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Abstract. Virtualization plays a key role in constructing cloud environ-
ments and providing services. Although the main jobs of the hypervisors
are to guarantee proper isolation between domains and provide them ser-
vices, the hypercall interface provided by the hypervisor for cross-layer
interactions with domains gives attackers the possibility to breach the
isolation or cause denial of service from inside the domains. In this paper,
we propose a transparent approach that uses randomization technique
to protect the hypercall interface. In our approach, even facing a total
compromise of a domain, the security of the virtualization platforms can
be guaranteed. We have built a prototype called RandHyp based on Xen.
Our experimental results show that RandHyp can effectively prevent at-
tacks via Xen hypercall interface with a small overhead.
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1 Introduction

Nowadays, virtualization has gained an increasingly concern in both industry
and academic world. Cloud hosting providers have exploited the abstraction
and isolation provided by the hypervisor to allow individual paying customers
to share large-scale datacenter facilities, such as Amazon EC2[2], and Linode|[3].
A lot novel projects also take advantage of hypervisor’s supervision property in
intrusion detection systems[19], workload isolation[20], attack investigation and
debugging[21], and system monitoring[4].

However, all these applications are based on the belief that the hypervisor
is sufficiently trustworthy to provide services and maintain isolation. But is it
really like that? While the hypervisor itself can be regarded as secure due to its
small size and a well-defined narrow interface, a number of different commod-
ity operating systems are coresident on the same host[14], numerous vulnerable
applications communicate with the uncertain outside world[13]. Under these cir-
cumstances, it is very likely that by exploiting the vulnerabilities of applications
and operating systems, attackers can compromise a domain in the same way
as they do in conventional operating systems. After that, attackers can escalate
priviledges by applying to the hypervisor for illegitimate resources, which may
lead to information leakage or denial of service. Specifically, if dom0 is compro-
mised, attackers are able to access other domains’ memory and I/O informa-
tions, and even create or shutdown other domains at will. In situations where
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dom0 is simplified to reduce the vulnerabilities exposed[6], attackers can turn to
compromise domUs. And according to CVE bug reports (e.g. CVE-2011-1898,
CVE-2010-4238)[1], domU users can gain dom0 privileges and can either cause
a denial of service or read arbitrary files in dom0. Further, any domain can be
dominated to keep requesting critical resources, such as cpu and memory, which
may lead to denial of services to other domains.

Since the hypercall interface is used to access hardware resources and execute
sensitive instructions, the malicious goals listed above have to be achieved by
invoking hypercalls. Therefore, preventing the hypercall interface from being
used is very essential.

In this paper, we present solutions to protect domains by using Xen hyper-
call interface randomization technique. In our approach, all hypercall invocations
are classified into trusted ones or untrusted ones. For the trusted ones, we ran-
domize each hypercall’s arguments, including its hypercall number. We also add
paddings to the arguments and permute both the paddings and the arguments
to further make our approach less breakable. The untrusted ones do not get
randomized and are regarded as invalid by the hypervisor. In such a case, even
attackers can get into a domain, he can not further elevate his priviledges by
exploiting the hypercall interface, and thus avoid more serious damage to the
whole system.

We present RandHyp, a modified version of Xen with para-virtualized Linux
platforms as dom0 and domUs. Our experimental results show that RandHyp
can successfully prevent untrusted hypercalls from executing while incurring low
performance penalty.

The rest of this paper is organized as follows. The next section presents a
short related work section about existing security machenisms in virtualization
platforms. Section 3 identifies the threat model, explicits our design goals, and
gives the design overview. After that, the implementation of RandHyp is de-
scribed, following by a brief security analysis. The evaluation results are given
in section 6, and section 7 concludes this paper.

2 Related Work

Existing security measures, like mandatory access control (MAC)[15] and trusted
platform module (TPM)[16], can not be directly applied to protecting the Xen
hypercall interface. Most previous efforts concentrate on reducing the probabil-
ity of domains being compromised by monitoring domains from the hypervisor
level[11, 12]. However, designers may not know all threats, and new exploitation
techniques can appear, and attack vectors cannot be totally eradicated, thus
domains are still untrustable.

