
Relay Attacks on Secure Element-enabled
Mobile Devices?

Virtual Pickpocketing Revisited

Michael Roland1, Josef Langer1, and Josef Scharinger2

1 NFC Research Lab Hagenberg, University of Applied Sciences Upper Austria
{michael.roland, josef.langer}@fh-hagenberg.at

2 Department of Computational Perception, Johannes Kepler University Linz
josef.scharinger@jku.at

Abstract. Near Field Communication’s card emulation mode is a way
to combine smartcards with a mobile phone. Relay attack scenarios are
well-known for contactless smartcards. In the past, relay attacks have
only been considered for the case, where an attacker has physical prox-
imity to an NFC-enabled mobile phone. However, a mobile phone intro-
duces a significantly di↵erent threat vector. A mobile phone’s permanent
connectivity to a global network and the possibility to install arbitrary
applications permit a significantly improved relay scenario. This paper
presents a relay attack scenario where the attacker no longer needs phys-
ical proximity to the phone. Instead, simple relay software needs to be
distributed to victims’ mobile devices. This publication describes this
relay attack scenario in detail and assesses its feasibility based on mea-
surement results.

1 Introduction

Near Field Communication (NFC) is an advancement of inductively coupled
proximity Radio Frequency Identification (RFID) technology and smartcard
technology. NFC has three operating modes: peer-to-peer mode, reader/writer
mode and card emulation mode. Peer-to-peer mode is an operating mode specific
to NFC and allows two NFC devices to communicate directly with each other.
In reader/writer mode, NFC devices can access contactless smartcards, RFID
transponders and NFC tags. In card emulation mode, an NFC device emulates
a contactless smartcard and, thus, is able to communicate with existing RFID
readers.

Three communication standards are available for card emulation mode: ISO/
IEC 14443 Type A, Type B and FeliCa (JIS X 6319-4). Which mode is actually
used depends on the NFC chipset and the geographic region. With current NFC-
enabled mobile phones, card emulation is usually based on Type A.

? This work is part of the project “4EMOBILITY” within the EU programme “Re-
gionale Wettbewerbsfähigkeit OÖ 2007–2013 (Regio 13)” funded by the European
regional development fund (ERDF) and the Province of Upper Austria (Land
Oberösterreich).

Relay Attacks on Secure Element-enabled Mobile Devices 1



Besides the communication standard, card emulation may also vary in the
way how card emulation is performed. On the one hand, a card can be emulated
in software (e.g. on the device’s application processor). On the other hand, card
emulation can be performed by a dedicated smartcard chip – a so-called secure
element (SE). Such a chip can be a dedicated SE IC (integrated circuit) that
is embedded into the NFC device. Another possibility is the combination of the
SE functionality with another smartcard/security device that is used within the
NFC device – like a UICC (universal integrated circuit card; often referred to as
Subscriber Identity Module/SIM card) or an SD (secure digital) memory card.

Typical use-cases for card emulation are security critical applications such as
access control and payment. Therefore, emulation by software on a non-secure
application processor is not widely used. As of today, only some dedicated NFC
reader devices – like ACS’s ACR 122U – and only a small number of NFC-
enabled mobile phones – specifically those equipped with RIM’s BlackBerry 7
operating system [1,12] – support software card emulation.

The majority of mobile NFC devices use dedicated smartcard chips for card
emulation. Examples are the Nokia 6131, the Nokia 6212, the Samsung GT-
S5230N (“Player One”) and the Samsung Nexus S. The Nokia 6131 and the
Nokia 6212 have an embedded SE. The Samsung GT-S5230N uses an SWP-
enabled (Single Wire Protocol) UICC as SE and the Samsung Nexus S has both,
an embedded SE and support for an SWP-enabled UICC. Only some recent NFC
phones developed by Nokia have no support for card emulation at all [11].

Typical secure elements are standard smartcard ICs as used for regular con-
tact and contactless smartcards. The only di↵erence is the interface they provide:
Instead (or in addition) to a classic smartcard interface, the secure element has
a direct interface1 for the connection to the NFC controller.

