
Combining Ontology Alignment with Model
Driven Engineering Techniques for Home

Devices Interoperability

Charbel El Kaed1,2, Yves Denneulin2, François-Gaël Ottogalli1, and Luis
Felipe Melo Mora1,2

1 France Telecom R&D
2 Grenoble University

charbel.elkaed@orange-ftgroup.com,

yves.denneulin@imag.fr,

francois-gael.ottogalli@orange-ftgroup.com,

luisfelipe.melomora@orange-ftgroup.com

Abstract. Ubiquitous Systems are expected in the near future to have
much more impact on our daily tasks thanks to advances in embed-
ded systems, ”Plug-n-Play” protocols and software architectures. Such
protocols target home devices and enables automatic discovery and in-
teraction among them. Consequently, smart applications are shaping the
home into a smart one by orchestrating devices in an elegant manner.
Currently, several protocols coexist in smart homes but interactions be-
tween devices cannot be put into action unless devices are supporting
the same protocol. Furthermore, smart applications must know in ad-
vance names of services and devices to interact with them. However,
such names are semantically equivalent but syntactically different need-
ing translation mechanisms.
In order to reduce human efforts for achieving interoperability, we intro-
duce an approach combining ontology alignment techniques with those
of Model Driven Engineering domain to reach a dynamic service adap-
tation.

Keywords: SOA, Plug-n-play protocols, ontology alignment, MDE

1 Introduction

Ubiquitous Systems imagined by Mark Weiser in [21] where computer systems
are anywhere and invisible are not that far. Many projects from the industry
WRally3 and academia GatorTech4 are pushing this vision further. Such sys-
tems rely on the service-oriented architecture which provides interactions be-
tween loosely coupled units called services.
Discovery, dynamicity and eventing are the main features of service oriented sys-
tems that suit best so far ubiquitous systems characteristics. In such systems,
3 http://www.microsoft.com/whdc/connect/rally/default.mspx
4 http://www.gatorhometech.com/



devices interact with each others and inter-operate transparently in order to ac-
complish specific tasks.
Smart applications are currently being deployed on Set-Top-Boxes and PC act-
ing as control points by orchestrating home devices such as lights, TV, printers.
For example a Photo-Share smart application automatically detects an IP digital
camera device and, on user command, photos are rendered on the TV and those
selected are printed out on the living room printer. The Photo-Share applica-
tion actually controls such devices and triggers commands upon user request,
all the configuration and interaction is completely transparent to the user who
only chooses to buy Photo-Share from an application server and deploys it on
his home gateway.
Plug-n-Play protocols follow the service-oriented architecture approach where
home devices offer services and associated actions, for example a UPnP light de-
vice offers a SwitchPower service with two associated actions: SetTarget(Boolean)
to turn on or off a light and the GetStatus() action to retrieve the actual state of
the light. Currently, UPnP, DPWS, IGRS and Apple Bonjour protocols coexist
in smart-homes environments but interactions between devices can not be put
into action unless devices are supporting the same protocol. Furthermore, smart
applications need to know in advance, names of services and actions offered
by devices in order to interact with them. Equivalent device types have almost
the same basic services and functions, a printer is always expected to print in-
dependently from the underlying protocol it is using. Unfortunately, equivalent
devices supporting different protocols share the same semantics between services
and actions but not the same syntax for identifying such services and actions.
This heterogeneity encloses smart applications into specific and preselected de-
vice and service orchestrations.
Smart applications need to be set free from protocol and service syntax hetero-
geneity. The user must not be restrained to one type of protocol and devices,
he should be able to integrate easily and transparently equivalent devices to
his home environment. Existing work proposes service interoperability frame-
works and techniques which starts by identifying similarities between services
and functions. The identification and matching process is performed most of the
time manually followed by different techniques to abstract service semantics,
the process eventually ends up by applying service adaptability through tem-
plate based code generation.
In order to reduce human efforts for achieving interoperability we introduce in
this article an approach that combines ontology alignment techniques with those
of Model Driven Engineering domain to reach a dynamic service adaptation and
interaction.
The remainder of the paper is organized as follow: section 2 provides a brief
overview of Plug-N-Play protocols. Section 3 overview SOA and OSGi whereas
section 4 deals with Ontology Alignment and MDE techniques. Section 5, 6 de-
scribes our approach and its implementation. Section 7 discusses relevant related
works. Eventually, Section 8 draws conclusions and outlines future works.



