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Abstract. Future space systems require innovative computing system
architectures, on account of their size, weight, power consumption, cost,
safety and maintainability requisites. The AIR (ARINC 653 in Space
Real-Time Operating System) architecture answers the interest of the
space industry, especially the European Space Agency, in transitioning
to the flexible and safe approach of having onboard functions of different
criticalities share hardware resources, while being functionally separated
in logical containers (partitions). Partitions are separated in the time
and space domains. In this paper we present the evolution of the AIR
architecture, from its initial ideas to the current state of the art. We
describe the research we are currently performing on AIR, which aims
to obtain an industrial-grade product for future space systems, and lay
the foundations for further work.

1 Introduction

Space systems of the future demand for innovative embedded computing system
architectures, meeting requirements of different natures. These systems must
obey to strict dependability and real-time requirements. Reduced size, weight
and power consumption (SWaP), along with low wiring complexity, are also
crucial requirements both for safety reasons and to decrease the overall cost of
a mission. A modular approach to software enabling component reuse among
the different space missions also benefits the cost factor. At the same time, such
an approach allows independent validation and verification of components, thus
easing the software certification process.

A typical spacecraft onboard computer has to host a set of avionics func-
tions, such as the Attitude and Orbit Control Subsystem (AOCS), the Telemetry,
Tracking, and Command (TTC) subsystem, and one or more payload subsys-
tems [13]. The traditional approach to space computing systems was to grant
dedicated hardware resources to each of these functions.
?
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However, the ongoing trend goes towards the integration of multiple func-
tions, so that they share the same hardware resources. While satisfying SWaP
requirements, this introduces potential safety risks, since the applications sup-
porting those functions may have different degrees of criticality and predictabil-
ity, and/or may originate from multiple sources. The architectural principle pro-
posed to cope with function integration has onboard applications being separated
in logical containers, called partitions. Partitioning allows achieving both fault
containment and independent software verification/validation capabilities. The
safety of this approach is enforced through robust temporal and spatial parti-
tioning (TSP) [25, 28]. Temporal partitioning concerns partitions not interfering
with the fulfilment of each other’s real-time requisites, while spatial partitioning
encompasses the usage of separate addressing spaces dedicated to each parti-
tion. The aeronautic industry went through a similar process [32], introducing
the Integrated Modular Avionics (IMA) [1] and ARINC 653 [2, 3] specifications.

In this paper, we present our past, present, and future research work on
the AIR (ARINC 653 in Space RTOS) architecture for TSP aerospace systems.
AIR has been prompted by the interest of the space industry in the adoption of
TSP concepts [25, 30], especially the European Space Agency (ESA), which is
currently active in this matter within the TSP Working Group [33]. The National
Aeronautics and Space Administration (NASA) has expressed a similar interest
for its next generation of space exploration vehicles [14, 12].

The design of the AIR architecture incorporates state-of-the-art features,
such as coexistence of real-time operating systems (RTOS) and generic non-real-
time ones, advanced timeliness control and adaptation mechanisms, and flexible
development and integration tools. It also foresees extensions to the architecture
so as to take advantage of multicore platforms.

The remainder of this paper is organized as follows. Section 2 details the
successive evolution steps of the AIR architecture, from its inception ideas to the
current state of the art. Section 3 details further the AIR architecture. Section 4
describes the work currently being done on the AIR architecture. Section 5
presents open research issues which we plan to tackle. Finally, Section 6 closes
the paper with some concluding remarks.

2 Evolution of AIR design solutions

The first steps of the AIR project were performed under commissioning of ESA,
within the scope of the Innovation Triangle Initiative program.

2.1 ARINC 653 interface in RTEMS

The initial idea was to perform a feasibility study to adapt the Real-Time Exec-
utive for Multiprocessor Systems (RTEMS) [18] to offer the application interface
and functionality required by the ARINC 653 specification [2, 9]. The proposed
solution involved an analysis of the RTEMS modules needing to be modified,
extended, removed or added to cope with the missing ARINC 653 functionality.
This approach was never strictly followed [23].



2.2 Single-executive core (SEC)

A more interesting solution, devised on the early stages of development, was to
make the architecture design independent from the underlying RTOS kernel.

Stemming directly from the ARINC 653 specification, the original AIR design
approach integrates a standard Application Executive (APEX) interface module,
which maps into the service interface of a single RTOS kernel. The architecture of
this Single-Executive Core (SEC) design, illustrated in Fig. 1, includes the RTOS
kernel (providing functions such as process management, time and clock man-
agement, and interprocess synchronization and communication), and a module
integrating the system-specific functions associated to the underlying processor
infrastructure and to the specific platform hardware resources.

Fig. 1. Single-executive core design approach

The core functionality needed by the ARINC 653 specification (cyclic par-
tition scheduling and priority-based process scheduling) was implemented by a
specific module, the ARINC 653 Partition Management Kernel, shown in Fig. 1.