As secure elements have the same hardware and software platforms as reg-
ular smartcards, they also share the same security standards. A secure element
provides secure storage, a secure execution environment and hardware-based sup-
port for cryptographic operations. The IC is protected against various attacks
that aim at retrieval or manipulation of stored data and processed operations.
Smartcard chips and their design process are usually evaluated and certified ac-
cording to high security standards. The same applies to their operating systems.
Thus, the secure element fulfills the requirements necessary for security critical
applications like access control and even payment.

While smartcards by themselves are considered safe and secure, especially
contactless cards are vulnerable to relay attacks. This issue is well-known (see
[6, 7, 10]) but can be circumvented by isolating the card from the surrounding
world when it is not in use. However, the integration of smartcard functionality
into NFC-enabled mobile phones introduces a new and unexplored attack vector.
For example, a fundamental di↵erence between a regular smartcard and an NFC-
enabled mobile phone is the network connectivity: A smartcard can easily be
isolated from the surrounding world by means of shielding. In contrast to that, a
mobile phone and its emulated smartcard are permanently connected to a global

1 E.g. NFC Wired Interface (NFC-WI) or Single Wire Protocol (SWP)

2 Michael Roland, Josef Langer, Josef Scharinger



network (cf. intrusion paths identified by Jeon et al. [9]). A further problem arises
from the possibility to install arbitrary – possibly untrusted – applications on
current mobile phones (specifically smart phones).

In this publication we investigate the potential of these new and unexplored
weaknesses. We focus on a relay attack scenario which could be abused to re-
motely use a victim’s emulated smartcard without the victim’s knowledge. A
system for relay attacks over the internet is introduced. Measurement results of
the delays induced by this relay system are provided to verify this relay system.
Finally, we evaluate the feasibility of relay attacks based on these measurement
results.

1.1 Smartcard communication

Low-level communication protocols for smartcards depend on the communication
interface and are either character-based or frame-based. For contactless smart-
cards a frame-based protocol is standardized in ISO/IEC 14443. Application
level protocols attach on top of these low-level protocols.

An application level communication protocol for smartcards is defined in
ISO/IEC 7816-4. This protocol applies to both, contact and contactless smart-
cards. Command-and-response pairs are called APDUs (application protocol
data units). Commands are always sent from the reader to the card while re-
sponses are always sent from the card to the reader.

1.2 Android’s Secure Element API

While Android-based NFC-enabled mobile phones, like the Nexus S or the
Galaxy Nexus, have an embedded secure element and also support UICC-based
secure elements, there currently is no public API to access the secure element
on the Android platform.

However, Google has already introduced its Google Wallet, which is available
for the Nexus S in certain regions. For this wallet to work, Google secretly
integrated an API called com.android.nfc extras into their Android platform.
This API can be used to access the embedded secure element and is available
since Android 2.3.4. Yet, this interface is not included in the public software
development kit (SDK) and, thus, is hidden from the average programmer.

The secure element API consists of two classes: NfcAdapterExtras and Nfc-
ExecutionEnvironment. NfcAdapterExtras is used to enable and disable exter-
nal card emulation (setCardEmulationRoute()) and to retrieve an instance of
the secure element’s NfcExecutionEnvironment class (getEmbeddedExecution-
Environment()). NfcExecutionEnvironment is used to exchange APDUs with
the embedded secure element. This class provides methods to open and close the
internal connection to the secure element (open(), close()) and to exchange
APDU sequences with the secure element (transceive()).

In Android 2.3.4 this secure element API could be accessed by any application
that held the permission to use NFC. In later versions this has been changed to

Relay Attacks on Secure Element-enabled Mobile Devices 3



a special permission named com.android.nfc.permission.NFCEE ADMIN. This
special permission is only granted to applications which are signed with the same
certificate as the NFC system service. Consequently, access to the secure element
is restricted to applications trusted by the manufacturer/provider of the NFC
system service.

2 Related Work

In [13], we evaluate APIs for SE access on various platforms. The level of pro-
tection for such APIs varies widely. A major weakness, that all access control
schemes for SE APIs have in common, is that they all require the operating
system and the mobile device hardware to be trusted. For instance, an attacker
who has control over the operating system or the device hardware can either
bypass security measures of the SE API or even bypass the whole SE API.