2 Plug-N-Play Protocols

UPnP [20], IGRS [10], Apple Bonjour [2] and DPWS [17], the newly standard-
ized protocol supported mainly by Microsoft and included in Windows vista and
7, cohabit in home networks and share a lot of common points. They are all
service-oriented with the same generic IP based layers: addressing, discovery,
description, control and eventing. They also target the same application do-
mains, multimedia devices are shared between UPnP, IGRS and Bonjour while
the printing and home automation domains (printers, lights) are dominated by
UPnP and DPWS.
Each protocol defines standard profiles specifying required and optional imple-
mentation that manufacturers need to support. Of course, vendors can extend
the standards using specific notations and templates.

Even though those protocols have a lot in common, devices cannot cooperate
due to two main differences:

– Device Description: expose general device information (id, manufacturer,
model etc), supported service interfaces along with associated action signa-
tures and parameters. However, equivalent device types support the same
basic functions which are semantically similar but syntactically different.
For instance, on a DPWS light [19], Switch(Token ON/OFF) is semantically
equivalent to the SetTarget(Boolean) on a UPnP light [20]. This heterogene-
ity prevents smart applications to use any available device, regardless of their
protocol, to accomplish a certain task such as printing or dimming lights.

– The IP based layers: plug-n-play protocols define their own underlying pro-
tocols each adapted to its environment. UPnP and IGRS uses GENA5 for
eventing, SSDP6 for discovery and SOAP for action invocation while DPWS
is based on a set of standardized web services protocols (WS-*). DPWS
uses WS-Discovery and WS-MetaDataExchange to discover a device, WS-
Eventing for notifications and SOAP for action invocations. WS-Security,
WS-Policy are used to provide secure channels during sessions. Apple Bon-
jour uses multicast-DNS. Obviously, this heterogeneity between such proto-
cols increases the complexity of device interoperability starting from the IP
based layers.
Thus, most interoperability frameworks propose a centralized approach us-
ing specific protocol proxies rather than a P2P interactions between home
devices.

3 Service Oriented Architecture

The service-oriented architecture is a collection of entities called services. A
provider is a service offering one or more actions invocable by entities called
service clients. Every service is defined by an interface and a signature for each
5 General Event Notification Architecture
6 Simple Service Discovery Protocol



provided action. The service registry is an entity used by service providers to
publish their services and by the clients to request available services in an active
(available providers) or passive discovery mode (listens to service registration
events). The service interface and other specific properties are used to register
and request services in the service registry. The service client must know in ad-
vance the interface name of the requested service. Since the request is based on
the interface name, a client requesting an interface with a semantically equivalent
but syntactically different name will not receive the reference of a similar service.

OSGi, as an example, is a dynamic module system based on the service-
oriented architecture. An OSGi implementation has three main elements : Bun-
dles, Services, and the Framework. A bundle is a basic unit containing Java
classes and other resources packaged in (.jar) files which represent the deploy-
ment units. A Bundle can implement a service client, a provider or an API pro-
viding packages to other bundles. The framework defines mechanisms to manage
dynamic installation, start, stop, update, removal and resolution of dependencies
between bundles. Once a bundle dependency is resolved, it can be started and
the service can interact with other services.

In [4], Base Drivers are defined as a set of bundles enabling to bridge
devices with specific network protocols. A base driver listens to devices in the
home network then create and register on the OSGi framework a proxy object
reifying the founded device. Services offered by real devices on the home network
can now be invoked by local applications on the OSGi framework. The device
reification is dynamic, it reflects the actual state of the device on the platform.
The local invocation on OSGi is forwarded to the real device.
Currently, there is a UPnP base driver7 implementation published by Apache,
a DPWS and Apple Bonjour Base Drivers previously developed in our team [3],
[4] and a DPWS base driver proposed by Schneider [19]. Base drivers solve the
IP based layers heterogeneity of Plug-n-Play protocols (see section 2), but the
device and service description ones remain.

4 Ontology Alignment and Model Driven Engineering

According to [12], ”An ontology is an explicit representation of a shared under-
standing of the important concepts in some domain of interest”. In our work, the
domain of interest is the home network and concepts of the ontology are devices,
services, actions and parameters. Every real device is modeled by an ontology
reflecting its specific information with the predefined concepts.
Alignment [7] is the process of finding a set of correspondences between two or
more ontologies, for example finding equivalent services, actions and parameters
between a UPnP and a DPWS Light Device. The correspondence between enti-
ties is expressed using a normalized similarity value within an R+[0,1] interval.

