Designing fault-tolerant component based applications
with a model driven approach

Brahim Hamid, Ansgar Radermacher, Agnes Lanusse, Chhistdpuvray,
Sébastien Gérard and Francois Terrier

CEA, LIST
Laboratoire d’'Ingénierie dirigée par les modéles pour est@mes Embarqués
Boite 65, Gif sur Yvette, F-91191 France
email:{brahim.hamid,ansgar.radermacher,agnes.l@ycissstophe.jouvray,
sebastien.gerard,francois.terrier}@cea.fr

Abstract. The requirement for higher reliability and availability sjstems is
continuously increasing even in domains not traditionalisongly involved in
such issues. Solutions are expected to be efficient, flexiblesable on rapidly
evolving hardware and of course at low cost. Model drivenreaghes can be
very helpful for this purpose. In this paper, we propose dysassociating model-
driven technology and component-based development. Tbik 8 illustrated
by the realization of a use case from aerospace industryjhtsafault-tolerance
requirements: a launch vehicle.

UML based modeling is used to capture application structume related non-
functional requirements thanks to the profiles CCM (CORBADonent Model)
and QoS&FT (Quality of Service and Fault Tolerance). Thdiapflon model is
enriched with infrastructure component dedicated to feal#rance. From this
model we generate CCM descriptor files which in turns are usdwlild boot-
code (static deployment) which instantiates, configured @mnects compo-
nents. Within this process, component replication and Fop@rties are declara-
tively specified at model level and are transparent for thraganent implemen-
tation.

Key words: Connector, CORBA Component Model, Distributed appliaadio
Model-driven approach, Profile QoS+FT, Replication.

1 Introduction

A distributed system is a system which involves several aaers, processors or pro-
cesses which cooperate in some way to do some task. Howaebrsgstems require
a specific treatment of faults. Faults may be hardware defénk failures, crashes) or
software faults which prevent a system to continue funatigim a correct manner.

In such systems, solutions are expected to be efficientbfeexieusable on rapidly
evolving hardware and of course at low cost. Model-drivegiegering [19] provides a
very useful contribution for the design of fault-tolerapstems, since it bridges the gap
between design issues and implementation preoccupatioelps the designer to con-
centrate on application structure and required behavidpanmits to specify in a sepa-
rate way non-functional requirements such as Quality o¥i8erand/or fault-tolerance

issues that are very important to guide the implementatioegss. The model(s) can
be analyzed at a very early stage in order to detect potenitonceptions; and then,
exploited by specific tools through several steps of modeigformation and/or in-
terleaving with platform models in order to produce the @ggilon components and
configuration files.

In this paper, we propose a study associating model-drigproach and component-
based development to design distributed applicationsttaatfault-tolerance require-
ments. We focus on the run-time support offered by the corapbframework, no-
tably the replication-aware interaction mechanism andtehdl system components
for fault-detection and reference management. To illéstiae power of our approach
we examine a test case from aerospace industry that haddéarthnce requirements: a
launch vehicle.

UML based modeling is used to capture application strucamé related non-
functional requirements thanks to two specialized extarsiCCM (CORBA Compo-
nent Model) [13] and QoS&FT (Quality of Service and Faultéraince) OMG pro-
files [15]. From this model we generate descriptor files (adity to Deployment and
Configuration standard (DnC) [14]). These descriptors areiin used to configure a
devoted infrastructure consisting of a container/compoiased architecture and to
load configured components. Within this process, compomgtitation and FT prop-
erties are declaratively specified at model level and armsparent for the component
implementation.

The work is conducted in the context of a national projedecElUsine Logicielle”

L. This project is three-folded : modeling, validation anftastructure/middleware sup-
port along with configuration support.

The rest of the paper is organized as follows. In the nexi@aeaete present the
model including the distributed computing systems, congmbmodel and the connec-
tor extension. In Section 3, we present briefly the proposaahéwork to implement
fault-tolerance mechanisms. Section 4 describes the pezhbmethodology to design
fault-tolerant distributed applications for componensteyns. We outline the profiles
used on model level and describe the code generation arfdrplatonfiguration pro-
cess. In section 5 we review some related works. The lasbsesimmarizes and gives
an outlook of future work.