We further introduce two new attack scenarios against secure element-enabled
mobile phones [13]:

– A denial of service (DoS) attack that can be abused to permanently lock
an embedded SE and, consequently, render an NFC-enabled mobile phone
unusable for card emulation applications.

– A relay attack that can be abused to access a SE from anywhere over an
Internet connection.

Both attack scenarios can be applied to several existing NFC-enabled mobile
phones, e.g. Nokia 6131, Nokia 6212 and Samsung Nexus S.

Hancke [6] first presented a successful relay attack against ISO/IEC 14443
smartcards in 2005. Compared to that scenario, where the demodulated RF
signals are transmitted over an alternative carrier, the relay attack introduced
in [13] relays application level commands (APDUs). This is necessary as SE APIs
typically provide an APDU-based interface.

Application layer security protocols cannot prevent relay attacks (cf. Mafia
fraud by Desmedt et al. [2] and conclusions about RFID and NFC protocols by
Hancke [6], Kfir and Wool [10] and Francis et al. [4]). The reason is that the
relay can be seen as an elongation of the communication medium. Messages are
transferred through the relay channel without any modification. Thus, the only
measureable di↵erence is the propagation delay through the relay channel.

3 Attacking Mobile Phones

The application programming interface and the resources of mobile devices are
usually restricted by access control policies. Access to critical parts of the sys-
tem is typically shielded from untrusted applications. However, these are usu-
ally software-based restrictions enforced by the operating system. Thus, if an
untrusted application can manipulate the behavior of the operating system or
if it can elevate its privileges to the level of a trusted application, it can easily
circumvent any access restrictions.

4 Michael Roland, Josef Langer, Josef Scharinger



For many mobile phone platforms there exist methods to circumvent security
measures. Popular techniques used on many smart phones are “jail breaking”
and “rooting”. Jail breaking refers to escaping the restrictions imposed by the
operating system, so that an application can access resources it usually could not
access. Rooting refers to an even sever scenario where the user or an application
gains full access to the whole system. Both methods are often used intentionally
by device owners/legitimate users to circumvent digital rights management or
to gain “improved” control over their device.

However, intentional jail breaking and rooting imposes a significant security
risk. Not only the legitimate user gains access to – otherwise restricted – resources
but also an attacker gets these same possibilities. Thus, a jail broken or rooted
phone is significantly more vulnerable to attacks.

On the one hand, rooting can be done by using vendor-supplied methods.
Such methods typically exist for development phones (e.g. for the Google Nexus
series of Android smart phones). They are usually implemented in a safe way
that protects the user from malicious activities. For example, rooting a Google
Nexus phone according to the o�cial instructions will wipe all data on the phone.
Thus, this method of rooting cannot be used to gain access to sensitive user data
that resides on the device.

On the other hand, jail breaking and rooting can be done by exploiting
vulnerabilities in software or hardware. These exploits are not only viable for
intentional jail breaking and rooting by the device owners/legitimate users. The
same exploits can be integrated in virtually any application. That way a ma-
licious application could elevate its permissions without the (legitimate) user’s
knowledge.

Lately the topic of mobile phone security experiences significantly increasing
awareness. Recent research activities include the assessment of vulnerabilities
and threats and the uncovering of actual attack scenarios. According to Kasper-
sky Lab’s monthly malware statistics [5] the trend towards threats and malware
for Android (and mobile platforms in general) has dramatically increased within
the last year. Therefore, it seems unlikely that this trend will be interrupted any
time soon.

This is trend is confirmed by the most recent exploits for the Android plat-
form:

– Levitator2, published in Oct. 2011, works up to Android 2.3.5,
– zergRush3, published in Oct. 2011, works up to Android 2.3.3,
– GingerBreak4, published in Apr. 2011, works up to Android 2.3.3,
– ZimperLich, KillingInTheName, RageAgainstTheCage, Exploid and others

for earlier versions.

Soon after a vulnerability gets fixed, a new exploit is published. If this trend
continues, it’s only a matter of time until exploits for the most recent versions
of the Android platform become available.

