
Vector Graphic Reference Implementation for
Embedded System

Sang-Yun Lee1 and Byung-Uk Choi2

1Dept. of Electronical Telecommunication Engineering, Hanyang University, Seoul, Korea
syllee@etri.re.kr

2Division of Information and Communications, Hanyang University, Seoul, Korea
buchoi@hanyang.ac.kr

Abstract. We propose the reference implementation with software rendering of
OpenVG for the scalable vector graphic hardware acceleration, which the
Khronos group standardizes. We present the design scheme that enables EGL
and OpenVG to be ported easily in an embedded environment. Moreover, we
describe the background of selection of an algorithm, and the mathematical
function adopted for the performance improvement, and we propose the opti-
mum rendering method. We present displaying of vector image on a screen
through the OpenVG implemented using software rendering method. And, we
present the test result of the CTS which is compatibility test tool. And we show
the performance comparison against the Hybrid corp.'s reference implementa-
tion.

Keywords: OpenVG, EGL, Scalable Vector Graphic, Embedded System, Soft-
ware Rendering

1 Introduction

Recently, the demand for the applications using the vector graphics technology has
increased [1]. Particularly, in areas such as SVG viewer, hand-held guidance service,
E-Book reader, game, scalable user interface, and etc, the vector graphics technology
is widely applied. OpenVG™ is a royalty-free, cross-platform API that provides a
low-level hardware acceleration interface for vector graphics libraries such as Flash
and SVG [2].

Currently in development, OpenVG is targeted primarily at handheld devices that
require portable acceleration of high-quality vector graphics for compelling user inter-
faces and text on small screen devices while enabling hardware acceleration to pro-
vide fluidly interactive performance at very low power levels. OpenVG is the stan-
dard constituted by the Khronos group. And the version 1.0 was released at July 2005
for the first time [3].

When the standard needs to be verified, or when the OpenVG application needs to
be operated through an emulator in advance, or when there is a no hardware support-
ing OpenVG, it is necessary to have the reference implementation (RI) operating in
the software rendering mode. Additionally, it takes much time until the special-

purpose hardware supporting OpenVG is produced. The RI also can reduce the cost.
Besides, as embedded devices and CPU’s performance is improved, the possibility of
being replaced with the software rendering is high.

In this paper, we propose the OpenVG reference implementation which can be eas-
ily ported to the various embedded devices by using the software rendering method.
And, we show that our RI is more excellent than the existing RI in the performance
aspect.

2 Design of OpenVG and EGL Engine

2.1 System Architecture

The system architecture of the OpenVG RI proposed in this paper is shown in Fig. 1.

Fig. 1. The system architecture

The OpenVG RI is composed of Embedded Graphics Library (EGL) block and

OpenVG block. EGL is an interface between rendering APIs such as OpenGL|ES or
OpenVG (referred to collectively as client APIs) and an underlying native platform
window system [4]. EGL provides mechanisms for creating rendering surfaces onto
which client APIs can draw, creating graphics contexts for client APIs, and synchro-
nizing drawing by client APIs as well as native platform rendering APIs [5]. We de-
signed so that, through the EGL Display Adapter, the client API could access the
windowing system of the native platform.

In the EGL standard, the Embedded Platform Library (EPL) API is not included.
However, it is necessary in order to implement client API, and must be ported accord-
ing to a system. The API includes, for example, the functions of returning the frame
buffer from Surface, the memory allocation, memory releasing, and etc. Hardware
Graphic Library (HGL) interfaces performs the function of connecting EGL to the na-

tive graphics system. EGL is itself the standard which is made to abstract the hard-
ware system. However, it is necessary to have the separate porting layer like HGL so
that EGL can be ported to the different native platform window systems through the
minimum overhead. The OpenVG API is 2D vector graphics library and the VGU
API is 2D vector graphics utility API of the high level. The OpenVG graphic engine
provides the core functions that the OpenVG API and the VGU API need.

2.2 Structure of the EGL Engine

The block structure of the EGL engine is shown in Fig. 2.

EGL

Context Manager

Display Manager

Surface Manager

Thread Manager

EGL API State Manager

Config Manager

EPL API

HGL API

Manager Factory

HGL Manager

Display

Context Surface

Fig. 2. Structure of the EGL Engine

The Display Manager creates and manages the display object which takes charge

of displaying graphics. The State Manager stores the error value generated when the
functions executed. The Thread Manager provides the functions for avoiding the race
condition in which several processes or the threads try to access EGL at the same
time. As to these three modules, however, only one object can be generated. The
Manager Factory enables them to have the uniqueness in three modules.