2 Background

In this section, we outline two different aspects: the agstions about the underly-
ing computing system (mainly its network) and the compomdatform, namely the
CORBA Component Model extended with the connector paradigm

2.1 Distributed computing system model

A distributed system is a set of processes (or processotscammunication links.
Processes communicate and synchronize by sending andingceiessages through

! This work has been performed in the context of the Usine Listiicproject of the System@tic
Paris Région Cluster (http://www.usine-logicielle.org)

the links. The network topology is unspecified and each nodencunicates only with
its neighbors. Two processes are considered as neighbamsl ibnly if there is a link
(channel) between them. We deal exclusively with connetidpdlogies. A process
can fail by crashing, i.e. by permanently halting. A proceas also produce wrong
computation results (e.g. due to spontaneous bit failu@simmunication links are
assumed to be reliable. The system is improved by failureaiiet modules. After a
node fails, a dedicated protocol involving these moduldgias all neighbors of this
node about the failure.

Networks are asynchronous in the sense that processes@perarbitrary rates
and messages transfer delay are unbounded, unpredictaifiaite. We assume that
message order is preserved. To implement failure detedtierdedicated protocol use
a weak form of synchrony such as [1, 6].

2.2 Fault-Tolerance mechanisms

Fault-tolerance can be achieved by multiple mechanismsnétance parity checking
on memory on a hardware level. In the scope of this papehéduaniore to use fault
detection functionality, we consider replication managaetmObviously, replication re-
lates to hardware as well as to software. With respect tovarel it means that pro-
cessing resources (nodes) and network links are replicefeétl respect to software it
denotes that the same component instance is deployed oipleualvdes. There are dif-
ferent well known variants of how redundant components maskwthey fall in three
main categories: all replicas can execute the same requeéstsults are voted ("hot" or
active with vote), only a single replica is active ("coldt)oixed policies where replicas
are active but only one, the master sends its result. Indeedyctual redundancy pol-
icy chosen for an application results from a compromise betwpowerful redundancy
mechanisms offering better reliability at a high cost inmerof price, communication,
size and weaker mechanisms in terms of recovery time bubegrioosts. These consid-
erations are particularly important in the domain of emhestislystems and have driven
our will to promote flexible design and implementation oflsmeechanisms.

In this experiment, the faults handled relate to hardwautt {faode not responding)
detected by the Fault Detector component through livetimesitrol as described below,
and software error (no answer or wrong result from a replietedted by the voting
mechanism). If a software error is detected on the resulticgrfrom a replica, the
node on which this replica resides is desactivated and deresi as faulty.

2.3 Connector extension of the CORBA Component Model(CCM)

Our work is based on the CORBA Component Model (CCM) extend#dthe connec-
tor paradigm. A main advantage of this model is its sepamaifdusiness code located
in the component from the non-functional or service codeted within a container.
The CCM standard supports three different communicatioagigms (port types):
synchronous method calls based on CORBA (provided/redunterface), event pub-
lishing and reception and the recently added streaming.dba@back is that the im-
plementation of such communication mechanisms is gegdredid, i.e. a CCM imple-

mentation provides a single realization of the interactibetween port types. This is
quite restrictive, in particular for embedded systems néog:

1. Flexible interaction implementations
2. Additional communication models or variations of existamgnmunication models

There is no way to model this in a suitable way within the staddCCM model.

The limitations of this standard have driven us to proposexdansion named the
eC3Mwhich introduces the concept@bnnectoiin the context ofComponent/Container
paradigm. This permits the definition of specific interacti@mantics and to associate
multiple implementations of a particular one when defining deployment configura-
tion. The connector extension to CCM has first been publighglB]. Here, we’ll have
a short look at it with a focus on specific connectors suppgrthe interaction with
replicated components.

A connector has certain similarities with a component. § hdype definition con-
sisting of ports providing or requiring interfaces and ampiementation chosen at de-
ployment time. The main difference id) its genericity — its interfaces are adapted to
the component using it an(2) it is afragmentecentity: since the connection between
a component and its connector is always a direct local cadheort of the connector
is co-located with the component it is connected with.

3 Our Infrastructure

We propose a simple infrastructure based on a set of nonifuratcomponents. It has
similar elements as in FT-CORBA [11], but since these arézedas CCM compo-
nents they are independent of an ORB, in particular the adpnextensions allows for
choosing different interaction implementations. The safi@en between components
and containers in CCM allows to keep fault-tolerance aspeat of the business code.
Only the container and the associated connector fragmeshistf can be seen as part
of the container) manage FT aspects.