Other solutions are based on the assumption that dom0 is malicious (dom0 is
a high-valued attack target, resulting from its control over other domains), and
aim at protecting domUs against a malicious dom0. For example, CloudVisor|8]
introduces a tiny security monitor to protect resources, Xoar[9] breaks the control
domain into single-purpose components to reduce the damanage attackers can
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introduce, Chunxiao Li et al.[10] removed the control domain from TCB, and so
on.

However, all these solutions are difficult to implement in the commercial
products for the reason that they need to modify the existing virtualization
architectures, which requires professionals and may lead to problems in updating
systems.

Hoang[13] has proposed two innovative approaches, authenticated hypercalls
(MAC) and hypercall access table (HAT), that aim at protecting the hypercall
interface. The MAC approach is not practical given the limitation of the number
of arguments that can be passed to the hypervisor. The HAT approach records
the addresses of trusted hypercall invocations and stores them in an HAT table
in the hypervisor. However, in kernels of the same version, the addresses are
fixed. Hence, getting the addresses of the trusted hypercall invocatons are easy.
Moreover, the size of the HAT table stored in the hypervisor will increase as the
number of domains increases, which contradicts the design concept of Xen[5].

Unlike existing solutions, RandHyp maintains the design concept of Xen with
a small modification of the Xen hypervisor and guest operating systems and is
transparent to guest applications. Besides, since the changes of the operating
systems are mainly in some head files, they would not hinder updating systems
or inserting of modules.

3 Xen Architecture, Threat Model, and Design Goals

Since RandHyp is based on Xen, this section first describes the architecture of
Xen, especially the hypercall interface. Then the threat model is identified, and
our design goals are articulated.

3.1 Architecture Overview

In Xen architecture, the hypervisor is the most priviledged software layer that
virtualizes the hardware resources and partitions them dynamically to the over-
lying domains. A single administrative domain (dom0) has the ability to manage
all other domains (domU).

Since the hypervisor is responsible for monitoring all privileged state, do-
mains have to transfer control into the hypervisor when executing sensitive in-
structions, which is realized by using hypercalls[7]. Hypercalls are made to exe-
cute high-priviledged operations, such as exception handling, scheduling, phys-
ical memory management, access-control of disks and network devices, virtual
CPU operations, and inter-domain communications.

Hypercalls are similar to system calls in conventional operating systems. A
software interrupt INT $0x82 transfers the control from the domain into the
hypervisor, where operations are validated and applied, and when completed,
the control is returned to the calling domain[5]. The particular hypercall to be
invoked is contained in rax with all the arguments contained in rbx, rcx, rdx,
rsi, rdi (x86_64 Linux) or eax, ebx, ecx, edx, esi, edi (x86_.32 Linux).
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An example use of hypercall is to update an individual segment descriptor in
the GDT or LDT by using hypercall HYPERVISOR_update_descriptor (unsigned
long ma, unsigned long word).

3.2 Threat Model

We assume the hardware and hypervisor are trusted, which means that we are
not concerned with the violation of security by the service providers. We focus
on the threat when a well-behaved domain is compromised and used as an entry
to breach isolations among domains.

In a virtualization environment, since domains are usually commodity op-
erating systems with vulnerabilites, it is prudent to assume that they may be
compromised to behave with evil intentions. Thus, the attacker in our model is
a domain aims at violating the security of other domains, including violating
the data integrity or confidentiality of the target domains or causing denial of
service to other domains with whom it is sharing the same underlying resources.

In order to achieve the malicious goals, the attacker inevitably has to go
through the hypercall interface to achieve hardware resources. For example, do-
mains cannot directly apply for extra memory space or modify critical data
structures such as page tables, but these operations can be done through hyper-
call requests. In such a case, the attacker needs to invoke a series of dedicately
arranged hypercalls to make his malicious goals realized.

Since hypercalls are much similar to system calls, hypercall attacks could
be in any form known for system call attacks such as argument hijacking or
mimicry[13]. Faking a series of hypercalls to sniff other domains’ information or
cause denial of service is applicable.

Information Leakage Attack. Information leakage attacks are mainly caused
by a malicious dom0, for the reason that dom0 can access memory and I/0
informations belonging to domUs. Given the evidence that information leakage
may bring more profits to attackers, dom0 turns out to be a high-valued attack
target.