2.3 Structure of the OpenVG Engine

The block structure of the OpenVG engine is shown in Fig. 3. The OpenVG engine
provides the OpenVG API which applications can use and the Context Sync API
which EGL can use. The Context Sync API provides synchronization between the
VGContext generated in the OpenVG internally and the Context generated in EGL.
The elements that need synchronization include creation and termination of a context,
the current setup status, and etc. The VG State Manager stores and manages the error
value generated during the execution of OpenVG. The VG Context Manager, the
Paint Manager, the Image Manager, and the Path Manager create and manage the VG
Context object, the Paint object, the Image object, and the Path object respectively.
The VG Manager Factory performs the role of guaranteeing that these ob-
jects operate with singleton. The Rasterizer performs the function of drawing on the

frame buffer provided by the surface of EGL with data combined of Path, Image, and
Paint information.

OpenVG

VGContext Manager

Path Manager

Image Manager

Paint Manager

2D-VG Algorithm Factory

Rasterizer

OpenVG API
VG Manager Factory

VG State Manager

VG Context

Paint

Image

PathCotext Sync API

Fig. 3. The Structure of the OpenVG Engine

2.4 Requirement for Designing the OpenVG/EGL Engine

OpenVG can operate not only on a desktop personal computer but also on a server.
But it was developed to be mainly used in the embedded devices. In an embedded en-
vironment, there are always porting issues, because of wide variety of not only the
hardware, but also the platforms and software. Therefore, we must consider porting
issues at as early as the architecture design phase, if we want to easily port once de-
veloped OpenVG to the various embedded devices. That is, the porting layer must ex-
ist so that the part to be modified according to the environmental change can be mini-
mized. In addition, EGL and OpenVG must be loosely coupled.

Generally, in an embedded environment, the performance of a CPU is lower and
the size of the memory is restrictive. Therefore, algorithms must be selected in such a
way that the selected algorithms produce optimum performance and at the same time
use as low memory and power as possible.

3 Novel Features of OpenVG Reference Implementation

3.1 Mathematical Function

In the operation process of drawing each graphic object of OpenVG, the use of the
mathematical function is frequent. The method of calculating the mathematical func-
tion is classified into two ways. Firstly, it is the method of referring to the table value
having the value calculated in advance. The second is the method of calculating the
Taylor series of the finite order [6]. The former case consumes big amount of mem-
ory, whereas the latter takes longer time to execute.

The Hybrid RI [7] adopted the later case. And as a result, it induced the perform-
ance degradation of the mathematics functional operation [8]. However, we adopted
the table-look-up method and sought the performance improvement.

3.2 Sort Algorithm

In the OpenVG, sorting is used in the tessellation based rendering algorithm. That is,
the vertex passing the scan line is arranged to the abscissa order. Or there is case
where it arranges several scissoring rectangles. In the Hybrid RI, the bubble sort algo-
rithm was adopted. But we adopted the merge sort algorithm, in this paper. The merge
sort has a complexity of)log(NNO , whereas the bubble sort has a complexity of

)(2NO .

3.3 Improved Raster Rendering Algorithm

A rendering refers to the operation of drawing the vector graphics object in the dis-
play [9]. There are the vector rendering mode in which the vector graphics object is
drawn every time, and the raster rendering mode in which objects are drawn by calcu-
lating the color of each pixels of an image [10], [11], [12].

The raster rendering has an advantage in comparison with the vector rendering in
the various aspect. Firstly, the raster rendering has a lower complexity than the vector
rendering according to increasing of the number or area of Path. Secondly, the calcu-
lation for applying the Fill Rule is made altogether in the vertex drawing step.
Thirdly, the mathematical calculation for vertex drawing is unnecessary because Ver-
tex is not directly drawn. But it spends much time, because this method calculates all
the parts which are not in fact displayed in a screen [13].

In this paper, we propose the improved rendering algorithm in order to solve this
problem. Fig. 4 shows the improved raster rendering algorithm proposed in this paper.

The procedure of the proposed rendering algorithm is as followings: (1) If the area
overlapping with the path bound is discovered for each scissoring rectangle, the pixel
color is calculated for the corresponding part; (2) If the area overlapping is not dis-
covered, the same operation is performed for the next scissoring rectangle; (3) If the
vertex intersecting with the corresponding scan line is not discovered, the scan line is
moved to the next line. That is, by remarkably reducing the area visited in order to
calculate the pixel value, the proposed method can display the vector graphics faster
than the existing method.