3.1 Fault-tolerance Framework

Here we show the set of non-functional (control) componestd to support fault-
tolerance and the run-time support, notably the replicatiovare interaction mecha-
nisms. To handle faults, we use the following control corgrua:

1. A fault detector (FD):Each node is equipped with a fault detector to detect other
faulty nodes. These components communicate with each tharild the list of
faulty nodes. This component implements a fault detectiotogol such as heart-
beat or interrogation. In our framework, we use the follogvimt periodic rate,
each fault detector (source node) performs broadcastiajveiness requests to all
other nodes (destination nodes). A requested destinatida answers (or not) the
source node. Thus, each fault detector node maintainsgheflnodes and their
states (alive, not alive).

2. A fault tolerance manager (FTM)rhe fault tolerance manager component per-
forms reconfiguration to deal with detected faults [7]. Iege tracks of ongoing
status of replicas and defines fault processing. Recontfigarég defined as the
operation of transition from a source mode to a target modennan event (faulty
node) occurs. This is to keep the number of valid replicasafter each failure
occurrence, it checks that the number of valid replicasgbéi than the minimum
number of replicas. That is, the FTM changes the configuratiothe system to
satisfy the dependability requirements specified by thédes of the application
at the design level.

3. A replica manager (RM)The role of this component is to store references of all
replicated components (replicas) on a certain node. Thispocment is not repli-
cated, but deployed on each node. It handles a list of refessto replicated com-
ponents deployed in this node. It enables the creationtidelesplicas and their
deploymentin the case of dynamic reconfiguration.

Instances of these control components are activated onreztd However, the
fault tolerance manager instance is in a leader mode on amynode, which may
change dynamically when a faulty node event occurs.

3.2 Replication at a Connector Level

In the context of fault tolerance, a connection with a regiliel component should per-
form group communication, i.e. the transparent commuitoawith a set of replicas.
Whereas this could be done with standard CCM and a specificB2ORplementa-
tion supporting group communication, it would be impossitd configure and control
it (in case for instance of node failures) from standard C@d shown in the Section
2.3, the communication system is abstracted at a connest®lr Since it is responsible
for incoming and outgoing messages, it is an ideal placei®iritegration of replica-
tion protocol. Therefore, the user code interacts traresptr with a group of replicas.
Along with a replicated instance, the fragments of a cororeate replicated as well.

Currently, we implemented an active replication (“hot"tlwvivote mechanism as a
proof of concept. In this variant, all replicas of a compani@stance are active at a
given time and synchronize entries (optional) and resylts tote. We can separate the
realization of a connector supporting this replicatiorlesinto two phases. In the first,
a unique request has to be distilled and sent to all replloake second, the message
is received by all replicas of the destination componenttaede (optionally) have to
check that all got the same message.

Replicated components have a voter object in their contand a reference to
this object is automatically passed to the connector fragmiehe voter object is part
of the run-time required for fault-tolerance. The codedales &cknowledgeRequelts
the parameters with the other replicas by means of the vdiject before it sends a
message to all replicas to the target object. The call of otetitknowledgeRequest
blocks until the result has been confirmed. If the currenlicaps leader, it sends the
request to all replicas of theerverfragment thanks to theeplica manageinstance in
that node. Moreover, thiault detectorinstance is invoked to avoid sending request to
the crashed node.

4 Designing Fault-Tolerant Distributed Applications (MDE
Approach)

As described above, a simple redundancy management systerbecimplemented
thanks to specific middleware components devoted to geme@hanisms such as fault-
detectors, voters and so on...and specialized servicdennemted into connectors.

Here we describe how a MDE approach can help developersrdésdy applica-
tion and take full benefits of this infra-structure to buildxible efficient fault-tolerant
component based applications. We present the approacérchaod the tools developed
to support it.

Our laboratoryLISE? has developed a tool that supports UML modeling (Papyrus
UML 3) based on the Eclipse environment. This tool suite provalgsaphic UML
modeling editor and code generation components (Java, €). e tool supports
also advanced UML profile management. We have developet@ualiplug-ins which
generate CCM descriptor files from a model containing conepbimstances with fault-
tolerance requirements.