Most projects assume a small-sized dom0 and deduce that the vulnerabilities
exposed to be rare. However, this is undesirable as demonstrated by Colp[9] that
domO in a mature virtualization platform is actually larger than a conventional
server operating system for it is often relied on to provide additional shared ser-
vices, such as drivers for physical devices, device emulation, and administrative
tools.

The potentially malicious dom0 is often ignored in discussing the security
of virtualization systems. Once dom0 is compromised, personal informations of
customers can be stealed, which would be a total disaster.

Denial of Service Attack. Both dom0 and domUs can launch denial of service
attacks through keeping occupying resources. Further, dom0 can cause a denial
of service to certain domains by changing the scheduling flows.
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3.3 Design Overview

Rather than exploring techniques to construct a bug-free system, a more prag-
matic goal is to provide an architecture that can prevent the hypercall inter-
face from being used, so that attackers in subverted domains cannot further
mount successful attacks against other domains. With this in scheme, RandHyp
is designed to guarantee that a malicious domain cannot issue arbitrary control
transfers into the hypervisor and the execution context cannot be faked.

Trusted Hypercall Untrusted Hypercall
Invocations Invocations

Randomization

v

INT $0x82 Domain

De-randomization

Trusted Untrusted
succeed Xen Hypervisor

v Hardware

Fig. 1. RandHyp architecture

Fig. 1 shows the architecture of RandHyp. The general idea is to make the
untrusted hypercall invocations unrecognized by the hypervisor, thus avoid at-
tackers to execute priviledged operations. The method we choose is to random-
ize trusted hypercall invocations without the attackers’ consciousness, and de-
randomize them in the hypervisor where attackers cannot access.

4 Implementation

In this section, we present our design of randomization and de-randomization
schemes in RandHyp. RandHyp protects domains against all other domains, in-
cluding dom0. Hypercall HYPERVISOR_update_descriptor is used as an example
to typify all the rest hypercalls.
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4.1 Randomization

In x86_64 XenLinux, the hypercall number of HYPERVISOR update_descriptor
is 10, the arguments are ma and word. What we need to do is re-assign the
numbr and the arguments new values generated by some algorithm to make
them not only unaccessable by attackers, but also difficult for them to guess.
The randomization process is described as below.

Kernel-Level Randomization. Kernels, including loadable kernel modules
and drivers, invoke hypercalls directly by calling the function HYPERVISOR update
_descriptor (unsigned long ma, unsigned long word), so that is the place
we do randomization operations.

Firstly, we add paddings to maximum the number of arguments. After that,
the function looks like HYPERVISOR update_descriptor (ma, word, padl, pad2,
pad3).

Secondly, every argument is encrypted to make a new, randomized argument
using the following equation:

arg, = Ry (arg;, key) . (1)

Ry is our randomization algorithm using a key key. In RandHyp, we choose
RCA4[17] encryption algorithm which is one of the most secure symmetric en-
cryption algorithms in the world. Other algorithms are also applicable. After this
step, the hypercall invocation would be HYPERVISOR update_descriptor (argl’,
arg2’, arg3’, argd’, arg5’).

Thirdly, to make our scheme more aggressive, RandHyp permutes the roles
among rbx, rcx, rdx, rsi, rdi (ebx, ecx, edx, esi, ediinx86-32 Linux)
registers.

Lastly, due to the design of Xen[5], hypercall numbers are limited between 0
and 128, so it is impossible for RandHyp to randomize hypercall numbers in the
way it does to hypercall arguments. In this way, RandHyp adjusts by choosing
a number between 0 and 128 randomly for each hypercall.

User-Level Randomization. Hypercalls may be indirectly used in user-level.
The randomization operations in user-level are the same as in kernel-level, while
the difference lies in where the operations are done. To invoke hypercalls in
user-level, a structure privemd hypercall_t, which contains the hypercall ar-
guments and number, are passed to the kernel by a kernel driver privemd. In
function privemd_ioctl the arguments are written into registers and the soft-
ware trap INT $0x82 is executed. Consequently, the hypercall arguments and
number should be randomized when privemd_hypercall_t is constructured.

