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Abstract. In this paper a new methodology to support the develop-
ment process of safety–critical systems with contracts is described. The
meta–model of Heterogeneous Rich Component (HRC) is extended to a
Common System Meta–Model (CSM) that benefits from the semantic
foundation of HRC and provides analysis techniques such as compatibil-
ity checks or refinement analyses. The idea of viewpoints, perspectives,
and abstraction levels is discussed in detail to point out how the CSM
supports separation of concerns. An example is presented to detail the
transition concepts between models. From the example we conclude that
our approach proves valuable and supports the development process.

1 Introduction

In many application domains the field of distributed embedded systems has
an increasing impact on the development of products. Since the products are
often safety critical systems where erroneous behavior may lead to hazardous
situations, standards such as DO–178B [12] (avionics) and ISO 26262 [6] (auto-
motive) describe development processes in order to ensure functional correctness
and safety properties. Only if a product is developed according to the relevant
standards the respective certification authorities will approve the final product.

Another arising issue is the increasing size and complexity of the software
(and hardware) of such systems. There are a number of reasons for this: The
implementation of new functions often leads to inconsistent systems. Other func-
tions have to be modified and in quite a few cases a modified technical archi-
tecture might be necessary to compensate the overall impact of new functions.
It is a challenge to manage the development of such complex systems. A crucial
part is a continuous and strong methodology to aid the development process in
multiple dimensions.

In order to deal with complexity, existing design methodologies provide ab-
straction and refinement techniques. Abstraction allows the designer to concen-
trate on the essentials of a problem, and to enable concurrent development.
Another important feature is the support for re–use. With this, systems can



evolutionary be constructed saving time and costs. Many methodologies pro-
vide re–use by a concept of components. Components encapsulate logical units
of behavior that can be instantiated in different contexts. This also enables an
incremental development process by a concept of refinement for components.

While many existing meta–models partially support such methodologies, they
often do not cover the whole design flow from initial requirements down to a
final implementation and do not support traceability of that process. A meta–
model, to our understanding, provides the designer with the necessary modeling
entities to comprehensively compose a system. In order to derive verifyable and
executable embedded system specifications a meta–model needs to be interpreted
which can be done by an underlying semantics. A methodology thereby describes
the design steps of how a system should be modeled utilizing a meta–model.

In this paper we present a meta–model currently under development in the
projects SPES2020 [16] and CESAR [14]. Some underlying concepts were al-
ready outlined in [17] and will be further detailed in this work. In the following,
we will refer to our meta–model as the Common Systems Meta–model (CSM).
CSM features concepts to support component–based design, to specify formal
and non–formal requirements and to link them to components. It supports the
seamless design flow from the initial requirement specification down to the im-
plementation. The meta–model for Heterogeneous Rich Components (HRC), de-
veloped in the SPEEDS [15] project, has been extended and constitutes the
foundation of CSM. Thus, it benefits from the semantic foundation of HRC and
provides analysis techniques such as compatibility checks or refinement analysis.

There already exist many meta–models, some of which will be briefly outlined
and compared to CSM in Section 2. Since HRC is the core of our meta–model,
we will give a short introduction to HRC in Section 3. Section 4 details how the
CSM generically divides models to master complexity. In Section 5 we describe
important CSM concepts along with an example model. The last section will
draw a conclusion and give an outlook.

2 Architecture Description Languages

Many well established meta–models address a component–based development
process including composition concepts. Some of them focus on a particular
application domain and/or a certain stage of the development process. In the
following we will describe the most relevant meta–models.

EAST–ADL [1] for instance aims at providing an open integration platform
for modeling automotive systems and concentrates on early phases of develop-
ment, i. e. specifying features of the product and analyzing its functions. How-
ever, modeling concepts for behavioral specification of functions are not part of
EAST–ADL. According to the EAST–ADL specification UML state machines
can be used here, but the semantics of their integration is not well defined.
The CSM does not support the modeling of behavior directly. This is achieved
through the concept of HRC contracts inherited from SPEEDS project to specify
requirements for functional and non–functional behavior of components in con-



junction with assumptions on their environments. In EAST–ADL requirements
can be categorized (e. g. different ASIL–levels) and also be linked to components
— but they have no underlying formal semantics. The idea of having predefined
abstraction levels in EAST–ADL is a valuable concept to separate models with
different concerns, i. e. a functional model and an architectural design model.
Thus, in CSM we adopt this concept in a more general way, which we call per-
spectives.