Our methodology is illustrated by means of a test case frawspace industry that
has fault-tolerance requirements: a launch vehicle. Fapktity, many functions of
this test case have been omitted. Two components are igeintifi

— Calculation componenfCalc) : this component makes some computations and
then invokes thedisplay method provided by the interface of theDisplay) :
component.

— Display component(Display) : it is responsible of displaying the result of the
computations done by th€alc components. It providegisplay method through
its interfaces to be used by th@alc components.

The sample application is described as follows: a calatatbmponent is periodi-
cally activated by a timer; the result of the calculationasged to a display component.
Here, componen€alc is replicated three times and we use an active with votinti-rep
cation style. For this application, dependability reqmiemnt is that it must tolerate one
node crash.

4.1 Application modeling

Application modeling when dealing with component basedapghes consists of de-
scribing components, their required and offered serviges then define component
instances and finally how these instances are connectedtalie final system.

The modeling basis is UML on which a variant of the profile fdRBA Compo-
nent Model (eC3M) is applied. The application is descrilveiims of components and
provided and required interfaces; profile properties petmcomplete the description
so that complete IDL can be generated from the descriptiesefbly characteristics

2 Laboratory of Model Driven Engineering for Embedded Systemhich is part of the CEA
LIST.
% http://papyrusuml.org

and deployment information are also provided through th@M@rofile with stereo-
types close to DnC concepts. From this information deplaytpkans can be generated
for regular applications.

To handle fault-tolerant requirements we apply a compldargmprofile namedrT
profile which is composed of a subset of QoS&FT [15] and uses NFP (Nimctional
Properties) sub-profile of MARTE [16] (standard UML profilerfModeling and Anal-
ysis of Real-Time Embedded systems). Stereotypes deditatault-tolerance spec-
ify the fault-detection policy, replication managememtestreplica group management
style etc.. Fig.1 shows the structure of this profile. Blaoked arrows denote concept
extension (stereotydeTI nitialReplicationStyleis an extension of UML Class). White
ended arrows are standard UML generalization relations.

Pre——. (uml:Ciassifier)
- (umt::Association) FTReplicationStyle Classifier
F1 + FaultMonitoringGranularity: F. L
+ FaulDetecterDeploymentPolicy. Fault.. > * FaultMonitoringSyle: FauliMo..

+ HearbeatEnabled: Beolean [
+ Identifier: String [1] {unique}

+ InitiaINumberReplicas: Integ.. .
+ Membership: MembershipSty (umt::Property)

+ MinimumNumberReplicas: In... Property

=
F yle
+ HeartbeatEnabled: Boolean [1] {...
+ InitialNumberReplicas: Integer [1. \ {umi-Class)

wskreaypes askersalypen
FTPersi: icali FTStatelessReplication Sty
sskersatype
FTLoggableState / \
userEctypes wskreatypes
FTActiveReplicationStyle FTPassiveReplicationStyle

+ CheckPointinterval: Integer [1] {un...

iskerecypen
FTServerObjectGroup /4 /d \
wsBrectypen wEereolpey srEclypen
FT ingRep FTColdF y FTWarmF

Fig. 1: The structure of the FT-Profile.

Once application components and interfaces have been dettmeesystem software
architecture is described thanks to the UML composite diagused to specify an as-
sembly and hierarchical components. This diagram permitietermine what are the
constitutivepartsof the system and how they are inter-connected. Fig.2 shoswsdm-
posite diagram corresponding to our sample application.diagram indicates that the
application consists of one componeatc, one componertisplayand one component
timer. Connectors are defined betwe@ner andcalc, andcalcanddisplay. This is the
description of the system without infrastructure compdaen

System

Membership =
InfrastructureControlledMembership

W TACliveWithVating.
InitiaINumberReplicas = 3

cale: Calc [1]

«FTActiveWithVetingReplicationStyles T

f_tick: Mick [1]

]
N& C3M Connectors

\ display: Display [1]

f_display: IDisplay [1]

1_tick: ITick [1]

«eC3M Connectors
timer: Timer [1]

tick: UselTick [1]

By DefaultDiagram Deployment diagram of inflexion-n | & Composite diagram of inflexion-n | [@] Component
Cl Properties &3

& inflexion-n::System::f_tick-f_display

B Applied stereotypes: = = | X
Profile - (2 eC3MConnector (from microCCM::Deployment)
Comments P Bl eC3MConnectorType [1.1] connectorType = ConnFTCOREA

Appearance

Fig. 2: Applying fault-tolerance stereotypes.