The SEC design exhibits an optimal memory footprint size, since there is only
one instance of each component. Given that access to the APEX interface and
RTOS kernel is shared among all partitions, the integrity and fault confinement
attributes are restricted to the application software layer (see Fig. 1).

The SEC design and its proof-of-concept prototype have been very helpful to
understand the realm of time and space partitioning and have proved the feasi-
bility of implementing the ARINC 653 functionality making use of off-the-shelf
operating systems. The proof-of-concept prototype was developed and demon-
strated using RTEMS 4.6.6 on an Intel IA-32 platform.



2.3 Multi-executive core (MEC)

To improve the integrity and fault confinement properties of the AIR architec-
ture, a Multi-Executive Core (MEC) design was approached. In MEC, the sepa-
ration in logical containers is extended throughout all layers, as shown in Fig. 2.
This is achieved by providing an APEX interface, an RTOS kernel and possibly
system specific functions on a per-partition basis. From the SEC approach, the
MEC design solution preserves the independence from a given operating system
(OS) and permits a homogeneous integration of different instances of the same
RTOS kernel or a hybrid approach, possibly integrating different RTOS kernels
in different partitions, the Partition Operating Systems (POS).

Fig. 2. Multi-executive core AIR architecture

The new AIR Partition Management Kernel (PMK) provides the core func-
tionality needed for conformity with the ARINC 653 specification [2], separating
the partition and process scheduling functions. Process scheduling is ensured
by the native RTOS process scheduler of each partition. The AIR PMK also
includes partition management and support for interpartition communication.

A proof-of-concept prototype for the MEC architecture was developed and
demonstrated using RTEMS 4.8 as partition operating system. Two processor
platforms have been approached: an Intel IA-32 platform, and SPARC ERC32
and SPARC LEON-based platforms.

2.4 Comparison between SEC and MEC design solutions

The MEC design solution mostly improves on a set of relevant attributes, in
comparison with the SEC solution. A system-wide suboptimal footprint size
is outweighed by the benefits obtained in terms of flexibility, configurability,
integrity and fault confinement. The MEC design is further flexible in the sense
that it allows the integration of different RTOS kernel instances in different
partitions. A comparison detailing these improvements is presented in Table 1.



Table 1. Comparison between the AIR design solutions’ attributes

Single-executive Multi-executive
core (SEC) core (MEC)

RTOS Integration shared per partition

Flexibility fair good

Configurability system-wide per partition

Integrity and
Fault Confinement

application layer all layers

Footprint Size optimal (system-wide) optimal (per partition)

Development Tools canonical canonical
canonical and

specific

Bootstrap Method single image single image
multiple
images

The remaining design attributes in Table 1 do address the requirements of the
development tools and of the application bootstrap methodology. One limitation
of the application production toolchain concerns a common inability of canonical
link editors to combine in a single object the different instances of the same RTOS
kernel, since they use the same naming references. A methodology is needed to
tackle this problem. A tag filter utility, which appends a partition identifier to
each public symbol, is used. The objects of each partition may afterwards be
combined by a canonical link editor into a single linked object. The MEC design
solution, allowing multiple objects to be specified for bootstrapping, opens room
for the dynamic update of individual partition applications.

3 AIR System Architecture

Figure 2 also shows some later additions to the AIR architecture definition,
which we will now discuss.

3.1 Temporal and spatial partitioning

The robust partitioning approach defined in the AIR architecture implies the
temporal and spatial separation of the different operating systems and its ap-
plications in integrity and criticality containers, defined by partitions. Temporal
partitioning is achieved through a two-level hierarchical scheduling scheme pic-
tured in Fig. 3. In the first level, partitions are scheduled according to a cyclic
sequence of fixed time slices. Inside each partition, processes compete with each
other according to the native process scheduler of the partition; in the case of
RTOSs, this is typically a dynamic priority-based scheduler [24].

Partitions spatially encapsulate the addressing spaces of the contained POS
and applications. No component of a given partition can directly access the ad-
dressing space of other partitions, thus guaranteeing that partitions do not inter-
fere with each other [22, 24]. A highly modular design approach in the support



Fig. 3. AIR two-level hierarchical scheduling

of AIR spatial partitioning was followed, with requirements (specified in config-
uration files with the assistance of development tools support) being described
in runtime through a high-level processor independent abstraction layer [22].
Hardware-mapping descriptors are provided per partition, primarily correspond-
ing to the several levels of execution of an activity (e. g., application, POS kernel
and AIR PMK) and to its different memory blocks (e. g., code, data and stack).

