
On Scalable Synchronization for Distributed
Embedded Real-time Systems

Sherif F. Fahmy1, Binoy Ravindran1, and E. Douglas Jensen2

1 ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA, fahmy@vt.edu,
binoy@vt.edu

2 The MITRE Corporation, Bedford, MA 01730, USA, jensen@mitre.org

Abstract. We consider the problem of programming distributed embed-
ded real-time systems with distributed dependencies. We show that the
de facto standard of using locks and condition variables in conjunction
with threads can have significant overhead and semantic difficulty and
suggest alternative programming abstractions to alleviate these prob-
lems. We also discuss several alternatives for implementing these pro-
gramming abstractions and discuss the algorithms and protocols needed.

1 Introduction

As Moore’s law appears to be reaching its limits, manufacturers of computing
machinery are turning (again) to parallelism as the next frontier in the quest
for faster computers. Today, most machines produced are multi-core and the use
of distributed systems is on the increase. Coinciding with this new direction of
using concurrency to increase application throughput, is the discovery of a rich
set of applications that are a natural fit for parallel and distributed architectures.
From distributed databases to emerging distributed real-time systems [1], such
emerging applications are only meaningful in a distributed system with multiple
computing cores cooperating to execute the semantics of the application.

This parallelism offers a great opportunity for improving performance by
increasing application concurrency. Unfortunately, this concurrency comes at a
cost: programmers now need to design programs, using existing operating sys-
tem and programming language features, to deal with shared access to serially
reusable resources and program synchronization. The de facto standard for pro-
gramming such systems is using threads, locks, and condition variables. Using
these abstractions, programmers have been trying to write correct concurrent
code ever since multitasking operating systems made such programs possible.

Unfortunately, the human brain does not seem to be well suited for reasoning
about concurrency [2]. The history of the software industry contains numerous
cases where the difficulty inherent in reasoning about concurrent code has re-
sulted in costly software errors that are very difficult to reproduce and hence
debug and fix. Among the more common errors encountered in lock-based soft-
ware systems are deadlocks, livelocks, lock convoying, and, in systems where
priority is important (e.g, embedded real-time systems), priority inversion. Such
errors stem from the difficulty in reasoning about concurrent code.



Transactions have proven themselves to be a successful abstraction for han-
dling concurrency in database systems. Due to this success, researchers have
attempted to take advantage of their features for non-database systems. In par-
ticular, there has been significant recent efforts to apply the concepts of trans-
actions to shared memory. Such an attempt originated as a purely hardware
solution [3, 4] and was later extended to deal with systems where transactional
support was migrated from the hardware domain to the software domain [5].
Software transactional memory (or STM) has, until recently, been an academic
curiosity because of its high overhead. However, as the state-of-the-art improved
and more efficient algorithms were devised, a number of commercial and non-
commercial STM systems have been developed (see implementations section
of [6]). In this position paper, we discuss the issues involved in implementing
software transactional memory in distributed embedded real-time systems.

2 Motivation

Currently, the industry standard abstractions for programming distributed em-
bedded systems include OMG/Real-Time CORBA’s client/server paradigm and
distributable threads [7] and OMG/DDS’s publish/subscribe abstraction [8]. The
client/server and distributable threads abstractions directly facilitate the pro-
gramming of causally-dependent, multi-node application logic. In contrast, the
publish/subscribe abstraction is a data distribution service for logically-single
hop communications (i.e., from one publisher to one subscriber), and therefore,
higher-level abstractions must be constructed – on an application-specific basis
– to express causally-dependent, multi-node application logic (e.g., publication
of topic A depends on subscription of topic B; B’s publication, in turn, depends
on subscription of topic C, and so on). All of these abstractions rely on lock-
based mechanisms for concurrency control, and thus suffer from their previously
mentioned inherent limitations.