Fig. 4. The proposed Rendering Algorithm

4 The Design Point for the Embedded Environment

4.1 The Coherence of OpenVG and EGL

The Hybrid RI shares data structure between the objects which EGL and OpenVG
create. Therefore, it has an effect on the other block if one block is modified among
EGL or the OpenVG block. For example, the waste of resources occurs, because the
object for OpenVG is also generated within EGL when the data structure of EGL is
expanded to support OpenGL|ES and is used, although we develop only the
OpenGL|ES application.

In this paper, we separated data structure of OpenVG and EGL and concealed
each data structure and status information, in order to resolve these problems. More-
over, we designed so that OpenVG could use the function of EGL engine through the
EGL API or the EPL API call.

4.2 The Language Dependency

The Hybrid RI was implemented with C++ language. C++ language is very powerful
in the desktop environment, but it has many problems to be used in the embedded en-
vironment. Firstly, the speed of executing the inheritance or the virtual function is
slow. Secondly, some compilers do not completely support C++ language. Therefore,
we adopted C language that can be easily ported to an embedded device and the exe-
cution speed is fast. We defined function pointers in C structure that processes and
manipulates the information, in order to provide for object-oriented concept supported
easily in C++ language.

4.3 The Singleton Pattern Design

There is an object in which several copy creations are not allowed among an object.
Each Factory in the EGL block, and the context Manager, state Manager, image Man-
ager, and algorithm Factory in the OpenVG block are those objects. We introduced
the singleton pattern for the guaranteed uniqueness of an object. If we design without
the singleton pattern, each module has to recognize this object and avoid creating
them. Or, these objects have to be registered in the global variables storage and used.
However, existing code has to be modified to be ported to other platforms, because it
is different in the structure of the global variables storage according to platforms.

5 Implementation and Experimental Results

5.1 Implementation

We verified whether our design method could be easily adapted to the embedded en-
vironment by implementing EGL and OpenVG and porting them to the various envi-
ronments. We implemented EGL and OpenVG based on the Windows XP at first.
And then, we modified the porting layer and could easily port it to the Linux and the
WIPI platform [14]. At first, we implemented EGL for the Windows XP by using the
GDI (Graphic Device Interface) in order to access the native windowing system, and
then we ported it with the OpenGL Utility Toolkit (GLUT) for the performance com-
parison with Hybrid RI. There is the advantage of reducing the code amendment too,
when it is ported to the Linux if it uses GLUT.

Fig. 5 shows vector graphics displayed on a screen through the proposed RI. Fig.
5(a) shows the image seen in the Tic-Tac-Toe game. Fig. 5(b) shows the tiger im-
age that is the representative image of the vector graphics field. The Tiger image is
comprised of 305 paths. Fig. 5(c) shows the tiger image rendered on a celluar phone.

(a) Tic-Tac-Toe on PC (b) tiger on PC (c) tiger on handset

Fig. 5. Example of vector graphic displayed using the proposed RI.

(a) 25% (b) 50% (c) 75% (d) 100%

Fig. 6. The process of drawing tiger

Fig. 6 shows the process of the tiger image being displayed with vector graphics. It

shows when of 305 path, 25%, 50%, 75%, and 100% of the path are drawn.

5.2 CTS Test Result

Table 1. CTS test result

Item No. of test Success Fail Success Rate(%)
Parameter 10 8 2 80.0
Matrix 11 11 0 100.0
Clearing 3 3 0 100.0
Scissoring 5 4 1 80.0
Masking 2 2 0 100.0
Path 48 37 11 77.1
Image 10 6 4 60.0
Paint 10 5 5 50.0
Image Filter 3 2 1 66.7
VGU 12 5 7 41.7
Total 114 83 31 72.81

We performed test through the Conformance Test Suites (CTS) 1.0.0, the OpenVG
compatibility test tool that the Khronos group distributes [15], in order to verify how
our implementing RI adhered to the standard specification. Consequently, the success
rate was 73% approximately. Table 1 shows the CTS success rate according to the test
item in detail.

Among the items that CTS reported as failure, there were items that correctly ren-
dered resulting image cannot be differentiated from our reference-generated image
visually. This was the case where the pixel value was off by one pixel. Moreover,
there was a case where the already passed test image failed when a code was modified
in order to pass another failing case. This is grasped that the test image of CTS is not
yet stabilized.

5. 3 Performance Evaluation

We developed performance measure program called Vgperf for 2D vector graphics. It
was executed in the Windows XP for the comparison with the Hybrid RI. The test
was progressed in the intel Core Duo 1.83GHz CPU, 2GB RAM, 2 MB (L2) Cash
Memory, ATI Radeon X1400 Graphic card, and 128MB Video Ram environment.