Since we want to specify that redundancy is required we stgpe componertalc
with FTActiveWithVotingReplicationStyle stereotype and we indicate that membership
policy is controlled by infrastructure and that initial nber of replicas will be3. In the
same manner we indicate that connectorType of the connleeteeercalcanddisplay
is ConnFTCORBA which means that a connector support for fault tolerancedas
CORBA should be used (see next section).

From this model we can configure the final application, instialary files, generate
appropriate connectors and configure specialized infreitre services. This process
follows several steps and uses different transformatiotstdescribed in the next sec-
tion.

4.2 Code generation

Code generation is intended to support CCM implementatiepss This requires to
generate : (1) CCM descriptor files from the model, (2) theecodrresponding to a
CCM implementation.

The first point concerns generation of component descsptplatform descrip-
tion and adeployment planA deployment plan contains information on the implemen-
tation and required artifacts (usually libraries), comeots instances, as well as allo-
cation information (allocation of instances onto nodesyl eonnections between ports
of these instances. The second one concerns the parsing dégiloyment plan by a
dedicated CCM implementatiomicroCCM This framework is a tool set developed
jointly with Thales which prepares application deploymiain the analysis of the de-
ployment plan. It produces a static deployment in whidioatloaderfile is generated

for each node. This file contains code that instantiates corapts as well as connector
fragments and performs the connections according to thigegnt plan. Connector
fragments are generated when necessary (this step is nesdeg connectors adapt
themselves to component interfaces, as shortly outlinddeiprevious section).

The following code (see Fig.3) gives a rough idea of the geedrcode contained
within a connector fragment. In this case, fragment thae&ponsible for sending a
result from the calculation component towards the disptapgonent.

void FTCORBA | Display_client::display (CORBA::Float val ue)
{
if (mvoter !'= NULL) {
/1 cal cul ate hash of request (used to sinplify conparisons).
Hash hash;
hash. add (m vot er->get RequestNr ());
hash. add (val ue);
m vot er - >acknowl edgeRequest (hash.get ());

}
if (am Leader ()) {
for (int i = 0; i <MAX_NR _OF_NCODES; i++) {
if (myRM >i sOnNode ("DI SPLAY",i) && !nmyFD->is_faulty_node(i))
nmyRM >get Cbj (" DI SPLAY", i)->di splay (val ue);
}
}

Fig. 3: Code of connector fragment associated with the nodehich Calc component is de-
ployed.

4.3 Discussion

Overhead of connector fragments coddhe following table provides an idea about
the overhead of the connector fragments at some node. Thedigue obtained for a
prototype on a Linux PC. As said before, the bootloader fikkgoms the instantiations
and configuration of components and connector fragmentghanzbnnections between
these. The connector fragments use a naming scheme thaspord to their name
followed by the interface to which they adapt to and folloviieally by the port name
within the connector type. The overhead of a connector sdimgofault-tolerance is
relatively small, in general it depends on the number of apens and their parameters.
The voter run-time adds about 11 Kb.

Efficiency, evolutivity, reusability In order to use another replication style it suffices
to (1) adapt our infrastructure to deal with such a replmastyle, i.e. provide a con-
nector and (2) specify the use of this connector by means tfraatype attribute of a
connection on model level (as shown in Fig.2). A re-generatif the descriptor files
and the connector generation will take this change autaalatiinto account.

text |databss|dec |filename

1378812 |828/14628gcc_linux_mico/obj/bootloader.o

372 |4 |1 |377 |gcc_linux_mico/obj/CCM_hooks.o

2936 (4 |1 (2941 |gcc_linux_mico/obj/CORBA_IFault_Detector_client.o
2339 |4 |1 |2344 |gcc_linux_mico/obj/CORBA_IFault_Detector_server.o
3245 |4 |1 |3250 |gcc_linux_mico/obj/FT_CORBA_IDisplay_client.o
127114 |1 |1276 |runtime/FT/gcc_linux_mico/obj/ReferenceSet.o
114585 |1 |[11464runtime/FT/gcc_linux_mico/obj/\Voter_impl.o

Fig. 4: Overhead of the connector fragments correspondiriget proposed implementation for a
prototype on a Linux PC.

