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Abstract. Reconfigurable hardware such as FPGAs combines performance and
flexibility, two inherent requirements of many modern electronic devices. More-
over, using reconfigurable devices, time to market can be reduced while simul-
taneously cutting the costs. However, the design of systems that beneficially ex-
plore the reconfiguration capabilities of modern FPGAs is cumbersome and little
automated. In this work, a new approach is described that starts from a very high
level of abstraction, so-called algorithmic skeletons, and exploits the additional
information of this level of abstraction to beneficially execute on reconfigurable
devices. Particularly, the approach focuses on dynamic run-time reconfiguration
on partially reconfigurable FPGAs. As a first introduction to this approach, we
consider stream parallelism paradigms including their composition.

1 Introduction

Flexibility and performance are demanding requirements of modern computing sys-
tems. Reconfigurable devices offer these requirements as they compute in parallel while
still being adaptable (e. g. [1, 2]). However, these benefits are cumbersome to explore,
particularly, if dynamic reconfiguration shall be exploited. Despite an increasing num-
ber of modern FPGAs providing partial run-time reconfiguration—two core require-
ments for dynamic reconfiguration—methods that allow to exploit these additional flex-
ibilities are rarely found. Nevertheless, some work has been done that proofs the benefit
of fine grain granularity and high adaptability of FPGAs, e. g. in [3–8].

To eventually exploit the potentials, the cumbersome details of partial run-time re-
configuration should be transparent. We therefore need to offer dynamic reconfiguration
on a high level of abstraction to easily gain the benefits of partially reconfigurable sys-
tems. These benefits are most likely if the design is done in an FPGA aware manner,
i. e., close to the technical (hardware) characteristics of the FPGAs. As the latter is
challenging for the application oriented designer, we propose to raise the level of ab-
straction by using so-called algorithmic skeletons. Algorithmic skeletons are program-
ming templates that guide designers to efficiently implement algorithms by separating
the structure from the computation itself. In reconfigurable systems, partial run-time
reconfigurability thus becomes transparent for the algorithms.

As an introduction to the concept, we show how stream parallelism of applications
executed on FPGAs can be abstracted using algorithmic skeletons. On basis of the ab-
straction, a run-time reconfiguration manager can successfully combine the execution
of several—also different—skeletons on one FPGA during the same time.
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This work is organized as follows: In the next section, we review related work.
Section 3 formulates the problem, while Sect. 4 conceptually describes the proposed
solution. In Sect. 5, we refine the concept proposed by detailing three skeletons of the
stream parallel computing paradigm. Dynamic reconfiguration by virtue of algorithmic
skeletons is discussed in Sect. 6. Finally, we conclude and give an outlook.

2 Related Work

In the literature, we find some works on designing reconfigurable systems on a higher
level of abstraction than hardware description languages (HDLs). Most of these works
do not target partial run-time reconfigurable systems. Additionally, the models proposed
assume the designer to have reasonable knowledge of the system under development.

The work of DeHon et al. [9] on design patterns for reconfigurable systems is a so-
phisticated approach on providing canonical solutions to common and recurring design
challenges of reconfigurable systems and applications. The authors intend on providing
a mean to crystallize out common challenges of reconfigurable system design and the
typical solutions. However, their work focusses more on providing a layer of abstraction
to the reconfigurable systems community than to application engineers.

Some years earlier, SCORE (Stream Computations Organized for Reconfigurable
Execution) was proposed in [10]. The approach focusses on providing a unifying com-
pute model to abstract away the fixed resource limits of devices. Therefore, the re-
sources are virtualized, which can ease the development and deployment of reconfig-
urable applications. Again, the addressees of the SCORE approach are mainly recon-
figurable computing engineers.

Modern languages for embedded systems like SystemVerilog or SystemC also aim
at raising the level of abstraction. These approaches can be seen as extended HDLs that
introduce design principles to the hardware world, such as re-use, polymorphism, etc.
For example, SystemC as language to model dynamic reconfigurable hardware is used
in [11]. However, the languages are often used for simulation only and the generation
of executable code is challenging.