In particular, lock-based concurrency control can easily result in local and
distributed deadlocks, due to programming errors that occur as a result of the
conceptual difficulty of the (lock-based) programming model. Detecting and re-
solving deadlocks, especially distributed deadlocks, that can potentially arise
due to distributed dependencies is complex and expensive. Note that deadlocks
can only be detected and resolved, as opposed to being avoided or prevented,
in those distributed embedded systems where it is difficult to obtain a-priori
knowledge of which activities need which resources and in what order. When a
deadlock is detected in such systems, the usual method of resolving it is to break
the cycle of the waiting processes by terminating one of them. Unfortunately,
the choice of which process to terminate is not a simple one in real-time systems.
By terminating one of the processes that are waiting in a cycle, we produce a
chain of waiting processes. Depending on how, i.e., where, we break this cycle,
it may or may not be feasible to meet the timing requirements of the remaining
processes. Thus, we need to consider the structure of the dependency chain, after
terminating a process to end the deadlock, in order to break the cycle in a way



that optimizes end-to-end timeliness objectives. Furthermore, a process’s depen-
dencies must be taken into account when making the choice about which process
to terminate. For example, if a significant number of processes depend on the
result of a process, terminating it to resolve a deadlock may not be in the best
interest of the application. In addition, the cost of deadlock detection/resolution
is exacerbated by the extra work necessary to restore the system to an acceptable
state when failure occurs. Thus, deadlock resolution is a complex process.

The problem of distributed deadlock detection and resolution has been ex-
haustively studied, e.g., [9–15]. A number of these algorithms turned out to be
incorrect by either detecting phantom deadlocks (false positives) or not detect-
ing deadlocks when they do exist, e.g., [11,16]. These errors occur because of the
inherent difficulty of reasoning about distributed programs. This led to attempts
at providing a formal method for analyzing such protocols to ensure correct be-
havior (e.g., [13]). Despite the difficulty of reasoning about distributed deadlock,
solutions for this problem on synchronous distributed systems have been devel-
oped. Unfortunately, for asynchronous systems, errors in the deadlock detection
process become inevitable. For real-time systems, these issues become more se-
vere [9]. The semantic difficulty of thread and lock based concurrency control and
the high overhead associated with detecting and resolving distributed deadlock,
as indicated above, are the driving motivations for finding different programming
abstractions for distributed embedded real-time systems.

3 Previous work

3.1 Alternatives to lock-based programming

Academia, and certain parts of industry, have realized the limitations of lock-
based software, thus a number of proposed alternatives to lock-based software
exist. The design of lock-free, wait-free or obstruction-free data structures is one
such approach. The main problem with this approach is that it is limited to a
small set of basic data structures, e.g., [17–19]. For example, to the best of our
knowledge, there is no lock-free implementation of a red-black tree that does
not use STM. Most of the literature on lock-free data structures concentrates
on basics such as queues, stacks, and other simple data structures. It should
be noted that lock-freedom, wait-freedom and obstruction-freedom are concepts
and as such can encompass non lock-based solutions like STM. However, we use
these terms in this context to refer to hand crafted code that allows concurrent
access to a data structure without suffering from race conditions.

The discrete event model presented in [20,21] provides an interesting alterna-
tive to thread based programming. While interesting and novel, it still remains
to be seen whether programmers find the semantics of the model easier than
the semantics of thread-based computing. In addition, the requirement of static
analysis to determine a partial order on the events makes the system inapplicable
to dynamic systems where little or no information is available a priori.

Transactional processing, the semantic ancestor of STM, has been around for
a significant period of time and has proven its mettle as a method of providing



concurrency control in numerous commercial database products, in addition, it
does not place any restriction on the dynamism of the system on which it is
deployed. Unfortunately, the use of a distributed commit protocol, such as the
two-phase commit protocol, increases the execution time of a transaction and
can lead to deadline misses [22]. STM is a lighter-weight version of transactional
processing, with no distributed commit protocol required in most cases. As such,
it allows us to gain the benefits of transactional processing (i.e., fault tolerance
and semantic simplicity), without incurring all its associated overhead.