AUTOSAR [3] is based on a meta–model also targeting the automotive do-
main, but is utilized in a later step in the development process as it is more
concerned with software configuration and integration aspects. The provided
concepts for software component specification are nearly agnostic to the actual
functionality a software component realizes. Instead they concentrate on defin-
ing modeling artifacts coupled with rules for code–generation to gain properly
defined interfaces in order to ease the integration task. Concepts supporting
functional modeling or earlier stages of the development process like abstrac-
tion levels are intentionally missing. Additionally, AUTOSAR does not consider
requirement specifications, except for the new Timing Extensions [2]. In con-
trast to AUTOSAR CSM is meant to support a comprehensive modeling process
starting from early requirements and going down to the actual implementation
in a domain–independent way. If used in an automotive context, CSM models
can be used to generate AUTOSAR artifacts which then can be used in native
AUTOSAR configuration tools.

The AADL [5] is a modeling language that supports modeling and early
and repeated analyses of a system’s architecture with respect to performance–
critical properties through an extendable notation (annexes). Furthermore, a
tool framework and a formal semantics improves the usability and the useful-
ness in conjunction with analysis tools. AADL supports modelling of soft- and
hardware components and their interfaces. These components serve as means to
define the structure of an embedded system. Other features include functional
interfaces like data IOs and non–functional aspects like timing and performance
properties. The combination of components (connecting data in- and outputs or
deployment of software on hardware) can be defined and modeled. Each of these
components can contain a group connectors between interfaces of components
forwarding control- or data–flows. Another feature of the AADL are so called
modes attached to components. They represent alternative configurations of the
implementation of a component. Like in EAST–ADL there is a way to describe
system components, their interfaces, and the data they interchange. However, the
designer starts to work at a stage where the software and hardware components
are already explicitly identified and separated, i. e. modeling on higher levels of
abstraction is not possible. Special annex libraries would have to be defined for
exploiting the full potential of AADL, i. e. a formal specification of requirements
and behavior not only limited to real–time specific constraints. Modeling on dif-
ferent levels of abstraction with refinement relations between abstract and more
concrete artifacts is not supported in the AADL but might be useful to address
e. g. separation of concerns or process–specific design steps.



The Systems Modeling Language (SysML) [9] standardized by the Object
Management Group (OMG) extends UML2 with concepts for the development
of embedded systems and is not tailored to a specific application–domain like
EAST–ADL. Hardware, software, information, personnel, and facility aspects
can be addressed. SysML can be used for the general notation of such a system
so there is no explicit semantics for all elements and relationships. Furthermore,
the language does not define architecture levels but provides means to describe
them. There are structural block diagrams for component–based modeling, be-
havioral descriptions, requirements, and use cases. Moreover, SysML provides
trace links which can be used to relate elements of different architectural levels:
An element of an architectural level can realize another element, and an archi-
tectural property can be allocated to a property of another architecture model.
Many concepts of SysML have been adopted in CSM, but key concepts like the
concept of contracts with a rigid formal semantics are missing.

The UML profile for Modeling and Analysis of Real-Time Embedded Systems
(MARTE) [10] adds capabilities for the real–time analysis of embedded systems
to UML. It consists of several subprofiles, one of which providing a general
concept of components. A subprofile called NFPs provides means to attach non–
functional properties and constraints to design artifacts, that would later be
subject to a real–time analysis. While this profile and its meta–model is agnostic
to the application–domain, it does not detail the way constraints are specified.
Despite being modular and open to other viewpoints, MARTE does not have a
common underlying semantics that can be utilized for all viewpoints. In contrast,
the HRC foundation of CSM has an automata–based semantics that can also be
used for other viewpoints like safety and thus enables the specification of cross–
viewpoint dependencies. This HRC foundation will be described in more detail
in the next section.

3 Heterogenous Rich Components

HRC (Heterogeneous Rich Component), which originates from the european
SPEEDS project, constitutes the core of the newly proposed meta–model. This
section gives a short introduction to the concepts of HRC.