2 http://jon.oberheide.org/files/levitator.c
3 http://forum.xda-developers.com/showthread.php?t=1296916
4 http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html

Relay Attacks on Secure Element-enabled Mobile Devices 5



NFC-enabled Mobile Phone

Secure Element

Application Processor

Secure 
Element 

API

Relay 
Software

Network 
API

Card Emulator

e.g. Point-of-Sale Terminal

Network API Card Emulation API

e.g. TCP/IP 

connection

NFC/RFID link

NFC hardware capable of card emulation

Card Emulator Software

Fig. 1. Relay scenario: Relay software is installed on the victim’s phone. The software
relays APDUs between the secure element and the card emulator across a network (cel-
lular network, WiFi, Bluetooth...) The card emulator emulates a contactless smartcard
that interacts with a card reader (point-of-sale terminal, access control reader...) The
card emulator routes all APDU commands received from the point-of-sale terminal
through the network interface to the relay software on the victim’s mobile phone. As
soon as the response APDU is received from the relay software, it is forwarded to the
reader.

As Höbarth and Mayrhofer [8] show, it is even possible to create frameworks
for permanent on-device privilege escalation. Such a framework would use the
most recent exploits for a certain platform to gain temporary super-user priv-
ileges. These elevated privileges would then be used to permanently root the
device. Such a framework can be integrated by an attacker into any malicious
application.

4 Relay Attack on the Secure Element

In [13], we initially proposed a relay scenario that allows an attacker to remotely
use a victim’s secure element over a network connection. At, for instance, a point-
of-sale or an access control gate, nobody would suspect that the communication
is actually relayed to a remote device.

The scenario of the relay attack is shown in Fig. 1. It consists of four parts:

– a mobile phone (under control of its owner/legitimate user),
– a relay software (under control of the attacker),
– a card emulator (under control of the attacker), and
– a reader device (e.g. at a point-of-sale terminal or at an access control gate).

The relay software is installed on the victim’s mobile phone. This applica-
tion is assumed to have the privileges necessary for access to the secure element
and for communicating over a network. These privileges can be either explicitly
granted to the application or acquired by means of a privilege escalation attack.

6 Michael Roland, Josef Langer, Josef Scharinger



The relay application waits for APDU commands on a network socket and for-
wards these APDUs to the secure element. The responses are then sent back
through the network socket.

The card emulator is a device that is capable of emulating a contactless
smartcard in software. The emulator has RFID/NFC hardware that acts as a
contactless smartcard when put in front of a smartcard reader. The emulator
software forwards the APDU commands (and responses) between a network
socket and the emulator’s RFID/NFC hardware.

There are several di↵erent options when choosing a device for card emulation:

– Building a new device from scratch: This method gives full control over the
whole design process. The card emulator can be put into any inconspicuous
looking shape. The whole RFID protocol stack can be controlled starting
from the lowest layer. Thus, even the protocol levels below APDU commu-
nication can be influenced. For instance the unique identifier (UID) that is
used during the anti-collision sequence can be freely chosen. However, build-
ing a new emulator device from scratch also involves the highest design costs
and e↵ort.

– Using a ready-made RFID card emulation device: Card emulation devices
– like the IAIK HF DemoTag5 or the Proxmark6 – already provide the
hardware platform and a rudimentary software stack for card emulation.
With this choice, it is still possible to control the whole RFID protocol
stack. However, the ready-made devices cannot easily be fit into any desired
shape.

– Using an NFC reader: Some NFC reader devices – like the ACS ACR 122U –
can be put into software card emulation mode. In this mode, the device waits
for APDU commands from an external reader device and forwards them to
the computer. The computer then generates a response that is forwarded to
the reader. The lower protocol layers are handled automatically by the reader
firmware. One disadvantage of this approach is that typical NFC chipsets do
not allow the user to freely choose all parameters for the lower protocol layers.
For example, with the ACR 122U, the unique identifier for the anti-collision
procedure can only start with ’08’, which denotes a random UID. Another
disadvantage is that this device can only emulate the ISO/IEC 14443 Type
A communication protocol.

– Using an NFC-enabled mobile phone: Another alternative is the use of
NFC-enabled mobile phones as software card emulation devices. Currently,
only RIM’s BlackBerry mobile phones are known to support software card
emulation. Yet, other mobile phones’ firmware could possibly be adapted
to support software card emulation as well. Using a mobile phone as card
emulation device has several advantages. First, the mobile phone already has
the form-factor that is expected for NFC contactless transactions (i.e. as the
device that actually carries the secure element). Second, the mobile phone
has a network interface that can be used to connect to the relay software.