Thus, multiple deployment variants can be easily produoédested (benchmarked)
and optimized to find a suitable solution.

5 Related Work

Some CORBA implementations provided proprietary faukttahce mechanisms such
as OmniORB, Orbix and Orbacus. They are based on an embedted Sontact
details" within an interoperable object reference (IOR)e$e solutions are vendor spe-
cific and not interoperable. Therefore, the OMG standasfiaelt-tolerant mechanisms
(short FT-CORBA) [12] within the CORBA specification. Thepheation manager in-
terface is the core of the FT-CORBA infrastructure, inhiegtfrom three interfaces that
deal with object groups, a generic factory and the faukttmhce properties. The latter
is also referred to by the FT-profile outlined in this papefulimplementation of the
FT-CORBA specification tends to be "big", therefore it is maplemented by many
ORBs, in particular not by ORBs that are tailored for smalil anedium embedded
systems.

AQUA (Adaptive Quality of service Availability, see[17] dr9]) is incompatible
with FTCORBA. Fault-tolerance is obtained by active or passeplication and re-
quires reliable group communication. It allows develogerspecify the desired level
of dependability, through the configuration of the systenoading to the availability of
resources and the faults occurred. This system uses Qofacbas in Quality Objects
[20]. The group communication service is based on Ensendfle [

The AFT-CCM (Adaptive Fault-Tolerance) model [5] is based@CM and treats
fault-tolerance as a specific QoS requirement. For each ooamg with fault-tolerance
requirements, an AFT manager is created. This seems to be cpstly, but enables
the modification of QoS parameters at run-time such as tHeagpn coordinator im-
plementing the replication technique (one component foheaplica). A prototype of
this system was built using OpenCCM (http://openccm.dhbjeb.org) running under
ORBacus. Only passive replication style was implementacksactive replication style
requires group communication mechanisms that are not stggpm the used ORB.
Another approach for CORBA components replication is sddin [10]. This approach
uses interceptor objects that accomplish replication mement: each replicated com-

ponent is associated with an interceptor object. In the &M, a generic connector is
used to avoid the implementation of a new interceptor obigatach new component.

The MEAD (Middleware for Embedded Adaptive Dependabiligydup has pro-
posed a fault-tolerant CCM in cooperation with RaytheonisTéxtension uses addi-
tional descriptor files containing deployment rules anctaimer descriptions that spec-
ify the fault-tolerance properties of the application. Timk between components and
FT services (including fault monitoring, checkpoint (logmponents) is done at the
container level. There is a separation between logical drydipal assembly in CCM
process: for example, the number of replicas is logical &edgiacement is a physi-
cal concern. This deployment is achieved using an assemdhager/deployer that is
installed at each host. Both active and passive replicatiples are supported by the
proposed extension using the extended virtual synchrorgeti@]. This model guar-
antees that events are delivered in the same order at eaeh nod

Different modeling approaches can be followed, severatigpized description lan-
guages have been defined and are well adapted to descrieensyaplementation
(AADL and its error annex [3, 4]), EAST ADL which focuses gattarly on the spec-
ification of allocation constraints, or some dedicated teages devoted to the develop-
ment of critical systems based on formal techniques andsgnous calculus (as in the
SCADE tool). But none of these approaches are well suitdig@€bntainer/Component
paradigm.

The main difference between the fault-tolerant CCM appneacabove and our
approach is the focus on a specification based on UML and aatdized profile
(QoS+FT). Another difference is that we integrated thetf&mlerance mechanism into
a generic CCM extension. Note that our connectors replagaction tailoring via
interceptors that are used by other approaches to enahkpteent replication.

6 Summary and Future work

We have shown that fault-tolerant applications can be geeddirectly from a specifi-
cation of the architecture (component assembly & deploythetML and component
descriptions as well as their implementation. The wholereagh is largely based on
standards: UML with CCM as well as a fault-tolerance profilel she execution mid-
dleware based on CCM. The extension of the middleware raritlerore flexible and
enables the transparent support for group communicatinlik&lother approaches, the
connector extension of the middleware is not a specific exerfor fault-tolerance —
fault tolerance is merely a good example of the enhancedfléyithat can be achieved
within this component approach. It is then possible to immat distributed applica-
tions onto heterogeneous platforms running under diffiesparating systems and com-
munication stacks at low cost and with high implementatificiency. The application
are currently runs on a PC using Linux and on a GR-XC3S-1500MKevelopment
board using RTEMS OS (a Posix compliant). The latter is useshbw that our ap-
proach may be used easily to design embedded systems.