3.1 Structure

The meta–model provides basic constructs needed to model systems like com-
ponents with one or more ports and connections (bindings) between them. A
port aggregates multiple interaction points of the component typed by inter-
faces. These interfaces can be either flows that type data–oriented interaction
points or services which type service–oriented interaction points. The interaction
points of HRCs can be connected by means of bindings: Flows to flows and ser-
vices to services. Either interconnections between ports and all their aggregated
interaction points can be established or a subset of these interaction points are
bound.



Components may have an inner structure consisting of subcomponents, their
bindings between each other and their bindings from/to ports of their owning
component. In the latter case the bindings specify a delegation of the flows or
services to the inner component. This approach to model structure also com-
mon with most other meta–models for component based design, provides great
reuse–capabilities and supports decomposition. Figure 1 depicts the concepts for
modeling structure and their relations.
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Fig. 1. HRC meta–model cut–out.

3.2 Behavior

The dynamics of an HRC can be specified by HRC state machines, which are
hybrid automata with a C-like action language. These automata are wrapped by
so called HRCBlocks, that expose parts of the automata on their pins to interact
with them. In turn these pins can be linked to interaction points of the owning
HRC, thus exposing the dynamics of the component.

The concept of HRCBlocks is used in different contexts, where a dynamic
specification is needed. First the implementation of a component can be spec-
ified as an HRCBlock, consisting of an HRC state machine. More important
HRCBlocks can be used when specifying the requirements of a component by
so called contracts. These concepts for specifying behavior and contracts are
depicted on the right hand side of figure 1. While the component–port–interface
concepts, inherent to many other metamodels, allow to specify a static contract
for a component, they often do not account for the dynamics of that interface.
One of the key concepts in HRC is the ability to abstract from the actual imple-
mentation of components and to specify the required behavior using contracts.
The idea of contracts is insprired by Bertrand Meyer’s programming language



Eiffel and its design by contract paradigm [8]. In HRC contracts are a pair con-
sisting of an assumption and a promise, both of which are specified by an HRC
block. An assumption specifies how the context of the component, i. e. the en-
vironment from the point of view of the component, should behave. Only if the
assumption is fulfilled, the component will behave as promised. This enables
the verification of virtual system–integration at an early stage in a design flow,
even when there is no implementation yet. The system decomposition during
the design process can be verified with respect to contracts. Details about the
semantics of HRC are given in [11], and [7] describes what a design process
utilizing HRC would look like by means of an example.

3.3 Viewpoints

HRC allows to group one or more contracts together and assign them to user–
defined viewpoints. Examples for viewpoints are realtime, safety, performance,
or power consumption. While contracts associated with different viewpoints are
based on the same underlying semantics, viewpoints support the developer to
separate different concerns.

4 Modeling along the development process

When developing an embedded system an architecture is regarded in different
perspectives at several abstraction levels during the design process as mentioned
before. Figure 2 illustrates a generalized V–model which has become a well
established model for many development processes. The V–model shows how
an embedded system can be developed along several abstraction levels starting
with user requirements for operational scenarios, analysis of functional blocks
with refined requirements, design decisions with derived requirements and a
final implementation. The developed product has to be tested on all levels so
the implementation integration is tested. The behavior of the system design
is verified, the functionality is validated and the product is evaluated during
its operation. On each level the product architecture is regarded in different
perspectives. So on an operational level e. g. non–functional features and use
cases, on functional analysis level a perspective with functional blocks and on
design level logics, software, hardware and geometry can be considered. Models
on each perspective reflect different viewpoints. A viewpoint “Safety” might be
regarded in every perspective but a viewpoint “Realtime” is not regarded in a
geometric perspective and viewpoint “Cost” is not regarded when considering
operational use cases.

4.1 Abstraction Levels

In CSM we introduce the generic concept of abstraction levels. In a model there
can be several concrete abstraction levels to represent the different levels of gran-
ularity. We furthermore define an ordering relation between abstraction levels



Abstraction Level “Functional Analysis”

Abstraction Level “Design”

Abstraction Level “Implementation”

Requirement Test

Requirement

Requirement Test

Test
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Logical Perspective Technical Perspective
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         Technical Perspective          Geometric Perspective     Logical Perspective

Fig. 2. Process model with different abstraction levels, perspectives and viewpoints.

where the highest abstraction level has the coarsest granularity in terms of de-
scription of the components. Lower abstraction levels are allowed to rearrange
the functionality that is specified in a next higher abstraction level into different
sets of components with respect to certain well–formedness properties. While
the modeling granularity on lower abstraction levels is finer, the components
still have to respect the functional and non–functional properties defined for
their higher–level counterparts. This relation is formally defined in HRC based
on HRC contracts as dominance relation (term used in SPEEDS) or entailment
relation (renamed concept). Details for this can be found in Section 5.4.