3.2 Advanced timeliness control and adaptation mechanisms

A basic partition scheduling scheme, with a single partition scheduling table
defined at integration time, is very limiting regarding the different temporal
characteristics a space mission can adopt in distinct phases of its operation
(e. g., takeoff, flight, exploration) or regarding the accommodation of component
failures. The AIR advanced design addresses this issue by introducing support for
multiple mode-based partition schedules. The basic partition scheduling scheme is
extended to allow multiple schedules to be defined. At execution time, authorized
partitions may request switching between the different partition schedules [5, 24].

Another timeliness control mechanism introduced in AIR is process deadline
violation monitoring. During the execution of the system, it may be the case that
a process exceeds its deadline; this can be caused by a malfunction or because
that process’s worst-case execution time (WCET) was underestimated at system
configuration and integration time. Other factors related to faulty system plan-
ning (such as violation of the partitions’ timing requirements) can be predicted
and avoided using offline tools [7], addressed in Sect. 4.1. The process deadline
violation monitoring procedure is optimized regarding deadline violation detec-
tion latency and regarding computation complexity so as not to have minimal
temporal interference with the rest of the system, since it is performed inside the
system clock interrupt service routine: the earliest deadline is checked; following
deadlines may subsequently be verified until one has not been missed [5, 24].



3.3 Flexible partition operating system integration

The AIR POS Adaptation Layer (PAL) encapsulates each POS providing a com-
mon interface to the surrounding components (AIR PMK, APEX). This way, the
necessary changes to support using a new family or version of POS are circum-
scribed to a smaller component, and previous or ongoing verification, validation
and/or certification efforts on more complex ones are not hindered [5, 6].

3.4 Integration of generic operating systems

The foreseen heterogeneity between POSs is also being extended to include
generic non-real-time OSs, such as Linux, answering to a recent trend in the
aerospace industry. This is motivated by the lack of relevant functions in most
RTOSs, which are commonly provided by generic non-real-time operating sys-
tems. Porting these functions (e. g., scripting language interpreters) to RTOSs
can be a complicated and error-prone task [16]. An embedded variant of Linux
has been approached, and wields a fully functional OS with a minimal size com-
patible with typical space missions requirements [8, 5].

To ensure that a non-real-time OS cannot undermine the overall time guaran-
tees of the system by disabling or diverting system clock interrupts, instructions
that could allow this are wrapped by low-level handlers (paravirtualized) [5, 6].

3.5 Flexible Portable APEX

The ARINC 653 specification defines a standard interface between applications
and the core software layer [2], the APEX interface. The AIR APEX interface
component (Fig. 2) supports this feature, exploiting the availability of AIR PAL-
related functions and implementing the advanced notion of Portable APEX [26].

3.6 AIR Health Monitoring (HM)

The AIR Health Monitor is responsible for handling hardware and software errors
(like deadlines missed, memory protection violations, or hardware failures). The
aim is to isolate errors within its domain of occurrence: process level errors
will cause an application error handler to be invoked, while partition level errors
trigger a response action defined in a system configuration table. Errors detected
at system level may lead the entire system to be stopped or reinitialized [22].

3.7 Interpartition communication

Interpartition communication aims to support the transfer of information be-
tween partitions, and its relation with spatial partitioning implies the use of spe-
cific executive interface services encapsulating and providing the transfer of data
from one partition to another without violating spatial segregation constraints.
The core of AIR interpartition communication mechanisms are integrated at the



(a) (b)

Fig. 4. Introduction of scheduling analysis features for (a) application developers, and
(b) system integrators

Portable APEX interface level. Memory protection and, if required, memory-to-
memory copy mechanisms are managed at the AIR PMK level [22, 24].

The interpartition communication abstractions required for conformity with
ARINC 653, sampling ports and queuing ports, model each partition’s way to
communicate (send or receive messages) through a communication channel.

4 Present lines of work

4.1 Scheduling and composability

In [7], we discuss how we can profit from composability properties inherent to the
build and integration process of AIR-based systems to allow validating schedul-
ing requirements independently at different levels of the build and integration
process. We proposed the development of rules, techniques and tools to support
this purpose, so as to provide both schedulability analysis capabilities but also
tool-assisted generation of partition scheduling tables.

Schedulability results for TSP systems allow extensions to the software build
and integration processes of AIR-based systems, for the benefit of both appli-
cation developers (Fig. 4(a)) and system integrators (Fig. 4(b)). This benefit
obviously depends on software tools, using such results, being made available
to them. The goal of application developers having a scheduling analysis phase
introduced in their production cycle is for them to be able to independently
analyse the feasibility of their applications, provided the timing requirements
(period, WCET, deadline, etc.) of the composing processes. The information of
these timing requirements can be either estimated by the developers or tenta-
tively determined through static code analysis [19].