We believe that STM is an attractive alternative to thread and lock-based
distributed programming, since it eliminates many of the conceptual difficulties
of lock-based concurrency control at the expense of a justifiable overhead that
becomes less significant as the number of processors in the system scales.

3.2 Software transactional memory

Since the seminal papers about hardware and software transactional memory
were published, renewed interest in the field has resulted in a large body of liter-
ature on the topic (e.g, see [23–25]). This body of work encompasses both purely
software transactional memory systems and hybrid systems where software and
hardware support for transactional memory are used in conjuncture to improve
performance. Despite this large body of work, to the best of our knowledge, only
three papers investigate STM for distributed systems [26–28].

We believe that distributed embedded systems stand to benefit significantly
from STM. Such systems are most distinguished by their need to: 1) react to
external events asynchronously and concurrently; 2) react to external events in
a timely manner (i.e., real-time); and 3) cope with failures (e.g., processors, net-
works) – one of the raison d’être for building distributed systems. Thus, concur-
rency that is fundamentally intrinsic to distributed embedded systems naturally
motivates the usage of STM. Their need to (concurrently) react timely to exter-
nal events in the presence of failures is also a compelling reason – such behaviors
are very complex to program, reason about, and obtain timing assurances using
lock-based concurrency control mechanisms.

There has also been a dearth of work on real-time STM systems. Notable
work on transactional memory and lock-free data structures in real-time systems
include [18,29–32]. However, most of these works only consider uni-processor sys-
tems (with [32] being a notable exception). In this position paper, we propose to
study the issues involved in implementing STM in distributed embedded real-
time systems. Past work has shown that STM has lower throughput for systems
with a small number of processors compared to fine-grain lock-based solutions
but that this difference in performance is quickly reversed as the number of pro-
cessors scales [33]. This, coupled with easier programming semantics of STM,
makes it an attractive concurrency control mechanism for next generation em-
bedded real-time systems with multi-core architectures and high distribution.

With STM, deadlocks are entirely or almost entirely precluded. This will im-
mediately result in significant reductions in the cost of scheduling and resource



management algorithms, as distributed dependencies are avoided and no expen-
sive deadlock detection/resolution mechanisms are needed. Implementing higher
level programming constructs, like, for example, Hoare’s conditional critical re-
gions (or CCR) [34], on top of STM [33], allows programmers to take advantage
of the deadlock freedom and simple semantics of STM in their programs.

4 STM for distributed embedded systems

There are a number of competing abstractions for implementing STM in dis-
tributed embedded real-time systems. An interesting abstraction is the notion of
real-time distributed transactional objects, where code is immobile and objects
migrate between nodes to provide a transactional memory abstraction. Another
alternative is to allow remote invocations to occur within a transaction, spawn-
ing sub-transactions on each node (where they are executed using STM), and
using a distributed commit protocol to ensure atomicity. A third alternative is to
provide a hybrid model, where both data and code are mobile and the decision
of which is moved is heuristically decided either dynamically or statically. Sev-
eral key issues need to be studied in order to use STM in distributed embedded
systems, these are:

– Choosing an appropriate abstraction for including STMs in distributed em-
bedded systems;

– Designing the necessary protocols and algorithms to support these abstrac-
tions;

– Implementing these abstractions in a programming language by making nec-
essary changes to its syntax and in the run-time environment; and

– Designing scheduling algorithms to provide end-to-end timeliness using these
new programming abstractions.

4.1 Choosing an appropriate abstraction.

STM is a technology for multiprocessor systems, to use it in a multicomputer
environment, we need to develop appropriate abstractions. We are currently
considering three competing programming abstractions into which to incorporate
STM:

– A model where cross-node transactions are permitted using remote invoca-
tions and atomicity is enforced using an atomic commit protocol;

– A model where a distributed cache coherence protocol is used to implement
an abstraction of shared memory on top of which we can build STM; and

– A hybrid model where code or data is migrated depending on a number of
heuristics such as size and locality.