For the CSM we observed that design processes are very diverse for differ-
ent domains like automotive and avionics. A fixed set of predefined abstraction
levels is not sufficient to handle the differences of multiple application domains.
For example, in terms of CSM the EAST–ADL abstraction levels are just one
possible instanciation of our generic abstraction level concept. In other applica-
tion domains e. g. avionics or even for different companies in the same domain,
the set of actual used concrete abstraction levels can be tailored to the specific
needs. Each abstraction level contains one ore more perspectives which will be
explained in the following.

4.2 Perspectives

Apart from the distinction of different user–defined abstraction levels, an ab-
straction level itself contains a set of model representations that reflect differ-
ent aspects of the whole product architecture on the respective level of ab-
straction. We call such a distinct model representation on one abstraction level



a “Perspective”. Such a perspective can contain a model representation con-
taining hierarchical elements and element interactions. Currently we distinguish
four perspectives on each abstraction level: A user perspective which contains
function–centric models, requirements engineering models, etc.; a logical per-
spective which describes the logical structure of the system with components,
ports, connections, contracts, etc.; a technical perspective that focusses on phys-
ical hardware systems including communication buses; and a geometric model
of the product.

The generic concept of different perspectives in abstraction levels is derived
from the partitions of EAST–ADL abstraction levels and from an analysis of
architecture partitioning. Taking a look at EAST–ADL one can see that one
distinct EAST–ADL architecture level a parted into different perspective mod-
els: The design architecture level contains a functional as well as a hardware
perspective. In [4] three architectures are defined namely a user level, a logi-
cal architecture and a technical architecture which are perspectives that can be
found on several abstraction levels with a certain level of granularity.

On each perspective different viewpoints such as “Safety”, “Realtime” or
“Cost” are regarded which will not be further discussed in this paper. Combining
all perspectives of one abstraction level provides a model description of the
whole architecture at one level of granularity. Element interfaces of different
perspectives do not need to be compatible to each other. However, elements of
one perspective can be allocated to elements of another perspective e. g. a feature
is allocated to a function and a function is allocated to a hardware element and
so on. In a graphical notation language such as SysML such an allocation is
denoted by an “allocate” abstraction link.

The palette of actually used perspectives and elements can be different at
each abstraction level e. g. distinction between hardware and software is not
regarded in one abstraction level but in another. Thus, when descending to a
lower level of abstraction elements of one perspective may be realized by elements
in multiple finer–grained models of different perspectives.

5 A new Meta–Model with Example

This section will cover the most important features of our meta–model CSM
starting from a top abstraction level where there is no hard- or software but
only requirements and a basic idea, what the final product should be able to do.
During the design process components are conceptualized to iteratively support
the deduction of solutions from requirements. Further down on the lower levels
of abstraction more concrete components can be devided into functions mapped
to resources (e. g. software running on hardware). The descriptions will mainly
focus on the support of the meta-model for development-processes involving
different abstraction levels and perspectives wrt. the system under development.
We will illustrate the usage of the concepts by a running example (the wheel
braking system of an aircraft), that has been inspired by an example from the
standard ARP4761 [13].



5.1 From required Features to Components

When starting the design of an embedded system one usually has consider a) the
desired functionality of the system, b) the dedicated environment wherein the
systems should work, and c) the existing regulations for building such systems.
From this information the initial requirements concerning the system to design
can be derived. As an example, a subset of required features concerning an
aircraft’s wheel braking system is displayed in Figure 3.
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Fig. 3. Top abstraction level: Feature decomposition and initial logic architecture.