Further approaches propose an operating systems for reconfigurable systems or FP-
GAs, respectively, e. g. [7, 12–14]. These approaches focus on providing the reconfig-
urable fabric to tasks via the abstraction layer of the operating system. The benefit of
these approaches can be a predictable behavior of the executed task. Operating systems,
however, seldom consider structure and behavior of the algorithms to be computed.

Finally, in low-level hardware design, [15] focus on a high-level hardware descrip-
tion called hardware skeletons. Considering the idea of separation of structure from the
algorithm, this approach is closest to our work. Moreover, the authors motivate their
work similar to us, i. e., an increase of abstraction in order to open the field of hardware
design to a broader audience. However, the amount of skeletons is very limited and
they are still very low-level and will often be too far away from algorithm designers.
Moreover, we do not find the paradigm of reconfigurability in their work.

To summarize, all these abstracting approaches barely consider partial run-time re-
configuration and therefore lack the possibility to make the cumbersome details of re-
configurable systems transparent to the application designer.
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3 Problem Definition

The design of applications for the execution on partially run-time reconfigurable sys-
tems is twofold. On one hand, FPGAs fundamentally are hardware that can be pro-
grammed and whose configuration may change over time. Therefore, we need a firm
background in hardware design, including communication and I/O requirements. We
also have to respect the critical path information, clock skew, etc. Moreover, partially
reconfigurable FPGAs require to consider the modification of hardware over time.

On the other hand, the application design is driven by achieving high performance
and short time to market. Designers therefore explore the theory behind applications
and search for algorithms that server the problems best. Moreover, they try to abstract
from the execution platform, mostly due to reasons of programmability and portability.
Partial run-time reconfiguration becomes a feature that should be beneficially for the
performance of the algorithm. The details of hardware and FPGAs thereby are of sec-
ondary focus, as development takes place more in the terms of the software world, even
if special requirements of embedded systems are respected.

Synthesis from behavioral problem description to reconfigurable hardware targets
this issue. However, in the domain of partial run-time reconfigurable hardware, au-
tomatic synthesis still lacks good results. Furthermore, if iterative design due to per-
formance evaluation is required, or portability is an issue, we require a more suitable
design methodology that supports designers on a high level of abstraction.

4 Problem Solution

We propose to use algorithmic skeletons as bridge between circuit design and applica-
tion development for FPGAs. Algorithmic skeletons therefore are offered as a library
that is used by the algorithms of the application under development. The usage of al-
gorithmic skeletons constrains the design of algorithms to a set of templates. However,
we can extract valuable information for dynamic reconfiguration from these templates.

4.1 Algorithmic Skeletons

Algorithmic skeletons were introduced by Cole [16]. They separate the structure of
a computation from the computation itself. Originally, the application domain of algo-
rithmic skeletons are parallel machines or cluster computers. In particular, the skeletons
free the programmer from the implementation details of the structure, such as how to
map it to the available processors. By providing a structured management of parallel
computation, they can be used to write architecture independent programs, shielding
application developers from the details of a parallel implementation.

Algorithmic skeletons are similar to higher order functions of functional languages
for conventional imperative languages. Concerning design space exploration, skeletons
and their level of abstraction enable to explore a variety of parallel structurings for a
given application. A clean separation between structural aspects and the application
specific details is realized by virtue of algorithmic skeletons. Thanks to the structural
information provided, static and dynamic optimization of implementations is possible.
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The purpose of every skeleton is to abstract a pattern of activities and their inter-
actions. They provide a means of implementation, which separates them from design
patterns. The latter are mostly used during the design phase and offer only orientation
for the final implementation. Due to their proximity to a run-time environment, algo-
rithmic skeletons allow us to exploit the performance offered by the processing system.