4.2 Multicore

Multicore processors are paving their way into the realm of embedded sys-
tems [17], but their use in TSP platforms has not been addressed in detail [5]. In
this sense, we pursue the extension of TSP concepts to allow multicore-enabled
AIR-based systems, which feasibility shall be backed up by both schedulability
and safety considerations. The applicability of multicore includes strengthening
overall safety through adaptive fault tolerance mechanisms, and augmenting the
integration potential of a single system with the contribute of different facets of
parallelism. The tools proposed in [7] should in this case be extended to accom-
modate multicore support.

This research line includes the profound analysis of the impact of parallelism,
both intrapartition parallelism (i. e., between processes) and between partitions.
The approach to intrapartition parallelism aims to understand the advantages
and drawbacks in distributing processes in a partition among processor cores.
Concerning parallelism between partitions, two scheduling approaches will be
studied: (i) static (extending system configuration mechanisms, to allow explicit
definition of when and how parallelism between partitions occurs), and; (ii) semi-
dynamic (extending configuration mechanisms, to allow expressing restrictions
and dependencies that will guide the activity of a dynamic partition scheduler
with support for parallelism between partitions) [5].

4.3 Remote and online application update

The Mars Rover Pathfinder is an example of a mission where the (in this case
fortuitous) possibility to modify the mission’s configuration remotely was crucial
for its survival [15]. Due to the impossibility of direct access to the spacecraft, it
is extremely important to have the possibility for the onboard system to remotely
receive software updates [20].

At this stage, AIR abstracts from issues inherent to the communication be-
tween the spacecraft and the ground station, focusing on the management and
treatment of the update information (integrity, correctness, domain of applica-
tion). Remote software update may have to cope with critical software compo-
nents that must be updated without interruptions to their execution.

Other interesting issues include remote system monitoring and modification
of system-wide control parameters (such as partition scheduling tables). These
will increase the extent to which the advanced timeliness control and adaptation
mechanisms of AIR are taken advantage of.

5 Future

5.1 Operating system integration

The work mentioned in Sect. 3.4 shall be extended in two ways. On the one
hand, the study involving embedded Linux [8, 5] will evolve into a fully functional
Linux integration. On the other hand, the principles should be applied for the



integration of other generic non-real-time operating system, such as Windows
through the Windows Research Kernel [27]. Furthermore, for specific application
support, the integration of other RTOS kernels, such as eCos, is also envisaged.

5.2 Sensors, actuators and networks

Any spacecraft needs interfacing with surrounding environment, through sensors
and actuators. For instance, the AOCS function needs to get information from
star/Sun sensors and reference gyroscopes. On the other hand, AOCS needs to
actuate on reaction wheels and propulsion drive thrusters. The safety of these
interactions with the environment should be supported by extending the spatial
partitioning mechanisms to input/output (I/O) addressing spaces.

A particular case of I/O functions is network communication. This may in-
clude wired network interfaces, such as: legacy MIL-STD-1553 [10] systems; de-
pendable Controller Area Network (CAN) buses [21]; high-rate SpaceWire [11]
and TTEthernet [31] links. For some space systems, such as planetary robotic
explorers, wireless sensor networks with improved dependability and timeliness
may be of the utmost importance for sensing and coordination actions [29].

5.3 Information security

The AIR architecture still requires the incorporation of security concerns. One
option for partitioned security is the notion of Multiple Independent Levels of
Security and Safety (MILS) [4]. This implies that, at the application level, exe-
cution is confined to the application’s partition, with controlled communication
with the remaining partitions. All communication passes through the security
components, which can include monitoring and cryptographic mechanisms.

To fulfil MILS requisites, the AIR architecture will incorporate the provi-
sion of privacy- and authenticity-capable interpartition communication services,
using the cryptographic mechanisms and algorithms most adequate to the char-
acteristics of TSP systems (for encryption and, possibly, key distribution). This
extension includes the analysis of the architectural, hardware and cryptographic
algorithm requirements for this functionality.

6 Conclusion

This paper presents the evolution of the AIR architecture, from its initial ideas to
the current state of the art. AIR targets space systems of the future, and current
work aims to turn it into an industrial-grade product. The first approach to AIR
was a single-executive core design, but soon evolved in to a multi-executive one.
Subsequent research work provided AIR with flexible support to different parti-
tion operating systems (both real-time and non-real-time) and advanced timeli-
ness control and adaptation mechanisms. Current work focuses on schedulability
issues, taking advantage of multicore platforms, and remote online update of ap-
plications. Research directions for the future include expansion of support to new



operating systems, interfaces with input/output devices (including networking),
and security (privacy and authenticity) of information exchanges.
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27. Schöbel, M., Polze, A.: Kernel-mode scheduling server for CPU partitioning: a case
study using the Windows Research Kernel. In: Proc. 2008 ACM Symp. on Applied
Computing (SAC 2008). pp. 1700–1704. ACM, Fortaleza, Ceará, Brazil (2008)
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