0

20

40

60

80

100

120

140

Empty
Rectangle

Empty
Triangel

Filled
Rectangle

Filled
Triangle

m
ill
is

e
c
o
n
d
s

Hybrid OpenVG

Proposed OpenVG

0

2000

4000

6000

8000

10000

12000

14000

16000

Empty
Ellipse

Rounded
Rectangle

Filled Ellipse Filled
Rounded
Rectangle

m
ill
is

e
c
o
n
d
s

Hybrid OpenVG

Proposed OpenVG

(a) Basic path performance (b) Complex path performance

Fig. 7. Performance test result

The Fig. 7 shows the performance measurement result of Path drawing. The Fig.

7(a) shows the measurement result of drawing basic diagram such as, a triangle or a
square. The Fig. 7(b) shows the measurement result of drawing little more compli-
cated figures like an ellipse or a rounded square. As shown in the figure, the OpenVG
RI proposed in this paper is faster than the Hybrid RI 1.3-1.6 times in case of the ba-
sic path, 4.6-76 times in case of complicated path.

As to the tiger image, the Hybrid RI took 7.3 seconds and our RI did 3.6 sec-
onds, when the size of the drawing surface was 1,024 x 768.

6 Conclusion

The FlashTM already occupies the market more than 80%, in the vector graphics field.
The OpenVG was initiated latter than the Flash, but has been settled as the industry
standard. We expect that the OpenVG will expand market occupancy sooner or later,
because most of the graphic card companies participate in standardization.

In this paper, we proposed the reference implementation of the OpenVG using
software rendering. We showed the possibility of success of the software rendering
mode, by showing the proposed RI outperforms the Hybrid RI. Moreover, we could
port the proposed OpenVG RI easily to the various platforms due to systematically
designing it considering an embedded environment.

The academic research or development case of the OpenVG has been scarcely re-
ported because it is introduced recently. We expect that this paper will become the
turning point that it activates the OpenVG research and development.

In the future work, we will enhance the success rate of the CTS and continue to re-
search about the performance improvement by using software rendering mode. More-
over, we have a plan to research of supporting the SVG based on the OpenVG.

References

1. Kari Pulli: New APIs for Mobile Graphics, Proceedings of SPIE - The International Soci ety
for Optical Engineering (2006), Vol. 6074, art. no. 607401

2. G. He, Z. Pan, C. Quarre, M. Zhang, H. Xu: Multi-stroke freehand text entry method using
OpenVG and its application on mobile devices, LNCS (2006) Vol. 3942 791-796

3. Khronos Group Std. OpenVG, Kronos Grouop Standard for Vector Graphics Accelerations,
http://www.khronos.org/openvg/, 2005

4. R. Huang and S.-I. Chae: Designing an OpenVG accelerator: algorithms and guidelines,
Proc. Int’l Conf. Computer & Communication Engineering (May 2006) 555–560

5. Khronos Group Std. EGL, Kronos Grouop Standard for Native Platform Graphics Interfaces,
http://www.khronos.org, 2005

6. Alan Watt: 3D Computer Graphics 3rd Edition, Addison-Wesley (2000)
7. Hybrid Graphics Forum, OpenVG Reference Implementation, http://forum.hybrid.fi (2005)
8. R.C. Gonzalez, R.E. Woods: Digital Image Processing 2nd Edition, Addison-Wesley (1992)
9. Ren Huang, Soo-Ik Chae: Implementation of an OpenVG Rasterizer with Configurable Anti-

Aliasing and Multi-Window Scissoring, Proceedings of the Sixth IEEE International Con-
ference on Computer and Information Technology (2006) 179-184

10. A.Schilling: A new simple and efficient antialiasing with subpixel masks. ACM
SIGGRAPH Computer Graphics (July 1991) Vol. 25 No. 4 133–141

11. P.Haeberli and K.Akeley: The accumulation buffer: hardware support for high-quality ren-
dering, ACM SIGGRAPH Computer Graphics (August 1990) Vol. 24 No. 4 309–318

12. K. Doan: Antialiased rendering of self-intersecting polygons using polygon decomposition,
Proc. 12th Pacific Conf. Computer Graphics and Applications (2004) 383–391

13. Steven Harrington: Computer Graphics A Programming Approach 2nd Edition, McGraw
Hill (2006)

14. KWISF, Wireless Internet Platform for Interoperability, www.wipi.org.kr (2006)
15. Huone, Confermance Test Suite for OpenVG, www.khronos.org (2006)