In the first approach, we manage concurrency control on each node using
STM, but allow remote invocations to occur within a transaction. Thus we al-
low a transaction to span multiple nodes. At the conclusion of the transaction,



the last node on which transactional code is executed acts as a coordinator in
a distributed commit protocol to ensure an atomic commitment decision. Our
preliminary research, which we intend to elaborate upon, indicates that such an
approach may be prone to “retry thrashing” especially when the STM imple-
mented on each node is lock-free.

Since lock-free STM is an optimistic concurrency control mechanism, extend-
ing the duration of a transaction by allowing it to sequentially extend across
nodes results in a significantly higher probability of conflicts among transac-
tions. Such conflicts lead to aborted transactions that are later retried. Retrying
is antagonistic to real-time systems since it degrades one of the most important
features of real-time systems: predictability. Lock-based STM tends to reduce
some of this “thrashing” behavior since it eliminates part of the “optimism” of
the approach. However, long transactions are still more susceptible to retries
and introducing locks into the STM implementation necessitates a deadlock de-
tection and resolution solution. Fortunately such a solution does not need to be
distributed since it only needs to resolve local deadlocks.

Implementing STM on top of a distributed cache coherence protocol has
been investigated in [26,27]. In this approach, code is immobile, but data objects
move among nodes as required. The approach uses a distributed cache coherence
protocol to find and move objects. We intend to design real-time cache coherence
protocols, where timeliness is an integral part of the algorithm. We plan to design
STM on top of these protocols and compare their performance to the flow control
abstraction. An important advantage of this approach is that it eliminates the
need for a distributed commit protocol. Since distributed commit protocols are
a major source of inefficiency in real-time systems [22], such an approach is
expected to yield better performance.

The last approach we intend to study is touched upon in [28]. This is a hybrid
approach where either data objects or code can migrate while still retaining the
semantics of STM. By allowing either code or data to migrate, we can choose a
migration scenario that results in the least amount of communication overhead.
For example, suppose we have a simple transactional program that increments
the value of a shared variable X and stores the new value in the transactional
store. Assume further that X is remote, using a data flow abstraction would
necessitate two communication delays; one to fetch X from its remote location
and the other to send it back once it has been incremented. Using a control flow
abstraction in this case may be more efficient since it will only involve a single
communication delay.

On the other hand, assume that several processes need access to a small data
structure and that these processes are in roughly the same location and are far
away from the data they need. Since communication delay depends on distances,
it may make sense to migrate the data to the processes in this case rather than
incur several long communication delays by moving the code to the data. In
short, the choice of whether to migrate code or data can have a significant
effect on performance. In [28], this is accomplished under programmer control
by allowing an on construct which a programmer can use to demarcate code that



should be migrated. We intend to elaborate on this by coming up with solutions
that would use static analysis at compile-time (or dynamically at run-time) to
make decisions about which part of the application to move using a number of
heuristics such as, for example, size of code/data and locality considerations.

4.2 Designing suitable protocols and algorithms.

The algorithms and protocols that need to be designed depend on the program-
ming abstraction we choose to implement. Some of the necessary abstractions
have been touched upon in Section 4.1, here we elaborate on these points.

For the model where code migrates, creating cross-node transactions, and
data is immobile, the main abstraction that needs to be designed is a real-time
distributed commit protocol. Since cross-node transactions are permitted, with
each node involved hosting part of the transaction, a distributed commit proto-
col is necessary to ensure atomicity. A number of distributed commit protocols
have been studied in the literature, with the two phase commit protocol being
the most commercially successful protocol. Unfortunately, the blocking seman-
tics of the two phase commit protocol may not be very suitable for real-time
systems. Therefore alternatives like the three phase commit protocol (despite
its larger overhead) may be more appropriate due to its non-blocking semantics.
Other alternatives that involve the relaxation of certain properties of distributed
commit protocols in order to improve efficiency are discussed in [22]. We intend
to design distributed commit protocols whose timeliness behavior can be quan-
tified theoretically and/or empirically, in order to allow the system to provide
guarantees on end-to-end timeliness.