The next steps are primarily a support for an automatic rgigaration of the ap-
plication, for instance the transition between a nominal anreduced-functionality
mode. Re-configuration mechanisms in a non-FT context asady implemented by

the project partner Thales; and recently we propose a madardapproach to help
specify reconfigurability issues [7]. The challenges of itegration include for in-

stance the replication of the component performing thenfgaration steps. Another
objective for the near future is to implement other replimastyles than the active with
vote and to examine footprint and performance overheadstiild

References

1. T.D. Chandra and S. Toueg. Unreliable failure detectorsréliable distributed system.
Journal of the ACMA43(2):225-267, July 1996.

2. T. Dumitras, D. Srivastava, and P. Narasimhan. Architgcand implementing versatile
dependability. InArchitecting Dependable Systems Il (WAD®)lume 3549 ofLecture
Notes in Computer Scienggages 212—-231. Springer, 2005.

3. P. Feiler and A. Rugina. Dependability Modeling with theclitecture Analysis & Design
Language (AADL). Technical report, 2007. CMU/SEI-2007-0DM3.

4. P. H. Feiler, D. P. Gluch, and J. J. Hudak. The ArchitecAmalysis & Design Language
(AADL): An Introduction. Technical report, 2006. CMU/SEB06-TN-011.

5. J. Fraga, F. Siqueira, and F. Favarim. Adaptive FauleiEoit Component Model. INinth
IEEE international workshop on Object-Oriented Real-TiDependable Systen2003.

6. B. Hamid. Distributed fault-tolerance techniques for local comgigas PhD thesis, Uni-
versity of Bordeaux 1, 2007.

7. B. Hamid, A. Lanusse, A.Radermacher, and S. Gérard. Diegjgeconfigurable compo-
nent systems with a model based approachWamkshop on Adaptive and Reconfigurable
Embedded Systems, APRES’08 (to appear)

8. M.G. Hayden.The Ensemble SystefhD thesis, Cornell University, 1998.

9. A. Kobusinska, J. Kobusinski, and M. Szychowiak. An As#&yof distributed platforms
applying replication mechanisms. Technical Report ReRdétt014, Poznan University of
Technology, 2001.

10. L. C. Lung, F. Favarim, G. T. Santos, and M. Correia. Amdsfructure for Adaptive Fault
Tolerance on FT-CORBA. IISORC '06: Proceedings of the Ninth IEEE International Sym-
posium on Object and Component-Oriented Real-Time Digeith Computing (ISORC’06)
pages 504-511, Washington, DC, USA, 2006. IEEE Computeeoc

11. OMG.CORBA Core specification, Version 3.2804. OMG Document formal/2004-03-12.

12. OMG.CORBA Core specification, Version 3.2804. OMG Document formal/2004-03-12.

13. OMG. CORBA Component Model Specification, Version 4.2006. OMG Document
formal/2006-04-01.

14. OMG. Deployment and Configuration of Component Based Distribdeplications, v4.0
2006. OMG document ptc/2006-04-02.

15. OMG. UML Profile for Modeling Quality of Service and Fault TolenCharacteristics
and Mechanism$ 2006. OMG Document formal/2006-05-02.

16. OMG. UML Profile for MARTE 2007. OMG document ptc/07-08-04.

17. Y. Ren, M. Cukier, and W.H. Sanders. An adaptive algorifbr tolerating value faults and
crash failureslEEE transaction on parallel an distributed systerdsl73-192, 2001.

18. S. Robert, A. Radermacher, V. Seignole, S. Gérard, Vin&aand F. Terrier. Enhancing in-
teraction support in the corba component modeFrim Specification to Embedded Systems
Application

19. D. Schmidt. Model-driven engineerinign IEEE computer39(2):41-47, 2006.

20. J. A. Zinky, D. E. Bakken, and R. E. Schantz. Architedtstgport for quality of service for
CORBA objects.in Theory and Practice of Object Syster@§l), 1997.