7 http://felix.apache.org/site/apache-felix-upnp.html



Model Driven Engineering is a software development methodology based on dif-
ferent levels of abstraction aiming to increase automation in program develop-
ment. The basic idea is to abstract a domain with a high level model then to
transform it into a lower level model until the model can be made executable
using rules and transformation languages like in template-based code generation
tools. The Model Driven Architecture [18] promoted by the Object Management
Group (OMG) is considered as a specific instantiation of the MDE approach.
It defines standard models like UML and MOF. MDA defines four architectural
layers: M0 as the instance layer, M1 for the model, M2 for the meta-model and
the M3 for meta-meta-model layer.

5 Combining MDE and Ontology Alignment techniques

Our approach is based on two techniques for device adaptability. The first one
uses ontology alignment to identify correspondences semi-automatically between
equivalent devices. The output of the alignment is then used as a transformation
language in order to automatically generate a proxy device which will receive
service invocations and adapt them to the equivalent device. All the adapta-
tion process is transparent to the orchestrating application and the existing
devices. The proxy will actually bridge syntactic heterogeneity between seman-
tically equivalent device types and services.
Our approach follows four major steps to accomplish device interoperability:

5.1 Ontology Representation

The first step aims to hide device description heterogeneity by modeling each
device with common concepts using an ontology. We chose to use common con-
cepts based on the UPnP description model. Every device is modeled with an
ontology which is conformed to the meta ontology described in fig.(1 a). We
use the concepts as follows: every device has one or more services, every service
has one or more actions and each action has one or more input/output state
variables. Now we can build device ontologies conformed to this meta ontology.

In fig.(1 b) we present UPnP and a DPWS Device lights ontologies. (For sim-
plicity we omitted from figure (1 b) class types, device, service and properties
such as service Id, name, etc).
We automated the construction of device ontologies by using specific OWL
Writer bundles fig.(2 a) that listens to the appearance of Plug-N-Play devices,
if the device ontology was not yet build for a device type and model (check the
device type, model, services etc) then the build process can proceed and once
terminated the Aligner is notified.

5.2 Ontology Alignment

The MDA defines 4 levels of architecture, the meta device ontology is on the
M2 layer while the instantiated ontologies reflecting home devices are on the



DeviceService

Action StateVariable

hasService[1..n]

hasAction[1..n]

hasIn[0..n]

hasOut[0..n]

UPnP Light DPWS Light

Dimming DimmingService

SetLoadLevelTarget SetLevel

LoadLevelTarget LightLevel

int int

0:100 0:100

hasService

hasAction

hasInput

hasType

hasValues

Fig. 1. (a) M2: Meta Model Ontology (b) M1: UPnP and DPWS Light ontology

Basic
Methodes

O1

O2

(*Types)

Alignment
PropagationEnhancer

1

2

3

4

Fig. 2. (a) OWL Writers (b) Aligner Strategy



M1 layer. Transformation models in the MDE aim to build bridges between
models linking entities between two existing models. Those bridges are actually
transformation rules written manually or generated using graphical tools using
specific languages like ATL [11]. Fig. 3 shows the overview of the approach. We
use ontology alignment techniques to match entities in a semi-automatic way
fig.(2 b) by applying heuristics to match entities of the ontologies.

Device
Meta
Model

DPWS
Device

DPWS
Ontology

Ontology
Alignment

Transformation
Model

UPnP
Device

UPnP
Ontology

(b)

(a) Conforms to

DPWS

Implemen-
tation

Proxy

Implemen-
tation

UPnP

Implemen-
tation

(e)(c) (d)
Template Based Code Generation

(f)(g)

Meta
Model(M2) :
Meta Device
Ontology

Model
(M1) :
Device
Ontology

Instance(M0) :
.Class
Java/OSGi

Fig. 3. Overview of the approach

Step 1 of the aligner takes two ontologies O1 and O2 then apply basic match-
ing techniques described in ([7], chapter 4) such as Hamming, Leveinshtein, smoa
and other techniques based on an external dictionary WordNet. We propose and
implement an enhanced smoa based technique using wordNet to detect antonyms
(Set 6= Get, Up 6= Down etc) and provide more accuracy during action match-
ing like ”SetLoadLevel” 6= ”GetLoadLevel”. Basic techniques provides those two
actions as a potential match while smoa++ clearly reduces the similarity value
between these two strings. The first step matches all concepts, it uses all the
available information in the ontology. We found in some cases that there is a
higher similarity between a service name and an action name, we will use this
information to enhance similarities in the step 4 of the aligner.
Since each basic technique has its own advantages and disadvantages, we com-
bine all these techniques and use a weight αk for each method k, αk ∈ R+[0, 1].
We give a higher weight for methods using an external dictionary.
Step 2 of the aligner filters the alignment by applying typed classes, it keeps



same concept type correspondences (device-device, service-service, etc), we use
βi,j = 1 if concept i and j are the same and zero if not. The output of the first
and second steps is a matrix of similarities between concepts.
Sim1i,j,k is the similarity result after step 1 between entity i from O1 and entity
j from O2 using the technique k. Sim2i,j,k is the output after step 2.