For the approach where code is immobile and data migrates, the most impor-
tant protocol that needs to be designed is a distributed real-time cache coherence
protocol. This protocol needs to be location aware in order to reduce communi-
cation latency and should be designed to reduce network congestion. The cache
coherence problem for multiprocessors has been extensively studied in the lit-
erature [35]. There are also some solutions for the distributed cache coherence
problem (see [36–39] for a, not necessarily representative, sample of research on
this issue). Distributed cache coherence bears some similarity to distributed hash
table (or DHT) protocols which have been an active topic of research recently
due to the popularity of peer-to-peer applications. Examples of DHT algorithms
that are of interest are [40–42].

We envision a cache coherence algorithm based on hierarchical clustering
to reduce network traffic and path reversal to synchronize concurrent requests,
an approach used in [26]. Other approaches for implementing distributed cache
coherence will also be considered. An important part of our research in this
area will be to design cache coherence protocols that can provide timeliness
guarantees that we can verify theoretically and empirically.

For the hybrid abstraction, where both code and data can move, several is-
sues need to be determined. Among the issues that need to be resolved are the
different methods of distributing transactional meta-data in order to ensure ef-
ficient execution of the STM system, providing a mechanism to support atomic



commitment when code is allowed to migrate thus resulting in multi-node trans-
actions, aggregating communication in order to reduce the effect of the extra
communication necessary to manage the STM system (possibly by piggybacking
this information over normal network traffic) and optimizing network communi-
cation to reduce latency. It is also necessary to design appropriate mechanisms
for choosing whether data or code migration is going to occur. Currently, the
choice of which part of the program to migrate is performed under programmer
control [28]. We intend to design automated methods for deciding which part of
the program moves through either compile-time analysis or at run-time.

4.3 Programming language implementation.

We need to incorporate the programming abstraction chosen and the protocols
and algorithms necessary to support them into a suitable programming language.
Issues that need to be addressed are extending the programming language syntax
to include support for higher level abstractions built upon STM. We introduce
a number of syntactic modifications to support the new constructs we propose
to implement. The most basic syntactic extension required is a method for de-
marcating atomic blocks (i.e. blocks of code that will be executed within the
context of STM), additions such as programmer controlled retry and providing
alternative transactional execution can also be considered.

In addition to these syntactic extensions, modifications to the run-time en-
vironment are also required. Our top candidate for implementing these abstrac-
tions is the emerging DRTSJ RI. We choose this language for a number of rea-
sons. First, the language is still under development with a substantial part of the
implementation details coming out of our research group. Second, the RI will
be evaluated by the standard’s expert community (e.g., Sun’s JSR-50 experts
group in the case of DRTSJ) as part of the standard’s approval process, result-
ing in immediate and invaluable user feedback. Third, using a garbage collected
language alleviates some of the issues involved in memory management associ-
ated with STM (by, for example, eliminating the problem of having transactions
free allocated memory explicitly while other transactions are still working on it).
Of course this necessitates augmenting the garbage collector with information
about STM in order to prevent harmful interference with STM’s meta-data.

Naturally, the actual modifications made to the programming language will
depend on the programming abstraction chosen. Regardless of the choice made
about the abstraction used to incorporate STM in distributed embedded sys-
tems, modifications to the run-time environment are necessary to support STM.
The actual modifications made are dependent on the particular design we choose
for our implementation of STM and so will not be elaborated upon in this posi-
tion paper. However, some of the design issues involved are choosing appropriate
meta-data to represent STM objects, providing appropriate mechanisms to atom-
ically commit transactions (for example by using atomic hardware instructions
such as compare-and-swap, or CAS, on suitably indirected meta-data), provid-
ing implementations for the different design choices of STM (e.g., visible reads
versus invisible reads and weak versus strong atomicity).



