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Abstract. To determine schedulability of priority-driven periodic tasksets
on multi-processor systems, it is necessary to rely on utilization bound
tests that are safe but pessimistic, since there is no known method for
exact schedulability analysis for multi-processor systems analogous to
the response time analysis algorithm for single-processor systems. In this
paper, we use model-checking to provide a technique for exact multi-
processor scheduability analysis by modeling the real-time multi-tasking
system with Timed Automata (TA), and transforming the schedulability
analysis problem into the reachability checking problem of the TA model.

1 Introduction

For single-processor systems, there are mainly two approaches to schedulability
analysis: utilization bound tests and response time analysis. Take fixed-priority
Rate Monotonic (RM) scheduling for example. The well-known Liu and Layland
utilization bound test [1] states that a taskset with N tasks is schedulable if the
total utilization does not exceed N(21/N−1). This is a sufficient but not necessary
condition, and rejects some tasksets that are schedulable. In fact, all utilization
bound tests are necessarily pessimistic. Lehoczky et al [2] presented response
time analysis, a polynomial-time algorithm for calculating a task’s Worst-Case
Response Time (WCRT) by performing processor demand analysis when the task
and all other higher-priority tasks are initially released at time 0, the critical
instant. A task is schedulable if its WCRT is less than its deadline, and the
taskset is schedulable if all tasks are schedulable. This is a necessary and sufficient
condition for schedulability.

Multiprocessor (MP) systems are drawing a lot of attention recently, with
industry trends such as multi-core processors and Multiprocessor Systems-on-a-
Chip (MPSoC), hence real-time scheduling and schedulability analysis for MP
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systems become an important research area. MP scheduling algorithms can be
classified into three categories, (no migration, restricted migration and full mi-
gration) based upon the permissible degree of inter-processor migration [3].

No migration (partitioned) scheduling with a given task allocation to proces-
sors is similar to single-processor scheduling and can be addressed with existing
techniques, but restricted and full migration scheduling brings serious challenges
to schedulability analysis. For these task models, an analogous algorithm for
WCRT calculation does not exist, since there may not be a critical instant as
in single-processor scheduling. Traditionally, there are two methods to deter-
mine the schedulability of MP systems: utilization bound tests, which is safe
but pessimistic, and simulation, which is unsafe, since it only explores one ex-
ecution trace, not exhaustive exploration of the state space. For simulation, a
widely adopted convention is to set all task release offsets to be zero. However,
in contract to single-processor scheduling, it is not necessarily true that this is
the worst case situation that maximizes task response times for MP scheduling,
hence simulation sometimes gives the wrong result, i.e., determine a taskset to
be schedulable even though it is not.

In view of the drawbacks of utilization bound tests and simulation, it would
be valuable if we could have a method for exact schedulability analysis with-
out the pessimism of the utilization bound tests. In this paper, we provide an
exact method for static-priority MP schedulability analysis without any pes-
simism by transforming the schedulability problem into reachability analysis
problem of Timed Automata. In addition to exact schedulability analysis of pe-
riodic tasksets, model-checking has an additional benefit of being able to handle
non-periodic tasksets. In classic scheduling theory, real-time tasks are usually
assumed to be periodic, and sporadic tasksets are treated as periodic ones using
the minimum inter-arrival time as the task period, which results in pessimistic
analysis results. But with model-checking, we can model the external environ-
ment that triggers the taskset in a precise manner, thus avoiding the pessimism
of the strict periodic taskset assumption.

We make a number of simplifying assumptions in this paper. We assume
that tasks are assigned static priorities, and they are independent from each
other without precedence relationships and data sharing. Each task has a fixed
execution time instead of a range of possible execution times. Although it is not
difficult to relax these assumptions in our modeling framework, we make these
assumptions for the sake of clarity of presentation.

This paper is organized as follows. We first discuss related work in Section 2.
We present the TA model for restricted migration in Section 3 and for full mi-
gration scheduling in 4. We present performance evaluation results in Section 5.
Finally, we draw conclusions in Section 6.



2 Related Work

2.1 Utilization Bound Tests

For EDF-based MP scheduling, several authors have presented utilization bound
tests. Goossens et al [5] presented a test assuming that tasks have relative dead-
lines equal to the period. Baker [6] presented another test that can handle relative
deadlines less than or equal to the period. Baker [7] extended [6] to include tasks
with post-period deadlines, and showing that EDF-US[1/2], which gives higher
priority to tasks with utilizations above 1/2, is optimal. Bertogna et al [8] pre-
sented an improved test, and showed that it is incomparable to [6], and each test
can accept tasksets that the other test rejects. For tasksets with different timing
characteristics, they have different performance in terms of acceptance ratio.