4.2 De-randomization

No matter where a hypercall comes from, the execution of the hypercall instruc-
tion INT $0x82 generates a software trap into the Xen hypervisor, where the
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hypercalls are validated and executed by the same handler. Note that we have
randomized trusted kernel-level hypercalls and trusted user-level hypercalls in
the same method, so we don’t need to differentiate the de-randomization scheme.

RandHyp has constructed a correlation between the hypercall numbers in do-
mains and the hypercall numbers in the Xen hypervisor. Thus, when the hyper-
call interrupt handler catches a hypercall, the hypervisor can pass it to the right
handle function according to its number, in our cases, it is the do_update_descrip
tor function.

In order to avoid the randomized hypercall arguments from being used by
the hypervisor, RandHyp de-randomizes the hypercall arguments immediately
when entering the do_update_descriptor function.

Firstly, real arguments are selected from the paddings.

Secondly, given the encryption algorithm we use is symmetrical, the de-
randomization algorithm is the same as the randomization algorithm. RandHyp
recovers the original hypercall arguments arg; = R}l(argg, key) using the same
key used during the randomization process. After that, Xen can do what the
hypercall requires to do.

5 Security Discussion

Attacks Using Direct Hypercall Invocation. An attacker may directly in-
voke hypercalls in kernel-level or user-level. RandHyp can defeats such straignt-
forward attacks.

Since hypercalls created by attackers are untrusted, they are not randomized
before trapping into the hypervisor, so that they will be de-randomized into
meaningless informations and fail to execute.

Attackers may attempt to acquire the randomization key directly, which is
also defeated by RandHyp. The reason is that the randomization key is stored
in the memory space of Xen, where attackers in domains can’t access. Attackers
are forced to scan the kernel code memory and collect the semantics of the
instructions to get the key, which is hard to perform.

Even if the attacker can successfully get the key, the probability of him to
create a right argument would be very small, for the reason that there are 38
hypercalls in a system, and each hypercall contains 5 arguments, the possibility
for an attacker to get the right arguments of HYPERVISOR update_descriptor
is m , which is about 0.26%.

Attackers may try to construct plaintext-ciphertext pairs to brute-force the
key. RandHyp makes this very difficult. Firstly, a strong encryption algorithm
and a long key makes it almost impossible to crack the key. Secondly, because
we have added paddings to the arguments, and permuted the roles among the
registers, and the hypercall number is re-assigned, the attackers face difficulties
in constructing plaintext-ciphertext pairs.

Attacks Using Indirect Hypercall Invocation. Instead of invoking hyper-
calls directly, an attacker may try to reuse existing hypercalls. In this situation,
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an attacker has to achieve the memory address of the desired hypercall instruc-
tions accurately, and then jump there to eventually invoke the intended hyper-
calls. Although RandHyp cannot directly prevent this kind of attacks currently,
existing techniques such as address space layout randomizatoin (ASLR)[18],
which makes the memory location of pre-existing code hard to predict, can be
utilized to enhance security. Moreover, even if attackers can successfully hijack
the control flow of a process, the hypercalls used by kernel only can accomplish
basic and simple functionalities. Combining them to achieve malicious goals is
almost impossible.

6 EVALUATION

In this section, we first present RandHyp latency measurement results, and then
present a number of attack experiments that cover all hypercalls.

6.1 Experimental Setup

Our experiments were run on a Lenovo desktop PC with a 2.53GHz Intel(R)
Core(TM)2 Duo CPU processor and 2GB of RAM. All Xen modifications nec-
essary for RandHyp were implemented on Xen 4.0.1 and Linux 2.6.32.13 kernel
with Xen patches applied. The changes required to Xen were minimal, spanning
only a handful of source files including the files containing the hypercall service
routines and several head files. On the guest domain kernel, we modified the files
containing the routines which invoke hypercalls and the file that defines hyper-
call number. For convience, we give the modified system an alias, Rand-Domain,
to distinguish the unmodified system, Orig-Domain.

6.2 Performance Evaluation

The performance of RandHyp should be evaluated in the following aspects: 1)
Disk I/O throughput; 2) Network I/O throughput; 3)Overall system perfor-
mance.