4.4 Scheduling algorithms and analysis.

Finally, we will design scheduling algorithms that allow systems programmed
using STM to meet end-to-end timeliness requirements. This is a challenge due
to the fact that the retry behavior of STM is antagonistic to predictability.
There have been several attempts at providing timing assurances when STM is
used in real-time systems or when lock-free data structures are used in real-time
systems [18, 29–31]. These approaches only consider uni-processor systems and
use the periodic task arrival model to bound retries.

Some of the approaches are fairly sophisticated and use, for example, linear
programming [30] to derive schedulability criteria for lock-free code. The basic
idea of these approaches is that, on a uni-processor system, the number of retries
is bounded by the number of task preemptions that occur. This bound exists
because a uni-processor can only execute one process at a time. Since it is not
possible for a process to perform conflicting operations on shared memory, and
hence cause the retry of another process, unless it is running, the number of
preemptions naturally bounds the number of retries on uni-processors. Given
this premise, the analysis performed in [18,29–31] bounds the number of retries
by bounding the number of times a process can be preempted under different
scheduling algorithms. This analysis allows the authors to derive schedulability
criteria for different scheduling algorithms based on information about process
execution times, execution times of the retried code sections, process periods,
etc.

More recently, attempts have been made at providing timeliness guarantees
for lock-free data structures built on multiprocessor systems [32]. The approach
used in [32] is suitable for Pfair-scheduled systems and other multiprocessor
systems where quantum-based scheduling is employed. The most restrictive as-
sumption made in this approach is that access to a shared lock-free object takes
at most two quanta of processor time. Using this assumption, the authors go
on to bound the number of retries by determining the worst-case number of ac-
cesses that can occur to a shared object during the quanta in which it is being
accessed. For an M processor system, the worst-case number of processes that
can interfere with access to a particular shared object is M − 1. Given an upper
bound on the number of times a process can access a shared object within a
quanta, it is possible to derive an upper bound on the number of retries in such
a system. The authors also go on to describe how it is possible to use the concept
of a “supertask”, basically a single unit that is composed of several tasks that
are to be scheduled as one unit, to reduce the worst-case number of retries and
hence improve system performance.

The particular method used to bound the number of retries in the system(s)
we develop will depend on the model we target. There are two possible alter-
natives. The first approach is to target uni-processor distributed systems. In
such systems, each node has only one processor. In order to provide schedul-
ing criteria for such systems, we would use the approaches developed for uni-
processor systems to derive the number of retries that can occur on each node,
and then combine these bounds to determine the number of retries that can



occur to cross-node transactions, thus deriving schedulability criteria for STM
implementations.

The second approach is to consider multiprocessor distributed systems. In
such systems, each node is a multiprocessor or multi-core machine. Schedulabil-
ity analysis and scheduling algorithms for such systems are considerably more
difficult due to the difficulty in deriving bounds on the number of retries in the
system. A first possible approach is to consider the Pfair-scheduling algorithm
considered in [32] for obtaining bounds on the number of retries on each node
and then combining these bounds to obtain bounds for cross-node transactions.
Other approaches will also be considered in order to reduce the number of as-
sumptions made on the system model. We will design scheduling algorithms
that can ensure that timeliness requirements are not violated by the retry be-
havior of STM on distributed systems, and provide analytical expressions for the
schedulability criteria of these scheduling algorithms.

5 Conclusions

Programming distributed systems using lock-based concurrency control is se-
mantically difficult and computationally expensive. In order to alleviate some of
these problems, we propose the use of STM for concurrency control. In order to
achieve this goal, a number of issues need to be addressed. This position paper
outlines these issues and proposes a method for solving them.

Three different abstractions for incorporating STM into distributed embed-
ded real-time systems are mentioned, and the algorithms and protocols necessary
for implementing these abstractions are briefly outlined. We also briefly indicate
the type of schedulability analysis that will be required to provide timeliness
guarantees for systems programmed using these abstractions.