For fixed-priority MP scheduling, Andersson [9] proved that the utilization
guarantee for any static-priority MP scheduling algorithm, cannot be higher than
(m + 1)/2 for an m-processor platform. This conclusion places a theoretical up-
per bound of the utilization bound test for MP scheduling, and highlights the
inherent pessimistic natural of the schedulability bound tests. For full-migration
static priority scheduling, Andersson [9] defined a periodic taskset with con-
strained deadlines 3 to be a light system on m processors if it satisfies the follow-
ing properties: (1)

∑N
i=1

Ci

Ti
≤ m2

3m−2 , (2) Ci

Ti
≤ m

3m−2 , for 1 ≤ i ≤ N , and showed
that any periodic task system that is light on m processors is schedulable on m
processors with preemptive RM algorithm.

Baruah [17] proved a similar result with the conclusion that a taskset, with
all deadlines equal to periods, is guaranteed to be schedulable on m processors
with RM scheduling if Ci/Ti ≤ 1/3 for 1 ≤ i ≤ N and Ci/Ti ≤ m/3. The
group of tests consist of three tests with complexity of O(N3), O(N2) and O(N)
respectively.

Baker [16] presented a group of efficiently computable schedulability tests for
fixed-priority scheduling of periodic tasksets with arbitrary deadlines on a homo-
geneous MP system. They improve upon Andersson’s utilization bound tests by
relaxing the assumptions of rate monotonic priorities and deadline being equal
to period. For the special case when deadline equals period and priorities are
rate monotonic, any set of tasks with maximum individual task utilization umax

and minimum individual task utilization umin is feasible if the total utilization
does not exceed m(1 − umax)/2 + umin. We will compare our approach to the
utilization bound tests in Andersson [9] and Baker [16] in Section 5.

2.2 Formal Methods for Schedulability Analysis

TIMES [4] is a tool for schedulability analysis of periodic or sporadic tasksets on
a single processor. It uses Extended Timed Automata with asynchronous pro-
cesses to model the real-time taskset, and UPPAAL [12] as the analysis engine.

3 The deadline of a periodic task is constrained if its relative deadline is equal to its
period.



Fersman [10] showed that, for fixed-priority scheduling on a single processor, the
schedulability checking problem can be transformed into reachability analysis on
TA using only two extra clocks in addition to the clocks to describe task arrival
times. This observation greatly reduces the state space and improves scalability
of model-checking, since the state space increases sharply with the number of
real-time clocks. However, TIMES is only applicable to single-processor systems,
while we extend its approach to handle MP scheduling in this paper.

ACSR-VP [11] stands for Algebra of Communicating Shared Resources with
Value Passing, a real-time process algebra used to model and solve the schedu-
lability analysis as well as priority assignment problems. UPPAAL does not
have parametric analysis capability of ACSR, so it can be used for schedulabil-
ity analysis but not for priority assignment. Conceptually, we could have used
ACSR-VP to model and solve the MP schedulability problem instead of UP-
PAAL. It is not our purpose to compare strengths and weaknesses of different
modeling formalisms and tools, so we leave this as possible future work.

3 TA Model for Restricted Migration Scheduling

We have two alternatives approaches for building the TA model. The first one is
to model all the tasks within a single model. This approach requires two clocks
in each task automaton, one for accumulation of execution time in order to know
when a job finishes execution, and the other one for testing if a task has missed
its deadline. With this approach, 2N clocks are involved if there are N tasks.

We take advantage of these restrictions to reduce the number of clocks. Since
a high-priority task will never be delayed by low-priority tasks, we model and
check schedulability of each task one by one in decreasing order of priority, similar
to the approach of TIMES. When we are checking schedulability for a task Ti,
Ti is called the task under analysis, and all other tasks with higher priority than
Ti are called the background tasks. The tasks with lower priority than Ti do
not need to be modeled. We need to use one clock in the TA modeling each
background task to accumulate its execution time, and use two clocks in the TA
modeling the task under analysis. Therefore, the maximal number of clocks is
N + 1, and model-checking needs to be performed for at most N times. Since
the state space of timed automata grows drastically with the number of clocks,
this alternative is superior to the first one.

As discussed earlier, model-checking is done for each task in decreasing order
of priority, and only the tasks with higher priority than task i are modeled in S
when task i is the task under analysis. The automaton S is the parallel composi-
tion of one task automaton v− task modeling the task under analysis(Fig. 1(a)),
i task automata non−v−task modeling each background task (Fig. 1(b)), where
i is the number of the tasks with higher priority than the task under analysis,
and one automaton scheduler modeling the scheduler (Fig. 1(c)). In Fig. 1(a),
the task automaton is initially in location Idle. When the scheduler automaton
issues an event executeT !, each task automaton checks to see if this command
is meant for itself. If yes (exeT == i), then it goes into location Run; otherwise