Disk I/0 performance. Disk performance is tested by using dd. Fig. 2 shows
the results of these tests with different configuration parameters. Overall, disk
throughtput is down by 1-4.5%. The reading and writing latency incurred by
small files is larger than that by big files, which may be caused by more frequent
transversions into the hypervisor.

Network I/O performance. Netperf is used to test network performance.
Fig. 3 shows the results. RandHyp only causes 1.5-3% drop in throughput
when using TCP, and less than 0.2% drop while using UDP. Because TCP is
a connection-oriented protocol, more hypercalls have to be used to keep the
connection.



RandHyp: Preventing Attacks via Xen Hypercall Interface

RandHyp: Preventing Attacks via Xen Hypercall Interface

9

Throughput (MB/s}

110

120

O Rand-Domain
B (i p—Domain

(W)bs—1KB (W) ba—16MB (R} bs—1KB (R} b= 1 6B

count=100M

count—10K

Fig. 2. Disk

1/0 performance using dd (higher is better)

Throughput (Mbit/s)

960
940
920
909
880
860
844)
820
809

O Rand-Domain
Hirig Domain

(300s)

—~
2]
(=]
©

|~=

=
<<
2]
[a=1
=
wn
[a W)
O
=

TCP_STREAM

(600s)
(60s)

(300s)
(600s)

TCP_STREAM

UDP_STREAM
UDP_STREAM
UDP_STREAM

Fig. 3. Network I/O performance using Netperf (higher is better)

143



144

Feifei Wang, Ping Chen, Bing Mao, Li Xie

10 Feifei Wang, Ping Chen, Bing Mao, and Li Xie

1A 1. 302 -
E .2 E(JT‘ig*Domal:n
8 1 1 1.004 | 1.036 | B Rand-Domain |
= 1
[+
g 08—
5]
[s]
“@ 0.6 —
=
B
5 0.4 —
&
3
wn 0.2 —
0
Kernel apache Lar
Compiling
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Real-world Benchmarks. We use several popular applications for RandHyp
latency measurement, including Linux kernel compilation, Apache ab bench-
marking tool and tar. As Fig. 3 shows, the kernel compiling overhead added by
RandHyp is about 30%, the Apache web server serving a 4KB static webpage
10000 times for 500 simultaneous clients adds only 0.4% overhead, and the tar
operation adds about 0.36% overhead.

6.3 Effectiveness Evaluation

The commonly received approach to evaluate a security measure is to subject
it to existing attacks. We have discussed the possible attack scenario in Sec-
tion 2. However, attacks target at crushing virtualization platforms from the
overlying domains have not gained widely applied in reality, which makes evalu-
ating security a challenging job. Moreover, constructing the attacks is out of our
boundaries. Given this situation, we make an attempt to demonstrate the im-
provement to the state of security for hypervisors by exposing them to loadable
kernel modules (LKM) that are used to imitate the intrusion attacks. Each LKM
tries to execute one or a set of non-randomized hypercalls as a real attacker may
do. We assume that such LKMs could be successfully injected into the domain
through conventional operating system security breaches in real world.

We have tested all hypercalls, and the experiment results show that these
hypercalls cannot execute correctly, which verifies that the hypercalls which are
not in our protection coverage can be caught by RandHyp.

These simple experiments are, though very specific and even quite contrived,
they serve the purpose of verifying the effectiveness of our prototype nevertheless.
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7 CONCLUSION

While virtualization is becoming widely accepted in both industry and academic
world, its security is put on the agenda. Enhancing the security of virtualization
platforms would bring more values to their popularity and usability. Although
the sizes of hypervisors are a lot smaller than that of conventional operating sys-
tems, the domains running on is untrusted, and can perform illegal operations
through the hypercall interface. This paper focuses on protecting the hypercall
interface so as to maintain normal services to domains and guarantee the isola-
tion between them. A transparent approach, namely RandHyp, was proposed on
Xen. In RandHyp, any hypercall out of our protect range will be detected and
refused to execute. RandHyp achieved this by using randomization techniques.
Both hypercall’s number and arguments are randomized in order to mess the
attackers. Experiments show that RandHyp can effectively counter illegal hy-
percalls while incurring only a small overhead.
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