After the initial requirements specification via features a first high level logic
component decomposition is done. In our example the aircraft to design has
(among other components) a wheel braking control system and an actuator
controller. To trace from where these components originate one can annotate
feature realization connections to represent which feature is realized through
which component. Required features can also depend on other features, this
is displayed with a feature link. In our example there is a requirement which
informally states that the aircraft shall stop within 1000 meters after touchdown.
On the right side, in the logical system, this requirement was refined into multiple
other requirements, one of which appears as the formally specified contract c185.
This contract, for instance, requires the system to react to a pilot pushing the
brake pedal with a signal towards the actuator control within a certain time–
frame (Assumption: “PedalPosition is available && no system error” Promise:
“Delay from pedalPosition.e to brake.e within [10,18] time unit [ms]”).

5.2 Decomposing the System: Towards Lower Abstraction Levels

So far we presented a high level view on the system under development, usually
referred to as System Model. In Figure 4 the logical perspective on the system
abstraction level is shown on top. Below that the logical perspective of the next
lower abstraction level can be seen. We used a one–on–one realization relation
between components on the different levels. The contract C185 used on the
higher level is connected to a derived contract C185.13 on the lower level using an
Entailment–relation. This relation states that both contracts are not necessarily
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Fig. 4. System refinement and function allocation

identical, but the contract on the lower level is a refinement of its pendant on
the higher level according to the SPEEDS semantics [11]. A new perspective is
introduced on the lower abstraction layer: The Technical Perspective.

5.3 Allocating Logical Functions to Hardware Architecture
Elements

As already discussed in Subsection 4.2, a model–based development process usu-
ally involves creating models for different perspectives of the system. The struc-
ture of the modeled system is not necessarily the same in the various perspectives,
which requires means to correlate the different models to each other. Here we
concentrate on the logical and technical perspective and the relationships among
the contained models. As Figure 4 shows, we refined the initial logical functional
specification and its requirements specified as contracts. Note that this is still
part of the logical perspective of the system. On the right hand side of Figure 4,
an excerpt of the model of the technical architecture is depicted along with an
exemplary allocation of an instance of the function Monitor to a Task, that is
scheduled with other tasks inside a partition of a hierachical scheduler running
on an electronic control unit (ECU). This modeling–example also illustrates the
benefit of the concept of perspectives as they allow to separate different design
concerns. The functional specification of a WheelBrakeControlSystem is, at least
in the early stages of development, independent of the underlying plattform
hosting and executing the functions.

Note that the CSM also provides means to specify properties of tasks and
their schedulers such as priorities, execution times and scheduling policies. But



as this is outside the scope of this paper these features are only briefly mentioned
here.

5.4 Semantics of Realize and Allocation

So far we have introduced the concepts of abstraction levels and perspectives
and illustrated their usage by an example. However, the power of CSM lies
in its rigid semantic foundation allowing to apply model–checking techniques.
Thus, we need a definition of realize and allocation according to these semantics.
Figure 5 sketches this definition that relies on HRC state machines. The idea is
to relate the observable behavior of components exposed at its ports.
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Fig. 5. Semantics of refinement and function allocation

Realization: Realizations are relationships between ports of components on
different abstraction levels. Intuitively a realization–link states, that a compo-
nent (e. g. f1 ) has somehow been refined and is now more concrete in regards
to its interface and/or behavior (e. g. f1’ ). This cannot always be captured by
a pure decomposition approach. Thus, we define the realization of a component
by introducing a state–machine that observes the behavior of the refined com-
ponent f1’ and translates it into according events, that are observable at a port
of component f1.

Allocation: Allocations are relationships between ports of components in
different perspectives. Intuitively an allocation–link states that the logical be-
havior of a component (e. g. f4 ) is part of the behavior of a resource (e. g. r2 ),
to which it has been allocated. Here we consider the same link–semantics as for
the realization: It is defined as a state–machine that observes the behavior of
the resource r2 and translates it into according events that are observable at a
port of the allocated component f4.

6 Conclusion

A new methodology to support the development process of safety–critical sys-
tems with contracts has been described in this paper. We first compared existing



meta–models also stating their short–comings in relation to our approach. Then
we introduced HRC as the semantic foundation of our meta–model. In Section 4
we described our concepts of abstraction levels, perspectives, and viewpoints.
We described the transition concepts between models in Section 5 along with an
example.

It is hard to measure (in numbers) how well our model–based methodology
competes with other approaches. But we think, from this work it can be seen
how valuable these concepts can be to support a development process. Especially
the realize and allocate relations deserve more in–depth research in the future
since they hold the key to a persistent system design process.
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