5 http://jce.iaik.tugraz.at/Products/RFID-Components/HF-RFID-Demo-Tag
6 http://www.proxmark.org/

Relay Attacks on Secure Element-enabled Mobile Devices 7



Third, the mobile phone has all the processing capabilities to transfer APDU
commands between its network interface and its card emulation hardware.
The API documentation for the BlackBerry software card emulation API [12]
suggests, that both, ISO/IEC 14443 Type A and Type B, communication
protocols can be emulated and, that even low-level parameters – like the
UID – can be freely chosen.

4.1 Limitations by the Communication Protocol

Hancke et al. [7] conclude that the timing constraints of ISO/IEC 14443 are too
loose to provide adequate protection against relay attacks.

ISO/IEC 14443 specifies certain delays and timeouts. First, there is the frame
delay time (ISO/IEC 14443-3 Type A) between commands sent by the reader and
responses sent by the card. For commands that are used during anti-collision,
the frame delay time defines a strict timing between requests and responses.
This is necessary to detect collisions during the anti-collision procedure. For all
other commands, the frame delay time specifies only a minimum delay. As our
relay system operates on the APDU layer, these delays are handled by the card
emulator and do not apply to the relay path.

Second, there is the frame waiting time (ISO/IEC 14443-4). The frame wait-
ing time specifies the maximum timeout between a command frame sent by the
reader and the response received from the card. This timeout is defined by the
card and can range between about 302 us and 4949ms. The timeout can be ex-
tended on a per-command basis by the card using frame waiting time extension
commands. Thus, this timeout does not a↵ect the APDU layer. The timeout
extension can be handled by the card emulator and does not apply to the relay
path. Even if frame waiting time extension would not be used, relaying APDUs
may take almost 5 seconds without violating this timeout.

4.2 Implementation

We implemented a proof-of-concept of the relay system to verify our assumptions.
Our relay system (see Fig. 2) consists of the following parts:

– Samsung Nexus S with Android 2.3.4,
– relay software (Android app) that accesses the hidden secure element API

(com.android.nfc extras) and relays commands over a TCP socket,
– card emulation software (Python script) that controls the card emulation

hardware and relays commands over a TCP socket,
– ACS ACR 122U NFC reader in software card emulation mode,
– HID OMNIKEY 5321 USB contactless reader,
– reader application (Java SE).

As we did not have access to a mobile phone that had real applications (e.g.
a credit card or an access control applet) on its secure element, we decided to
access the GlobalPlatform card manager application (issuer security domain) for
our tests of the relay system. Therefore, our reader application sent the following
APDU commands:

8 Michael Roland, Josef Langer, Josef Scharinger



Samsung Nexus S

Secure Element (SmartMX)

Android 2.3.4

Secure 
Element 

API

Relay 
Software

Network 
API

Windows 7 PC, Python 2.7

Linux PC, Java SE

Network 
API

PC/SC API
(with reader specific 

commands)TCP
connection
(over WiFi /

mobile
network)

NFC/
RFID
link

ACS ACR 
122U

Card Emulator Python Script

PC/SC 
API

HID 
OMNIKEY 
5321 USB

Reader 
application

Fig. 2. Proof-of-concept relay system: Pre-existing components are drawn with gray
background. Our customized components are drawn with white background.

Secure ElementRelay SoftwareCard EmulatorReader Application

Send APDU command
(over PC/SC) Send APDU command

(over TCP socket) Send APDU command
(transceive() method)

Establish connection
(open() method)

Connection establishedConnection established

Establish connection

Wait for APDU commands

Process
response

Receive from TCP socket

Send APDU response
(result of transceive())

Send APDU response
(over TCP socket)Send APDU response

(card emulatior)

Receive from card emulator

Receive from TCP socket

Wait for APDU commands

Initialize card emulator

Fig. 3. Command/APDU flow diagram.

