spending a single unit in this conception of time.
The notion of implication is a based on two values (implying, implied). The
repeatability is given by the specification of one among four values, standing for
the number of times a task can be consequently fulfilled: (i) zero, one or more
times; (ii) zero, or one time; (iii) exactly once; (iv) zero times.

Our graphical notation represents time and implication as the coordinates of
a bidimensional drawing, where time is on the ordinates. This ideal y axis divides
the plane space into two separate regions: one for each value of the implication
dimension (implying, implied), on the abscissae. The x axis divides the plane
space into two regions: upwards, what can (or can not) happen before the task
is executed, and, downwards, what can (or can not) happen after. On the origin
of this chart, inspired to the cartesian coordinate system, we put the task under
examination. The y axis is oriented towards the bottom, in order to follow the
reading directionality. For the same reason, the implication relation order flows
from the left to the right. Of course, the orientation of the axes can change
according to the localization of the software running: e.g., users from Arabic
countries might prefer a mirrored version, where the implied tasks are on the
left, the implying on the right.

The repeatability is expressed by the thickness of the boundaries around the
boxes representing tasks: dashed for tasks that can be done zero, one or more
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times, solid for zero or one times, double-line for exactly one time. The task box
turns into a cross shape when repeatability is zero. The repeatability is referred
to the quadrant the box appears in. For instance, u must appear once either
before or after e took place. We recall here that the scope of repeatability, as all
of the other degrees of freedom, is not extended to the whole process instance
existence, but only for what concerns the time surrounding the single task under
analysis.

For sake of readability, we do not explicitly mention every possible task the
process can be composed of, on the graph. Instead, we render only such tasks that
are interested in focused constraints, so to address the potential problem of too
many nodes and arcs connecting one another in a scarcely readable spaghetti-like
diagram. Though, visualizing the tasks involved in constraints only, might look
like a way to force the actor to execute nothing else than the ones that are shown.
On the contrary, declarative models allow to do more: roughly speaking, what
is not mentioned, is possible. Thus, we make use of a wildcard (∗) not intended
as “every task” in the usual all-comprehensive form, but in the typical human
conception: “any task”, where it is understood that the other rules remain valid
(e.g., if it is stated that q can not be executed after t, a ∗ after t means “any task,
except q”). Examples of the diagrams are in Figure 2. The constraints depicted
here are described in Section 2.

The graphical notation is enforced by arrows, easing the user to go across
the flow of tasks, from the implying before to the implied afterwards. Colors are
used for sake of readability and comprehensibility, as additional arrows making
a loop on zero-one-more-repeatable tasks, though the idea is that such diagrams
must be kept easy to be sketched by a pen, as well.

Figure 2a shows the only constraint pertaining r in an imaginary process,
namely ChainSuccession(r, t). It states that immediately after (i.e., below, on
the diagram) the implying r (on the center) you must (double line) execute t,
as an implication (on the right). Nothing is directly told about r as an implied
task in a constraint: thus, a ∗ wildcard is put on the left of r. Then, Figure 2c
focuses on s, which is the implying task for the AlternateResponse(s, t) con-
straint: i.e., if s is executed, you can either perform t (see the direct arc in the
fork on the right of s) or optionally (dashed line) perform any other task (∗)
but s (put inside the cross at the right bottom corner of the dashed box) until
you do t. t must be executed in any case: this is why the line bounding the box
is double. Figure 2b details the constraints that concern t. On the right side
of the box with t, the RespondedExistence(t, u) and NotSuccession(t, q) are
drawn. The former causes the arcs to fork both upwards and downwards, due
to the fact that the RespondedExistence constraints do not specify whether
the implied task must be done before or after the implying. The question mark
put on the right bottom corner is used to enforce this concept of optionality,
together with the double line recalling that the execution of t is bound to the
execution of u – i.e., no matter if beforehand or afterwards, u must be enacted.
The NotSuccession(t, q) is represented by the cross that the q identifier is in-
scribed in, meaning that q can not be executed after (below) t. On the left of t
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(a) {ChainSuccession(r, t)}

(b) {ChainSuccession(r, t), AlternateResponse(s, t),
RespondedExistence(t, u), NotSuccession(t, q)}

(c) {AlternateResponse(s, t)} (d) {RespondedExistence(t,u),
NotCoExistence(u, v)}

Fig. 2: The MailOfMine local static constraint diagrams
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the reader can see the aforementioned constraints having it as the implied (see
Figures 2a and 2c). Finally, Figure 2d suggests that, if u is performed, neither
before (above) nor afterwards (below) you are allowed to do v. Anything else is
admitted (∗). This is the sense of NotCoExistence(u, v), as drawn on the right
of u. On the left, the constraint which u was involved in as an implied task, that
is RespondedExistence(t, u), is depicted (see Figure 2b).

The local view can focus on a possible sub-trace of executed tasks, as in
Figure 3. The meaning of symbols is the same as before, although here the focus
is moved on what could have happened (or is allowed to happen) if t is performed
after u, whereas diagrams in Figure 2 consider the enactment of an only task at
a time.