Consequently, there has to be a balance between generality (allowing re-use for
different architectures and user kernels) and specificity (for efficient implementation
and interfaces to the user kernels). There also is the so-called trap of universality, i. e.,
providing a skeleton that is generic in itself and can be used if no other skeleton might
fit. Such a skeleton would increase the complexity of a run-time environment. In order
to avoid this trap, there is usually the restriction of the acceptable input for a system to a
set of valid algorithmic skeletons only, see also [17, 18]. In case of modern FPGAs, we
can also overcome this gap by exploiting soft or hard core CPUs. These general purpose
processors can execute any algorithm due to their Turing completeness.

4.2 Application in Reconfigurable Systems

Reconfigurable computing on FPGAs basically is similar to processing on parallel sys-
tems, as execution of algorithms on hardware like FPGAs also means processing in
parallel. When reconfiguring FPGAs, we usually define exchangeable regions and ap-
ply different modules to these regions. Several such regions can be marked on the same
FPGA. These regions are comparable to the nodes of a computing cluster. The inter-
module communication, so still a challenging research area, enables various ways of
data exchange. Thus, we see broad similarities to parallel computing in the sense of
algorithmic skeletons. We can distribute applications into the regions as it is done in the
parallel computing domain. For efficient execution and beneficial exploitation of the
capabilities, both systems need structure, which is provided by algorithmic skeletons.

Therefore, we use algorithmic skeletons as means of abstraction for partial run-
time reconfiguration of FPGAs. The skeletons provide a seminal method to abstract
reconfigurable fabrics on a high level. We combine the skeletons into a library. As a
first introduction to this new concept, we detail stream parallelism in the next section.

We abstract the general concept by virtue of a layer model, see Fig. 1. Applications,
which built the top layer, are described by a set of tasks. These tasks must be imple-
mented using algorithmic skeletons. An execution environment that executes the tasks
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on an FPGA accepts the tasks described by a set of skeletons only. The set of skeletons
is processed by a dispatcher that is deeply connected to its execution environment.

4.3 Execution Environment

Concerning the practical realization of a suitable run-time environment for the execu-
tion of the set of skeletons on an FPGA, we consider a tiled system. As we focus on
homogenous FPGAs in this work, each tile comprises similar logic resources. However,
we still consider two different tile arrangements: the first being a purely quadratic or-
ganization, while the second one offers more direct communication possibilities due to
an underlying hexagonal structure (see Fig. 2).

Xilinx Virtex 4 devices support the proposed execution environments as they sup-
port 2D style partial reconfiguration. Furthermore, on these devices, the external com-
munication, i. e. the I/O pads, is separated and not part of a slice. With the advances in
FPGA design, more sophisticated run-time environments are possible.

5 Stream Parallelism

Stream parallelism may be the closest idea of parallel computing that matches the ideas
of execution on FPGAs [19]. Stream computation can be described as applying f : α →
β on a stream of input values a1, a2, . . .. The idea is to exploit the parallelism within
the computation of f on different (and unrelated) elements of the input stream. As an
example, we can consider a vision system that explores images. The images enter the
system abstracted as a stream and must be handled differently.

5.1 Farm Paradigm

An algorithm that computes the same f on all of the elements of a stream a1, a2, . . .
exploits the farm paradigm. The computations f(a1), f(a2), . . . can be executed in par-
allel using a pool of parallel processing modules. Figure 3 depicts the concept. The
major characteristic to observe is that the functions can be executed independently of
each other as they are all operating on a different data set.
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Fig. 5. Two possible execution schemes of applications using the farm skeleton.

As an application example, we can assume a stream of two video channels that
should be output alternatingly to one single channel. However, the switch between
the two channels should not be abrupt but smoothly, i. e., a fading between the two
channels. We thus have a function f that is applied on a stream of three input values
〈x1, y1, c1〉, 〈x2, y2, c2〉, . . ., while x1 and y1 denote the two video streams and c1 the
dominance of the one stream over the other (an increasing/decreasing number of e. g.,
8 bit width). Both streams arrive at the node E which distributes the single images to
the worker processes W1,W2, . . . ,Wn adding the number ci. These functions can be
computed independently of each other in different worker nodes Wi. The results then
are propagated to the combining node C that forwards the stream to the video screen.