(a) TA modeling the task under
analysis

(b) TA modeling the back-
ground task

(c) TA modeling the
scheduler

Fig. 1. TA model for restricted migration scheduling

(exeT ! = i), it goes back to location Idle. When task i is in location Run, some
other jobs with higher priority may be allocated to its processor and preempt
it (Run → C2 → Run). As shown in Fig. 2, when task i is preempted, r[i] is
updated, and task i finishes execution when c[i] == r[i]. At this time, clock
c[i] is reset, and the variable r[i] is updated when c[i] == Cmax, where Cmax
denotes the maximum execution time of the tasks. When the job of task i is
finished, it updates the relevant variables and sends an event finish! to inform
the scheduler of its termination(Run → C5 → Idle). The automaton v − task

Fig. 2. Execution scenario for tasks i and j with Prio(j) > Prio(i)

models the task under analysis. In contrast to non − v − task, v − task resets
the clock d and goes into location Ready when a job is released. In the location
Ready and Run, when the condition d == D[i] is satisfied, the task has missed
its deadline and goes into the Error location.

The automaton scheduler maintains the system state, allocates and schedules
released jobs. When a task is released, an event release! sent by T , and the
transition Init → C1 with release? is taken. The value of rlsT updated by
T shows which task the released job belongs to. Then we check to see which
processor is idle and record it (p = PrmptW ()). If there is at least one idle
processor (p >= 1), then the released job is allocated to it. After updating the
relevant variables (C1 → C4), an event executeT ! is issued (C4 → Init) to
inform the corresponding task to start execution. If there is no idle processor
(p == 0), then the scheduler checks to see if there is any running job with lower
priority than the newly-released job. If not, then the released job goes into the



wait state (C2→ Init); otherwise, the newly-released job (C2→ C3) preempts
the lower-priority job.

When a job finishes execution, an event finish! is issued by non−v−task or
v − task, and the transition Init→ C5 with finish? is taken. The value fshP
records which processor the finished job has been running on. If all jobs allocated
to this processor have finished execution (rn[p] == 0), then the scheduler wakes
up the waiting task with the highest priority if the wait queue is non-empty.

4 TA Model for Full Migration Scheduling

In contrast to restricted migration scheduling, a preempted job can resume exe-
cution on any available processor using full migration scheduling. Due to inherent
limitations of the model-checking technology (we are not aware of any model-
checkers that can handle fractional numbers.), we can only handle tasksets with
integer task attributes. We can safely assume that a task’s period and deadline
to be integers, since it does not make a lot of sense to assign a non-integer period
or deadline to a task from a real-time scheduling perspective, and it is almost
never done in industry practice. However, it is possible for a task’s execution
time and deadline to be non-integers. We can round up the execution time to
the nearest integer for schedulability analysis. We believe this is not a major
limitation in practice. We can prove the following theorem (proofs omitted due
to space limitations):

Theorem 1. To determine schedulability of a periodic taskset whose attributes
are all integers, it is sufficient to only consider task release times at integer time
instants, which only produce execution traces in which all scheduling events (task
release, preemption, blocking and finish) happen at integer time instants.

Theorem 1 implies that the expressiveness of discrete time formalism is ade-
quate for the purpose of schedulability analysis if we accept the limitation that
all task attributes must be integers. Using the discrete time approach has the
additional benefit of making it easier to model preemptive scheduling, since us-
ing a continuous time formalism would require a stopwatch mechanism to keep
track of each task’s execution time when it is preempted and resumed [13]. How-
ever, it is not necessarily true that using a discrete time approach always yields
a smaller state space than using the continuous time approach, if there are long
durations of time intervals within which no significant events happen.

Fig. 3(a) shows the automaton that generates periodic clock ticks. TICK is a
constant denoting granularity of clock ticks. When oc == TICK, the transition
on edge T → T is taken, and all discrete clocks are incremented by 1 in the func-
tion UpdateClock(), which means that one digital clock tick has passed. Unlike
continuous time clocks, the integer variable representing a discrete clock can be
paused or restarted. We use dcC[i] = dcC[i] + run[i] to update dcC[i] and in
UpdateClock(). Setting run[i] = 0 pauses the discrete clock dcC[i], and setting
run[i] = 1 resumes it. Since the discrete clocks can be paused and resumed, we
can model the time behavior of each task separately rather than accumulating



(a) TA model-
ing the periodic
clock tick

(b) TA modeling a task (c) TA modeling the scheduler au-
tomaton

Fig. 3. TA model for full migration scheduling.

the computing time of the jobs preempted it. As shown in Fig. 3(b), when the
automaton is in location Run, if dcC[i] == C[i], then task i has finished execu-
tion. When it is in location Run or Wait and dcD[i] == D[i], then task i has
missed its deadline, and we determine the taskset to be unschedulable.