Sim2i,j =

[
n∑

k=1

(αk ∗ Sim1i,j,k)

]
∗ βi,j ∈ R+[0, 1] (1)

Depending on the devices complexity, we can choose to trim alignments and keep
all similarities higher than a threshold and additionally use a Delta Threshold
δ to keep matched concepts having a similarity differing at most by a tolerance
value δ.
Step 3 of the aligner propagates similarities along the ontology structure, for
example when two services have strong similarity, we enhance the similarity of
their actions. Our method is a Down Propagation method, based on Coma++
[6] which uses an Up Propagation method.
Step 4 aims to enhance similarity values, if a ServiceA have a high similarity
with ActionB of ServiceB , then the algorithm enhances the similarity between
both services.
Step 5 is actually the human intervention to validate or edit correspondences
between entities. The output, expressed in OWL, represents the transformation
rules for the next step to automatically generate the device proxy with the right
matching between devices.
In our approach, UPnP is chosen as a common model, UPnP services are substi-
tuted with non-UPnP devices. Other services are matched with UPnP services
and if a match is found then we can adapt home applications on the fly to
invoke non-UPnP existing services. Our choice is motivated by the wide accep-
tance of UPnP among device manufacturers and telecommunication operators,
and the large number of devices standardized by DLNA (www.dlna.org). Those
characteristics makes UPnP the most mature protocol so far among existing
plug-n-play protocols and therefore the best pivot candidate for our approach.

5.3 Template-based code generation

The input of this step is the ontology alignment between two devices. Since we
have the correspondences between elements of the ontology then the proxy can
be generated using already written templates. This process is already used to
generate Java code from device description UPnP XML description and WSDL
files to Java code (interfaces and classes), then it is up to developers to imple-
ment the necessary functional code (fig. 3, c and e arrows). In our approach,
all the code is actually automatically generated since the correspondences be-
tween devices are provided by the ontology alignment output, fig.(1,b). The tem-
plates need only to be filled with the aligned device, service and action names
along with parameters. When the application invokes the UPnP dimming action
SetLoadLevelTarget with the parameter LoadLevelTarget, the proxy will invoke



on the DPWS device the SetLevel action of the DimmingService service and
LightLevel parameter as an input.
We identified another case where an action is an union of two others, such
is the case of the standard UPnP and DPWS printers [20,13]. The UPnP ac-
tion CreateJobV2 (simple entries) is equivalent to two DPWS Actions Cre-
atePrintJob (complex structured entries) and AddDocument. The mapping be-
tween DPWS.CreatePrintJob and UPnP.CreateURIJob reveals that the parame-
ter SourceURI has an equivalent entry parameter DocumentURL for the DPWS
action AddDocument. Consequently, CreateURIJob = UnionOf (CreatePrint-
Job, AddDocument). Other properties exist too, such as Sequenced-UnionOf
where actions have input and output dependencies. This kind of properties can
be detected easily using a reasoner to infer on correspondences between ser-
vices and actions. Other actions on the printer devices are substitutable such as
(UPnP.GetJobAttributes & DPWS.GetJobElements), (UPnP.GetPrinterAttributesV2
& DPWS. GetPrinterElements) and (UPnP.CancelJob & DPWS.CancelJob).
These equivalent actions make the standard UPnP and DPWS printer devices
substitutable.