1. SELECT card manager by AID: 00A4040008A000000003000000, expected
response: File control information template (105 byte)

2. GET DATA for data object ’65’: 00CA006500, expected response: Reference
data not found error (2 byte)

3. GET DATA for data object ’66’: 00CA006600, expected response: Card
data/security domain management data (78 byte)

Fig. 3 shows the command/APDU flow diagram of the relay system. Initially
the card emulator establishes a connection to the victim’s secure element. When
the card emulator is put in range of an RFID/NFC reader, the reader sends an
APDU command. This command is forwarded to the secure element. The secure
element generates a response and the relay software, then, returns this response
back through the card emulator to the reader.

In our implementation we designed the card emulator as a server to which
the relay software on any victim’s mobile phone can connect. That way, the card

Relay Attacks on Secure Element-enabled Mobile Devices 9



(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Fig. 4. Histograms of delay between command and response at the reader side for the
APDU “SELECT card manager by AID” for 5000 repetitions. The histogram is divided
into 160 bins. Each bin has a width of 50ms. The last bin also contains all measurements
above 8000ms. (a) is zoomed from 0 to 50ms with 1-ms-bins. (b) is zoomed from 0 to
150ms with 5-ms-bins. (c) is zoomed from 0 to 500ms with 5-ms-bins.

emulator can choose one of the connected secure elements as soon as a reader
is in range. This method also bypasses firewalls that protect the victim’s device
from incoming TCP connections.

4.3 Measurement results

To verify the feasibility of our relay system, we compared four di↵erent scenarios:

1. Direct access to the secure element with an external reader (i.e. no relay),
2. direct access to the secure element with an app on the phone,
3. access through the relay system using a direct WiFi link between the phone

and the card emulator,
4. access through the relay system using the mobile phone network and an

Internet link between the phone and the card emulator.

Fig. 4 shows the histograms of the delay between command and response
at the reader side for the APDU “SELECT card manager by AID” for 5000
repetitions of the command-response sequence. The other APDUs mentioned in
section 4.2 lead to similar results that only di↵ered in delays due to command

10 Michael Roland, Josef Langer, Josef Scharinger



lengths. Except for scenario 2, the phone/the emulator was isolated from the
reader between each repetition.

The delay for scenario 1 centers on about 30ms. On-device access to the
secure element (scenario 2) already takes significantly longer (50 to 80ms). The
delay over a WiFi connection (scenario 3) ranges from 190 to 260ms. Thus, the
WiFi relay link adds a delay in the range of 100 and 210ms. For scenario 4, the
delays start at about 200ms and have a significant peak around 300ms. Yet,
more than 55 percent of the measured delays are above 1000ms, more than 19
percent are above 4000ms, and more than 2 percent are above 10000ms.

Typical limits for contactless transactions in transport ticketing and payment
are between 300 to 500ms (cf. [14]). These limits apply to overall transactions,
which, typically, consist of multiple command-response pairs. The EMV spec-
ification for contactless payment systems [3] specifies a limit of 500ms for a
contactless payment transaction. However, a payment terminal is not required
to interrupt a transaction if it takes longer than this limit. The limit is merely
meant as a benchmark target to maintain user experience.

Consequently, both relay scenarios are likely to fail these timings if transac-
tions consist of several command-response pairs. Nevertheless, as the limits are
not meant as hard timeouts (after which transactions are canceled), we do not
see any problematic side e↵ects of failed timings. For the relay scenario across
the mobile network and the Internet, most of the tests showed a delay below
4000ms. While this is significantly longer than typical delays for contactless
transactions, it is still below the timeout limits (without timeout extension) im-
posed by the ISO/IEC 14443 standard. As contactless transactions (especially
with mobile phones) are quite new and users are still not used to them, we as-
sume that even long delays (in the order of 20 to 30 seconds per transaction)
will not raise suspicions.

5 Conclusion and Outlook

We presented a new relay attack scenario against secure elements. With this
scenario an attacker can use a secure element in a remote mobile phone over
the Internet. Due to limited security features of current mobile phone systems,
attackers are likely to perform such attacks even if the secure element APIs have
mechanisms to prevent unauthorized access.