In contrast to restricted migration, the full migration scheduler maintains a
global wait queue, in which all the ready jobs are waiting. As shown in Fig .3(c),
when a job is released, the scheduler checks to see if there is an idle processor
(p = LkIdle()). If yes (p >= 1), the job starts executing on it immediately
(C1 → Init). Otherwise, the scheduler checks to see if there is any running job
can be preempted (p = PrmptW (id)). If yes (p >= 1), the newly-released job
preempts the running job (C2→ C3→ Init). Otherwise, the released job waits
(C2→ Init). When some job is finished on a processor, the scheduler checks to
see if there are any waiting jobs (id = WhWk()). If yes (id! = 0), the job with
highest priority starts executing, otherwise the processor remains idle.

5 Performance Evaluation

We compare the schedulability analysis results of our method with classical
methods. The model-checking experiments were run on a server with four AMD
Opteron 844 (1.8GHz) CPUs and 8GB RAM running Fedora Linux. We use a
utility program memtime developed by the UPPAAL group to record peak mem-
ory usage and running time of the model-checker. To our best knowledge, there
is no known utilization bound test for the static-priority restricted-migration
scheduling, so we only consider the case of full-migration scheduling in the fol-
lowing experiments.

We generated 200 tasksets, each consisting of 5 tasks running on 2 processors.
Each task’s period is chose randomly in the range of [8, 20], and a task’s execution
time is the product of its period with a random value in the range of [0.1, 0.5],
rounded to the nearest integer. In the experience, 64 tasksets are accepted by
Baker’s test [16], 98 accepted by Andersson’s test, 154 accepted by our method
and 157 accepted by simulation in which all task release offsets are 0. We can
see that the utilization bound tests in Baker and are indeed pessimistic and
rejects a large number of tasksets that are actually schedulable. The acceptance



ratio using simulation with zero task release offset is slightly larger than that
using model-checking, as several tasksets are determined to be schedulable using
simulation, but are in fact unschedulable since the worst-case response time for
a task is maximized with some tasks have non-zero release offsets.

(a) Running Time (b) Peak Memory Usage

Fig. 4. UPPAAL performance for full-migration scheduling on 2 processors.

(a) Running Time (b) Peak Memory Usage

Fig. 5. UPPAAL performance for full-migration scheduling of 6 tasks.

Next, we evaluate the performance and scalability4. Fig. 4 shows how the
worst-case peak memory size and running time of UPPAAL increase with the
number of tasks with a fixed number of processors (2), and Fig. 5 shows how
they increase with the number of processors with a fixed number of tasks (6).

We use a taskset with 6 tasks to show how model-checking complexity grows
with scaling-up of taskset parameter values. The task parameters (period, dead-
line and execution time) in the first group are integer multiples of those of the
original taskset, and the parameters in the second group are the integer multi-

4 Since the performance results are similar for restricted and full-migration scheduling,
we only show the data for full-migration scheduling to give the reader a general idea
of model-checking performance.



(a) Running Time (b) Peak Memory Usage

Fig. 6. UPPAAL performance for full-migration scheduling with different scale factors
of task parameters.

ples plus 1. A taskset in the second group are ”pathological” in the sense that
task periods are relatively prime to each other, so the taskset has a very large
hyper-period. The state space for a taskset in the second group grows up much
faster with the scale factor than that for a taskset in the first group, which is
confirmed by Fig. 6, where we can see that UPPAAL’s performance deteriorates
quickly with the increase in scale factor for the second group, while it stays more
or less constant for the first group. On the other hand, adding 1 to each task’s
scaled execution time while scaling up its period and deadline has a negligible
impact on performance. We can also see that UPPAAL handles long time dura-
tions gracefully as long as they are integer multiples of each other. In industry
practice, task periods are typically assigned to be integer multiples of each other,
thus making the model-checking approach more practically relevant.

6 Conclusions

In this paper, we use model-checking to provide an exact method to schedulabil-
ity analysis of periodic tasksets on multi-processor systems, in order to overcome
the pessimism of schedulability bound tests. As we can see in Section 5, the main
limitation of the model-checking is state-space explosion, which limits the size
of the problem that can be handled. This is especially problematic for real-time
model-checkers like UPPAAL must handle continuous real-time clocks. As part
of our future work, we plan to experiment with other modeling formalisms such
as ACSR-VP [11], and compare their performance and scalability.

HW task scheduling on a FPGA shares many similarities with global task
scheduling on identical multi-processors [3], where all processors in the system
have identical processing speed and different task invocation instances may run
on different processors. But it is actually a more general and challenging problem
since a HW task may occupy a different area size on the FPGA while a SW task
always occupies one and only one CPU. Some authors [14][15] have derived
utilization bound tests for FPGA scheduling. We plan to apply model-checking
to develop a schedulability analysis tool for FPGAs.
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