Table 1. Mapping between a standard DPWS and a UPnP printer action

DPWS (CreatePrintJob) UPnP (CreateURIJob)

PrintTicket/JobDescription/JobName JobName

PrintTicket/JobDescription/JobOriginatingUserName JobOriginatingUserName

PrintTicket/JobProcessing/Copies Copies

X SourceURI

PrintTicket/DocumentProcessing/NumberUp/Sides Sides

PrintTicket/DocumentProcessing/NumberUp/Orientation OrientationRequested

PrintTicket/DocumentProcessing/MediaSizeName MediaSize

PrintTicket/DocumentProcessing/MediaType MediaType

PrintTicket/DocumentProcessing/NumberUp/PrintQuality PrintQuality

5.4 Service Adaptation

Now that all elements are ready, the proxy can be generated on demand and
compiled on the fly in order to provide interoperability between devices, services
and actions. For the à la carte application, the user can choose the DPWS (or
other) device type and model, then based on the existing specific code templates
and the ontology alignment on the service provider platform, the proxy can be
generated and packaged for deployment. As for the on the fly adaptability, the
service request will be intercepted. The correspondent proxy will be generated
according to ontology alignment already existing on the gateway or downloaded
from the service provider servers. Thus the Photo-Share application will work
transparently for the user.



6 Implementation

In this work in progress, we used UPnP felix Apache 8 and DPWS [19] base
drivers. We developed OWL Writers on an Felix/OSGi framework using the
OWL API and implemented our alignment strategy using the Alignment API
[8]. The output of the alignment is expressed with OWLAxiomsRendererVisi-
tor which generates an ontology merging both ontologies to express relations
between entities. To subsume properties like Union-Of we will use a reasoner
on the output to infer such properties. The proxy is currently generated using
manually pre-filled templates using Janino 9 on the fly compiler. In future work,
we will fill the templates with the information from the ontology alignment.

7 Related Work

Different approaches have been developed, in the literature, to solve the issues
related to the interoperation problem, the approaches can be put in three major
categories : EASY [1] and MySIM [9] worked on frameworks allowing services
to be substituted by other similar services and actions. They both model the
domain in a common ontology holding all the concepts and properties re-
lating them. Every service interface, action and parameter is annotated with a
predefined semantic concept from the common ontology. A service is then sub-
stitutable by another if actions and their input/output parameters have similar
or related semantic concepts from the common ontology. MySIM uses Java in-
trospection in order to retrieve the annotations then compare semantic concepts
and adapt the matched services and actions. The limitation of both approaches
is that annotations are filled with predefined concepts, consequently when a new
service type appears, the common ontology should be updated first by adding
new concepts and connecting them to other existing entities in the ontology.
The update process is not that obvious since a new type can have common se-
mantics with more than one existing concept resulting an incoherent ontology.
Consequently, a reorganization operation is more often required to reestablish a
coherent classification between concepts in the common ontology.
The second category models the domain with an abstract representation
like an ontology in [5] or with a meta model in [16]. In DOG, similar device
types and actions are modeled with abstract ontology concepts, (light device,
dimming action, switch on/off) then these concepts are mapped to specific tech-
nology actions and syntax using specific rules to fill pre-written Java/OSGi code
templates. The interoperability among devices is based on abstract notifications
messages and predefined association between commands (the switch OffNotifica-
tion is associated to the OffCommand on a device light). Then MVEL rules are
generated automatically based on the manually written associations, the rules
actually invokes technology specific functions on the targeted device. EnTiMid
[16] uses a meta model approach instead of the ontology then generates specific
8 http://felix.apache.org/site/apache-felix-upnp.html
9 www.janino.net



UPnP or DPWS Java/OSGi code using transformation rules and templates.
Both approaches deals with relatively simple devices like lights with similar ac-
tions and parameters. However the abstraction of complex devices like printers
is not trivial specially when an action on one device is equivalent to one or more
actions on another equivalent device (Table 1). Besides, in both approaches, the
mapping between the abstract model and the specific model is done manually
by either writing transformation rules or writing predefined associations and au-
tomatically generating transformation rules.
The third category uses a common language to describe devices with same
semantics, Moon et al. works on the Universal Middleware Bridge [15] which pro-
poses a Unique Device Template (UDT) for describing devices. They maintain a
table containing correspondences between the UDT and the Local Device Tem-
plate (LDT). UMB adopts a centralized architecture similar to our approach,
where each device/network is wrapped by a proper UMB Adapter which con-
verts the LDT into UDT. Miori et al. [14] defines the DomoNet framework
for domotic interoperability based on Web Services and XML. They propose
DomoML a standard language to describe devices. TechManagers, one per sub-
network translates device capabilities as standard Web Services, the mapping is
done manually. Each real device is mirrored as a virtual device in other subnet-
works, thus each device state change requires considerable synchronization effort
among subnetworks. The HomeSOA [4] approach uses specific base drivers to
reify devices locally as services then another layer of Refined drivers abstract
service interfaces per device types as a unified smart device, a UPnP and DPWS
light dimming services are abstracted with DimmingSwitch interface then it is
up to the developer to test the device type and invoke the underlying specific
interface.