We described a possible implementation based on Android devices. We con-
ducted several measurements to prove the feasibility of our implementation. The
results show that our attack scenario is technically possible due to the lack of
strict timing requirements in the communication protocols. Attacks are possible
even over long distances. Nevertheless, a relay attack induces significantly longer
delays than with usual contactless transactions.

Future work is necessary to find adequate solutions for avoiding on-device
relay attacks. A possible direction would be the adoption of trusted computing
concepts for mobile phone systems. That way, the SE could recognize if the
application processor is in a trusted state. Another possibility is the introduction

Relay Attacks on Secure Element-enabled Mobile Devices 11



of strict timeouts in contactless transactions. Timeouts could also be based on
a history of measured command-response delays from previous transactions to
detect significant deviations in comparison to previous transactions. A third
possibility would be the explicit activation of card emulation by user interaction
(e.g. by pressing a button on the mobile phone that is directly connected to the
SE.) However, this would significantly complicate over-the-air card management.

References

1. Clark, S.: RIM releases BlackBerry NFC APIs. Near Field Commu-
nications World (May 2011), http://www.nfcworld.com/2011/05/31/37778/
rim-releases-blackberry-nfc-apis/

2. Desmedt, Y., Goutier, C., Bengio, S.: Special Uses and Abuses of the Fiat-Shamir
Passport Protocol (extended abstract). In: Advances in Cryptology — CRYPTO
’87, LNCS, vol. 293/2006, pp. 21–39. Springer Berlin Heidelberg (1988)

3. EMVCo: EMV Contactless Specifications for Payment Systems – Book A: Archi-
tecture and General Requirements, Version 2.1 (Mar 2011)

4. Francis, L., Hancke, G.P., Mayes, K.E., Markantonakis, K.: Practical NFC Peer-
to-Peer Relay Attack Using Mobile Phones. In: Radio Frequency Identification:
Security and Privacy Issues, LNCS, vol. 6370/2010, pp. 35–49. Springer Berlin
Heidelberg (2010)

5. Gostev, A.: Monthly Malware Statistics: August 2011 (Sep 2011), http://www.
securelist.com/analysis/204792190

6. Hancke, G.P.: A Practical Relay Attack on ISO 14443 Proximity Cards (Jan 2005),
http://www.rfidblog.org.uk/hancke-rfidrelay.pdf, (retrieved: 20 Sep 2011)

7. Hancke, G.P., Mayes, K.E., Markantonakis, K.: Confidence in smart token prox-
imity: Relay attacks revisited. Computers & Security 28(7), 615–627 (2009)

8. Höbarth, S., Mayrhofer, R.: A framework for on-device privilege escalation exploit
execution on Android. In: Proceedings of IWSSI/SPMU (Jun 2011)

9. Jeon, W., Kim, J., Lee, Y., Won, D.: A Practical Analysis of Smartphone Security.
In: Human Interface and the Management of Information. Interacting with Infor-
mation. LNCS, vol. 6771/2011, pp. 311–320. Springer Berlin Heidelberg (2011)

10. Kfir, Z., Wool, A.: Picking Virtual Pockets using Relay Attacks on Contactless
Smartcard. In: Proceedings of the First International Conference on Security and
Privacy for Emerging Areas in Communications Networks (SECURECOMM’05).
pp. 47–58 (Sep 2005)

11. McLean, H.: Nokia: No mobile wallet support in current NFC phones. Near
Field Communications World (Jul 2011), http://www.nfcworld.com/2011/07/21/
38715/nokia-no-mobile-wallet-support-in-current-nfc-phones/

12. RIM: Blackberry API 7.0.0: Package net.rim.device.api.io.nfc.emulation (2011),
http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/
api/io/nfc/emulation/package-summary.html

13. Roland, M., Langer, J., Scharinger, J.: Practical Attack Scenarios on Secure
Element-enabled Mobile Devices. In: Proceedings of the Fourth International
Workshop on Near Field Communication (NFC 2012). p. 6. Helsinki, Finland (Mar
2012)

14. Smart Card Alliance: Transit and Contactless Open Payments: An Emerging
Approach for Fare Collection (Nov 2011), http://www.smartcardalliance.org/
resources/pdf/Open_Payments_WP_110811.pdf

12 Michael Roland, Josef Langer, Josef Scharinger