If we describe our algorithm using a skeleton for the farm paradigm, the structure of
the application is given. Thus, we know how to execute the algorithm on the execution
device. First, we can derive a meaningful placement of the algorithm that serves both
the requirements of the farm and the characteristics of the FPGA. Figure 5 shows how
the skeleton can be mapped in two different ways. In the left approach, we use the same
tile for the input and output of the nodes. However, if we rely on direct communication
links only, the number of possible worker tiles is limited. Therefore, the right approach
of Fig. 5 spans the farm skeleton over the whole width of the FPGA.

Dynamic run-time reconfiguration is needed if the amount of worker modules should
be adapted during run-time. External stimuli therefore could be a requirement to adapt
the quality of service, etc. Further details are discussed in Sect. 6.

To summarize the farm skeleton, a structural concept is given that allows to dis-
tribute workers of an application on different tiles of a partially and run-time recon-
figurable FPGA. The execution of the workers including their reconfiguration is part
of the run-time environment and its dispatcher. However, by describing an application
on basis of the farm skeleton, the number of workers is not set. Depending on the re-
sources available, a different quality of service can be realized. The optimal solution,
i. e., a solution that avoids the blocking of workers, etc. due to overload conditions,
must be derived carefully by evaluating the execution times of the function f and the
distribution time of the initial node E.

5.2 Pipeline Paradigm

The pipeline paradigm comprises a composition on n functions f1 . . . fn such that

f1 : α → γ1, . . . , fi : γi−1 → γi, . . . , fn : γn−1 → β (1)
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Fig. 6. Two realizations of a pipeline with different area requirements.

Figure 4 shows the concept as a graph.
As an example within our image processing environment, we consider a scenario

of a stereo vision system. We receive the input of two cameras 〈x1, y1〉, 〈x2, y2〉, . . .
and want to extract valuable information out of the system. We therefore compute the
composition of two functions f ◦ g. Function g will result in a combination of the two
images, having the pixel combined into the means (g(〈xi, yi〉) = zi), while f will
produce the histogram on the resulting image zi. The functions f and g can be executed
in parallel each on a subsequent data set, thus exploiting pipeline parallelism.

In Fig. 6, we depict two possible realizations assuming the second function f to
consume more area than function g. Here we can see that different stages can consume
more area than available on one single tile by simply combining tiles. The dispatcher
of the run-time environment may react on the different requirements of the functions
within the pipeline. If enough area is available, the dispatcher may also built up a second
pipeline in parallel in order to increase the throughput of the systems.

Describing a problem using the pipeline skeleton, we can further exploit the char-
acteristics of stream processing. As the stages of the pipeline get activated in sequence,
we can decrease the reconfiguration latency of the overall system. We successively load
the bitstreams of the pipeline stages in their order given. After reconfiguring the first
stage, this stage may start its execution before the complete pipeline is loaded. The
same holds for the subsequent stages. Thus, the fastest possible response time can be
guaranteed. Additionally, if less area than required by the stages is available, we may
apply hardware virtualization. Therefore, only parts of the overall pipeline are loaded
on the FPGA at the same time. These parts may also perform block processing of a
block of input sets in order to hide the reconfiguration overhead, which is still in the
range of milliseconds on modern FPGAs.

A further approache to improve the behavior of a pipeline streaming algorithm is
to identify the bottleneck stage. In order to reduce the impact of this stage, we can
provide a functionality to map this stage on a tile comprising of specific computation
resources (assuming a heterogenous FPGA). Alternatively, we might provide critical
stages in different implementation variants that can be tested in a design space explo-
ration that explores different implementations of the pipeline skeleton. We then select
the combination of these stages that offer the best overall performance.
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5.3 Stream-Iterative Paradigm

In the stream-iterative paradigm, we have a number of functionally equivalent stages.
This number of stages may depend on the input values and is generally unknown before
execution. We can view the stream-iterative paradigm as a tail recursive function f that
comprises of a finite result x if a boolean function c(x) computes true, or a recursive call
f(g(x)) otherwise. We can compute such a problem in parallel by a pipeline including
a stage for each recursive call of f . Figure 7 depicts the concept. In order to implement
such an unbounded pipeline on an FPGA with limited resources available, we emulate
the unbounded pipeline by folding it on a chain of processes of a fixed length.