8 Conclusion and Future Works

In this article we propose an approach based on MDE and ontology alignment
techniques to bridge device and service syntax heterogeneity in order to enable
service interoperation. First, we automatically generate for each device an ontol-
ogy conformed to a meta ontology, then we apply ontology alignment techniques
to semi-automatically retrieve correspondences between equivalent device types
and services. The ontology alignment is validated by a human. The resulting
output corresponds to transformation rules used in oder to generate on the fly
specific proxies to enable interoperability. We choose UPnP as a central and
pivot protocol. We match other protocol services with those from UPnP. This
choice is motivated by the fact that UPnP is the most mature protocol among
plug-n-play protocols so far. There is a large number of standardized devices
(www.dlna.org) and it is widely accepted and supported by many manufactur-
ers and vendors. The proxy is generated when there is equivalent device type to
a UPnP requested device. The specific proxy publishes UPnP service interfaces
and actions and once invoked it actually transfer the invoked action to the cor-
respondent device using its own semantics and syntax. In future works, a GUI



will be implemented to make the validation and correspondence editing easier.
Complex mapping of services and actions (Sequential and simple Union-Of re-
lations) will be investigated in order to infer and deduce such correspondences
with a minimal human intervention.

9 Acknowledgment

The authors would like to thank Sylvain Marie from Schneider Electric for his
help with the DPWS Base Driver integration.

References

1. Ben Mokhtar, S., et: Easy: Efficient semantic service discovery in pervasive comput-
ing environments with qos and context support. Journal of Systems and Software
(2008)

2. Bonjour: http://www.apple.com/support/bonjour/
3. Bottaro, A.: Rfp 86 - dpws discovery base driver. pagesperso-orange.fr/andre.../rfp-

86-DPWSDiscoveryBaseDriver.pdf (2007)
4. Bottaro, A., Grodolle, A.: Home soa -: facing protocol heterogeneity in pervasive

applications. In: ICPS ’08: Proceedings of the 5th international conference on Per-
vasive services (2008)

5. DOG: Dog: Domestic osgi gateway. http://elite.polito.it/dog-tools-72
6. Engmann, D., Maßmann, S.: Instance matching with coma++. In: BTW Work-

shops (2007)
7. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)
8. Euzenat, J.: Alignment api. http://alignapi.gforge.inria.fr
9. Ibrahim, N., Le Mouël, F., Frénot, S.: Mysim: a spontaneous service integration

middleware for pervasive environments. In: ICPS ’09
10. IGRS: http://www.igrs.org/
11. Jouault, F., Allilaire, F., Bzivin, J., Kurtev, I.: Atl: A model transformation tool.

Science of Computer Programming 72, 31 – 39 (2008)
12. Kalfoglou, Y.: Exploring ontologies. in Handbook of Software Engineering and

Knowledge Engineering, Vol. 1, Fundamentals, ed. S.K. Chang (2001)
13. Microsoft: Standard dpws printer and scanner specifications.

http://www.microsoft.com/whdc/connect/rally/wsdspecs.mspx (January 2007)
14. Miori, V., Tarrini, L., Manca, M., Tolomei, G.: An open standard solution for

domotic interoperability. IEEE Transactions on Consumer Electronics (2006)
15. Moon, K.d., et: Design of a universal middleware bridge for device interoperability

in heterogeneous home network middleware. In: IEEE Transactions on Consumer
Electronics (2005)

16. Nain, G., et al: Using mde to build a schizophrenic middleware for home/building
automation. In: ServiceWave ’08: Proceedings of the 1st European Conference on
Towards a Service-Based Internet (2008)

17. OASIS: Devices profile for web services version 1.1. http://docs.oasis-open.org/ws-
dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html (2009)

18. Object-Management-Group, O.: Mda guide version 1.0.1. (2003)
19. SOA4D: Service oriented architecture for devices. https://forge.soa4d.org/
20. UPnP: http://www.upnp.org/
21. Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Com-

mun. Rev. 3(3), 3–11 (1999)


	Combining Ontology Alignment with Model Driven Engineering Techniques for Home Devices Interoperability
	Introduction
	Plug-N-Play Protocols
	Service Oriented Architecture
	Ontology Alignment and Model Driven Engineering
	Combining MDE and Ontology Alignment techniques
	Ontology Representation
	Ontology Alignment
	Template-based code generation
	Service Adaptation

	Implementation
	Related Work
	Conclusion and Future Works
	Acknowledgment