References

1. Cares, J.R.: Distributed Networked Operations: The Foundations of Network Cen-
tric Warfare. iUniverse, Inc. (2006)

2. Lee, E.A.: The problem with threads. Computer 39(5) (2006) 33–42
3. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-

free data structures. In: Proceedings of the Twentieth Annual International Sym-
posium on Computer Architecture. (1993)

4. Knight, T.F.: An architecture for mostly functional languages. In: Proceedings of
ACM Lisp and Functional Programming Conference. (Aug 1986) 500–519

5. Shavit, N., Touitou, D.: Software transactional memory. In: PODC. (1995) 204–213
6. Wikipedia: Software transactional memory — wikipedia, the free ency-

clopedia (2008) http://en.wikipedia.org/w/index.php?title=Software_

transactional_memory&oldid=213906392, [Online; accessed 24-May-2008].
7. OMG: Real-time corba 2.0: Dynamic scheduling specification. Technical report,

Object Management Group (September 2001)
8. Pardo-Castellote, G.: Omg data-distribution service: Architectural overview. ICD-

CSW 00 (2003) 200



9. Shih, C., Stankovic, J.A.: Survey of deadlock detection in distributed concurrent
programming environments and its application to real-time systems. Technical
report, Amherst, MA, USA (1990)

10. Roesler, M., Burkhard, W.A.: Resolution of deadlocks in object-oriented dis-
tributed systems. IEEE Trans. Comput. 38(8) (1989) 1212–1224

11. de Mend́ıvil, J.R.G., Federico Fari n., Garitagoitia, J.R., Alastruey, C.F.,
Bernabeu-Auban, J.M.: A distributed deadlock resolution algorithm for the and
model. IEEE Trans. Parallel Distrib. Syst. 10(5) (1999) 433–447

12. Kshemkalyani, A.D., Singhal, M.: A one-phase algorithm to detect distributed
deadlocks in replicated databases. IEEE Trans. on Knowl. and Data Eng. 11(6)
(1999) 880–895

13. de Mendivil, J.R.G., Demaille, A., Auban, J.B., Garitagoitia, J.R.: Correctness
of a distributed deadlock resolution algorithm for the single request model. In:
PDP ’95: Proceedings of the 3rd Euromicro Workshop on Parallel and Distributed
Processing, Washington, DC, USA, IEEE Computer Society (1995) 254

14. Elmagarmid, A.K.: A survey of distributed deadlock detection algorithms. SIG-
MOD Rec. 15(3) (1986) 37–45

15. Mitchell, D.P., Merritt, M.J.: A distributed algorithm for deadlock detection and
resolution. In: PODC ’84: Proceedings of the third annual ACM symposium on
Principles of distributed computing, New York, NY, USA, ACM (1984) 282–284

16. Choudhary, A.N., Kohler, W.H., Stankovic, J.A., Towsley, D.: A modified priority
based probe algorithm for distributed deadlock detection and resolution. IEEE
Trans. Softw. Eng. 15(1) (1989) 10–17

17. Cho, H., Ravindran, B., Jensen, E.D.: Space-optimal, wait-free real-time synchro-
nization. IEEE Transactions on Computers 56(3) (2007) 373–384

18. Anderson, J., Ramamurthy, S., Moir, M., Jeffay, K.: Lock-free transactions for
real-time systems. In: Real-Time Databases: Issues and Applications, Amsterdam:
Kluwer Academic Publishers. (1997)

19. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. icdcs 00 (2003) 522

20. Zhao, Y., Lee, E.A., Liu, J.: Programming temporally integrated distributed em-
bedded systems. Technical Report UCB/EECS-2006-82, EECS Department, Uni-
versity of California, Berkeley (May 2006)

21. Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized dis-
tributed real-time systems. In: RTAS ’07: Proceedings of the 13th IEEE Real
Time and Embedded Technology and Applications Symposium, Washington, DC,
USA, IEEE Computer Society (2007) 259–268

22. Gupta, R., Haritsa, J., Ramamritham, K., Seshadri, S.: Commit processing in
distributed real-time database systems. Real-Time Systems Symposium, 1996.,
17th IEEE (4-6 Dec 1996) 220–229

23. Marathe, V.J., Scott, M.L.: A qualitative survey of modern software transactional
memory systems. Technical Report TR 839, University of Rochester Computer
Science Dept. (Jun 2004)

24. Bobba, J., Rajwar, R., Hill, M.: Transactional memory biblography http://www.

cs.wisc.edu/trans-memory/biblio/swtm.html.
25. Korenfeld, B., Medina, M.: Transactional memory. Technical Report

MIT/LCS/TM-475, University of Tel-Aviv Computer Engineering Dept. (Jun
2006)

26. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distributed Computing 20(3) (2007) 195–208



27. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concur-
rency in a transactional memory cluster. In: PPoPP ’06. ACM Press (Mar 2006)
198–208

28. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory
for large scale clusters. In: PPoPP ’08, New York, NY, USA, ACM (2008) 247–258

29. Manson, J., Baker, J., Cunei, A., Jagannathan, S., Prochazka, M., Xin, B., Vitek,
J.: Preemptible atomic regions for real-time java. RTSS 0 (2005) 62–71

30. Anderson, J., Ramamurthy, S.: A framework for implementing objects and schedul-
ing tasks in lock-free real-time systems. In: Proceedings of IEEE RTSS, IEEE (dec
1996) 92–105

31. Anderson, J., Ramamurthy, S., Jeffay, K.: Real-time computing with lock-free
shared objects. In: Proceedings of IEEE RTSS, IEEE Computer Society Press
(December 1995) 28–37

32. Holman, P., Anderson, J.H.: Supporting lock-free synchronization in pfair-
scheduled real-time systems. J. Parallel Distrib. Comput. 66(1) (2006) 47–67

33. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Object-
Oriented Programming, Systems, Languages, and Applications. (Oct 2003) 388–
402

34. Hoare, C.: Towards a theory of parallel programming. In Hoare, C., Perrott, R.,
eds.: Operating System Techniques, Academic Press (1972) 61–71

35. Stenström, P.: A survey of cache coherence schemes for multiprocessors. Computer
23(6) (1990) 12–24

36. Chang, Y., Bhuyan, L.N.: An efficient tree cache coherence protocol for distributed
shared memory multiprocessors. IEEE Transactions on Computers 48(3) (1999)
352–360

37. Tamir, Y., Janakiraman, G.: Hierarchical coherency management for shared virtual
memory multicomputers. Journal of Parallel and Distributed Computing 15(4)
(1992) 408–419

38. Aguilar, J., Leiss, E.L.: A general adaptive cache coherency-replacement scheme
for distributed systems. In: IICS ’01: Proceedings of the International Workshop
on Innovative Internet Computing Systems, London, UK, Springer-Verlag (2001)
116–125

39. Kent, C.A.: Cache coherence in distributed systems. WRL Technical Report 87/4
(1987)

40. Hildrum, K., Krauthgamer, R., Kubiatowicz, J.: Object location in realistic net-
works. In: SPAA ’04: Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, New York, NY, USA, ACM (2004)
25–35

41. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment. In: SPAA ’97: Proceedings of the ninth
annual ACM symposium on Parallel algorithms and architectures, New York, NY,
USA, ACM (1997) 311–320

42. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In: Middleware ’01: Proceed-
ings of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, London, UK, Springer-Verlag (2001) 329–350

43. Jensen, D., Wells, D.: A framework for integrating the real-time specification for
java and java’s remote method invocation. In: ISORC ’02: Proceedings of the
Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, Washington, DC, USA, IEEE Computer Society (2002) 13