Fig. 3: The < u, t > tasks subtrace constraints diagram

The global view. The aim of the global view (Figure 4) is to show the rela-
tions between tasks, namely (i) whether the presence of one implies a further
constraint (on the graph, a dot on the tail of an arrow, starting from the imply-
ing task and ending on the implied), (ii) which task must be performed after,
between the implying and the implied, if known (on the graph, an arrow, put
on the head or the tail), (iii) whether the presence of one implies the absence of
another (a cross in the middle of the arrow), or not (no cross put upon). All of
the previous information bits are independent of each other, hence all the possi-
ble combinations are allowed. This is the restricted basic graphical syntax used
in Figure 4a. Indeed, it is not explicitly expressed how strong the constraint
is (e.g., whether other tasks can be performed between the implying and the
implied), in order to tidy the diagram up and provide a fast view of the overall
process, without entering in details that are likely better explained through the
local views: they can rely, in fact, on dimensions spread on axes the cartesian
way, not as in graphs.

Nonetheless, skilled users might want to have a complete vision of the con-
straints involved, even though it might result in a reduced readability, due to
the unavoidable increase of graphical symbols to draw in the diagram. Thus,
a richer graphical syntax is needed. Its design rationale is to extend the basic,
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(a) Basic

(b) Extended

Fig. 4: The MailOfMine global static constraints diagram

though keeping coherence with (i) the visual language terms used and (ii) the
graph structure. This allows the user to be required of a minimal cognitive effort
in order to learn its semantics, on one hand, and lets her toggle between the
basic and the extended view. Indeed, only arcs are loaded with new symbols, as
depicted on Figure 4b: no additional shape nor any change in the graph topology
are required.

Both diagrams in Figure 4 draw the same set of constraints that were locally
represented by example in Figure 2.

The global view is inspired to the graphical syntax of [22], though its
design focuses on the basic relations (before/after, implying/implied, exis-
tence/absence) between tasks in a binary constraint.

Coupling this diagram with the local view is useful for avoiding the misun-
derstanding that could arise by the usage of oriented graphs. Indeed, Finite
State Automata, Petri Nets, State Transition Networks, UML Activity Dia-
grams, Flowcharts, and so forth, all share a common interpretation: roughly
speaking, nodes are places to traverse one by one, following a path that respects
the direction given by arrows along the arcs. Here, it is not the case: e.g., con-
sidering Figure 4a, one could intuitively suppose that, done s, the next task is
t. It is not true: after s, r or u could be performed, even many times, and after
some further passages finally t.

A GUI sketch. Figure 5 draws a prototype of the window showing a local
view, on the task t. The additional information regarding the cardinality of the
task, as far as the actors involved and so forth, is located on the bottom of the
window. The global view, put on the right, is used as a navigation tool on the
process schema. Conversely, at any point in time it will be possible to activate
the local view of a task selected on the global view screen, in order to freely
switch from one to another.
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Fig. 5: The task details screen

5.2 Running Instances

A dynamic view is associated to the static process scheme, for the management
of running instances. Such a view is designed to be interactive, i.e., to let the
user play with the model, so to control the evolution of the running process.
Moreover, she can better learn the constraints mechanism by looking at the
process evolving. Indeed, it is based on the same visual notation provided for the
visualization of constraints (see Figure 3), based in turn on local view diagrams.
This choice is made in order to remark the user that global views do not explicitly
express the evolution of the system over time, whereas local views do. Figure 6
depicts a sample evolution of a process instance.

From a starting step onwards, the user is asked to specify which the next
task to perform is. At each step, the following tasks that can be enacted are
shown, by means of the same visual language used for static views. After one of
them is fired, all the possible and mandatory following tasks are shown. And so
forth. We recall here that the recognition of the possible initial tasks, as far as
the evolution which follows, is a view on the current state of the FSA obtained
as the intersection of all the FSA’s expressing the constraints in the process
scheme. Figure 7 is a prototype sketch.
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(a) (b) (c) (d)

Fig. 6: The MailOfMinedynamic process view

Fig. 7: The process execution management window
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6 Related Work

Text Mining, or Knowledge Discovery from Text, deals with the machine sup-
ported analysis of text: indeed, it refers generally to the process of extracting
interesting information and knowledge from unstructured text. Though text min-
ing covers many topics that are out of the scope of this paper (see [23, 24] for
comprehensive surveys), we list some techniques that are instead relevant to our
work.

[25] proposes a method employing text mining techniques to analyze email
messages collected at a customer center. Based on [26], this work shows how
to cope with the information extraction in the context of email messages, for
the construction of a key concept dictionary. Our aim is not restricted to the
extraction of the key concept dictionary, but rather deals with the mining of
activities performed on top of them; on the other side, in MailOfMine, we
assume to rely on a user-provided dictionary of keywords, as described in Sec-
tion 3.2. [14] introduces the usage of an ontology of email acts, i.e., Speech Acts
[13], to classify messages.