As an example, we can consider again a stream of images that are processed by a
filter in each of the stages. The processing will go on until no further refinement of the
image is possible and the final result is sent to the output.

6 Dynamic Reconfiguration

The above presented paradigms can be composed to built more complex parallel struc-
tures. In Fig. 8, we show how different skeletons can be executed on the same FPGA,
exploiting a multi task environment. Depending on the specific needs (quality of ser-
vice, etc.) of the applications behind the skeletons, we can react and dynamically adapt
the purpose and organization of the tiles of our execution environment.

Such a dynamic reconfiguration means the adaptation of a device during run-time.
In particular, the amount and shape of tasks that shall be executed on a run-time en-
vironment are not known at design time. When realizing such a behavior without any
abstracting layers on top of an FPGA, we would have to cope with fragmentation and
on-line routing issues that can be tremendously challenging.

The implementation of applications by virtue of algorithmic skeletons enables a
sophisticated and dynamic execution of tasks on FPGAs. The run-time environment
allows us to load tasks which are available on the basis of algorithmic skeletons onto
the FPGA. As the usage of algorithmic skeletons enforces the applications to be well-
formed, we thereby can prevent fragmentation of the devices and guarantee communi-
cation requirements. Additionally, the quality of service may be considered.

In the example depicted in Fig. 8, we first assume a scenario where a farm skeleton is
executed in the left side of the FPGA and a stream-iterative skeleton occupies the right
side of the FPGA. The former one can use four worker tiles, while the latter has eight
worker tiles on its dispose. At some point in time, a new application requests to enter
the system. We can decrease the pipeline of the stream-iterative skeleton, thus freeing
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Fig. 8. Combination of different skeletons.

area in the middle of the FPGA. This area is then used to execute a new application that
ist implemented referring to the pipeline skeleton.

In the example, the execution environment is fixed, as it provides the computational
resources and the communication for its set of skeletons. The dispatcher accepts a set
of skeletons only. On basis of the information of the skeletons, we can take care of con-
nections, etc. The combination of dispatcher and specific run-time environment allows
us the execution of a set of skeletons. We can execute any algorithm on this run-time
environment irrespectively of its behavior and size, as long as the algorithm can be im-
plemented by virtue of some of this environment’s skeletons. If the area requirements
exceed the size of the FPGA, we can apply hardware virtualization as described above.
As a drawback, we only serve applications which are implemented as skeletons that the
execution environment supports.

The design of applications by virtue of algorithmic skeletons allows us to react on
changing needs of the whole system and of a single application of the system. In partic-
ular, if the quality of service must be increased, we can demand additional resources.

7 Conclusion

In this work, we have introduced algorithmic skeletons for dynamic reconfigurable
computing. Algorithmic skeletons separate structure from the behavior of an algorithm.
By providing a library of skeletons to implement applications for reconfigurable sys-
tems, we can beneficially explore partial run-time reconfiguration of reconfigurable fab-
rics. Therefore, solutions, i. e., hardware realizations, of the skeletons are applied to
various applications. We have introduced the field of stream parallelism comprising of
the farm, pipeline and stream-iterative paradigm. In general, the approach is a hopeful
mean to provide an interface between the hardware platform (FPGA) and applications.
Moreover, additional benefits are possible if a composition of skeletons is used.

We currently broaden the library of algorithmic skeletons to offer also data pral-
lelism. Furthermore, we want to consider heterogeneous FPGAs, as the additional re-
sources of such fabrics facilitate improved solutions for specific applications that we
hope to also cover by algorithmic skeletons. As a final outlook, also coarse-grain recon-
figurable devices as execution environments may be taken into account.
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