Process Mining [27], a.k.a. Workflow Mining [28], is the set of techniques that
allow the extraction of structured process descriptions, stemming from a set of
recorded real executions. Such executions are intended to be stored in so called
event logs, i.e., textual representations of a temporarily ordered linear sequence
of tasks. There, each recorded event reports the execution of a task (i.e., a well-
defined step in the workflow) in a case (i.e., a workflow instance). Events are
always recorded sequentially, even though tasks could be executed in parallel: it
is up to the algorithm to infer the actual structure of the workflow that they are
traces of, identifying the causal dependencies between tasks (conditions). ProM
[29] is one of the most used plug-in based software environment for implementing
workflow mining techniques.

Most of the mainstream process mining tools model processes as Workflow
Nets (WFNs – see [28]), explicitly designed to represent the control-flow dimen-
sion of a workflow. From [30] onwards, many techniques have been proposed, in
order to address specific issues: pure algorithmic (e.g., α algorithm, drawn in [31]
and its evolution α++ [32]), heuristic (e.g., [33]), genetic (e.g., [34]), etc. Indeed,
heuristic and genetic algorithms have been introduced to cope with noise, which
the pure algorithmic techniques were not able to manage. A very smart exten-
sion to the previous research work has been recently achieved by the two-steps
algorithm proposed in [35].

EMailAnalyzer [36] is an integrated ProM plug-in for mining processes from
email logs, that are XML files compatible with the ProM framework, built
through the analysis of (i) senders and receivers, in order to guess the actors
involved, and (ii) tags on email messages and subjects, for extracting the task.
E-mail messages are extracted from an Outlook archive. Our approach shares
similar ideas for the disambiguation of actors and sociograms, and aims at ex-
tending it by (i) building a plug-in based platform capable to retrieve email
messages from multiple archives (not only Outlook), and (ii) extracting cases
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and relations among tasks from a more comprehensive analysis of email fields
(headers, threads, body, attachments, etc.).

The need for flexibility in the definition of processes leads to an alternative
to the classical “imperative”: the “declarative” approach. Rather than using a
procedural language for expressing the allowed sequences of activities, it is based
on the description of workflows through the usage of constraints: the idea is that
every task can be performed, except what does not respect them. [22] shows how
the declarative approach can help in obtaining a fair trade-off between flexibility
in managing collaborative processes and support in controlling and assisting the
enactment of workflows. Such constraints, in [37] (Chapter 6) are formulations
of Linear Temporal Logic ([38] – Chapter 3). DecSerFlow [39] and ConDec [40]
(now named Declare [41, 42]) provide graphical representations for processes
described through the declarative approach. Nonetheless, we believe that the
declaration of collaborative workflows constraints can be expressed by means of
regular expressions, rather than LTL formulae: regular expressions express finite
languages (i.e., processes with finite traces, where the number of enacted tasks
is limited). LTL formulae are thought to be used for verifying properties over
semi-infinite runs instead. On the contrary, human processes have an end, other
than a starting point.

The Declare framework [41] is a concrete implementation of a constraint-
based process management system, supporting multiple declarative languages.
Declare Miner is the plug-in for mining declarative processes from within the
ProM framework. [43] described the usage of Inductive Logic Programming Tech-
niques to mine models expressed as a SCIFF ([44]) theory, finally translated to
the ConDec notation.

7 Conclusions

We are currently in the process of realizing the various techniques into a working
prototype and then validating it over a large email messages collection.

Up to now, once analyzed in depth the current literature in order to figure
out how to extend or specialize them to our purpose (Section 6), we defined a
modular architecture for the realization of the approach (Section 3). We estab-
lished the theoretical basis for our work, in terms of modeling entities for the
expression of declarative workflows (Section 2) and graphical notations for their
visualization (Section 5). We programmed the preliminary module for storing
the email-related information in a database, on top of eml raw email messages,
retrieved via IMAP or out of text mail archives. We built a fair reliable algo-
rithm for clustering mail conversations into threads (Section 4) and a mining
algorithm for discovering declarative models of processes out of traces [17], too.
We are currently working on the rest of the modules, currently stub-based.

We would like to note that this work aims at addressing the open research
challenge of dealing with mixed logs, i.e., logs in which traces from multiple
processes are present. Most of existing workflow mining approaches suppose
to treat logs in which only traces of the same process are present; conversely,
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an email collection can be abstracted as a log containing traces from different
processes.

Future work includes the extension of the approach to multiple users’ email
messages collections, and a more extensive validation. Moreover, we plan to
deal with privacy concerns that naturally arise when mining over personal email
messages. Indeed, it is an open issue how to perform private object matching,
and the case of email messages is particularly challenging due to the already
limited amount of fields that can be used to perform the matching task.

We want to apply the MailOfMine methodology on the field of collaborative
activities of Open Source software development, reported by mailing lists [45].
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