
k-Shares: A Privacy Preserving Reputation
Protocol for Decentralized Environments

Omar Hasan1, Lionel Brunie1, and Elisa Bertino2

1 INSA Lyon, France
{omar.hasan,lionel.brunie}@insa-lyon.fr

2 Purdue University, IN, USA
bertino@cs.purdue.edu

Abstract. A reputation protocol computes the reputation of an entity
by aggregating the feedback provided by other entities in the system.
Reputation makes entities accountable for their behavior. Honest feed-
back is clearly a pre-requisite for accurate reputation scores. However, it
has been observed that entities often hesitate in providing honest feed-
back, mainly due to the fear of retaliation. We present a privacy pre-
serving reputation protocol which enables entities to provide feedback in
a private and thus uninhibited manner. The protocol, termed k-shares,
is oriented for decentralized environments. The protocol has linear mes-
sage complexity under the semi-honest adversarial model, which is an
improvement over comparable reputation protocols.

1 Introduction

In recent years, reputation systems have gained popularity as a solution for
securing distributed applications from misuse by dishonest entities. A reputation
system computes the reputation scores of the entities in the system based on the
feedback provided by fellow entities. A popular reputation system is the eBay
reputation system (ebay.com), which is used to discourage fraudulent activities
in e-commerce. Other well-known examples include the EigenTrust [1] reputation
system and the Advogato.org reputation system [2].

An accurate reputation score is possible only if the feedbacks are accurate.
However, it has been observed that the users of a reputation system may avoid
providing honest feedback [3]. The reasons for such behavior include fear of
retaliation from the target entity or mutual understanding that a feedback value
would be reciprocated.

A solution to the problem of lack of honest feedback is computing reputa-
tion scores in a privacy preserving manner. A privacy preserving protocol for
computing reputation scores operates such that the individual feedback of any
entity is not revealed. The implication of private feedback is that there are no
consequences for the feedback provider and thus he is uninhibited to provide
honest feedback.

In this article, we are interested in developing a privacy preserving reputation
protocol that is decentralized and efficient. Our motivation stems from the obser-
vation that there are currently few if any efficient privacy preserving reputation

protocols for decentralized environments, which include peer-to-peer networks,
MANETs, and decentralized social networks, such as FOAF (foaf-project.org).
The reader is referred to section 7 for related work.

We propose the k-Shares protocol, which is decentralized as well as efficient
(linear message complexity). The protocol is shown to be secure under the semi-
honest adversarial model. Extensions for security under the malicious model are
also discussed.

2 General Framework

2.1 Agents, Trust, and Reputation

We model our environment as a multi-agent environment. Set A is defined as
the set of all agents in the environment. |A| = N . We subscribe to the definition
of trust by sociologist Diego Gambetta [4], which is one of the most commonly
accepted definitions of trust. Our formal definition captures the characteristics
of trust identified in Gambetta’s definition, which include: 1) Binary-Relational
and Directional, 2) Contextual, and 3) Quantifiable as Subjective Probability.

Definition 1. Trust. Let the trust of a truster a in a trustee b be defined as the
tuple: 〈aTb, ψ, P (perform(a, b, ψ) = true)〉. T is a binary relation on the set A.
aTb implies that a has a trust relationship with b or simply that a trusts b. The
binary relation T is non-reflexive, asymmetric, and non-transitive. The context
of a truster a’s trust in a trustee b is an action ψ that the truster a anticipates
the trustee b to perform. The set of all actions is given as Ψ . The subjective
probability P (perform((a, b), ψ) = true) is the quantification of a truster a’s
trust in a trustee b. perform((a, b), ψ) is a function, such that: perform : T ×
Ψ → {true, false}. perform outputs true if the trustee b does in fact perform
the action anticipated by the truster a. On the contrary, if the trustee does not
perform the anticipated action, the function outputs false. When the context ψ
is clear, lab ≡ P (perform((a, b), ψ) = true).

Some examples of actions: “prescribe correct medicine”, “repair car”, “deliver
product sold online”, etc.

Definition 2. Source Agent. An agent a is said to be a source agent of an
agent b in the context of an action ψ if a has trust in b in context ψ. In other
words, agent a is a source agent of agent b in context ψ if trust
〈aTb, ψ, P (perform(a, b, ψ) = true)〉 exists. The set of all source agents of an
agent b in context ψ is given as Sb,ψ = {a | 〈aTb, ψ, P (perform(a, b, ψ) = true)〉
exists}. When the context is clear, the notation Sb may be used instead of Sb,ψ.
The quantification of a source agent a’s trust in agent b is referred to as feedback.

Definition 3. Reputation. Let St = {a1 . . . an} be the set of source agents
of an agent t in context ψ. This implies that each agent a ∈ St has the trust
〈aT t, ψ, P (perform(a, t, ψ) = true)〉 in agent t. Then the reputation of agent
t in context ψ is given as the function: rep(P (perform(a1, t, ψ) = true), . . . ,

P (perform(an, t, ψ) = true)), or in simpler notation: rep(la1t, . . . , lant), such
that: rep : [0, 1]1 × . . .× [0, 1]n → R. The reputation of an agent t is represented
by the variable rt,ψ, or rt when the context is clear.

Definition 4. Function rep⊕. Let function rep⊕ be a realization of the func-
tion rep. rep⊕ : [0, 1]1 × . . . × [0, 1]n → [0, 1]. rep⊕ is implemented as follows
(la1t . . . lant are feedback values in a context ψ): rep⊕(la1t . . . lant) = la1t+...+lant

n =∑n
i=1 lait
n .

We have defined the reputation of an agent as any function that aggregates
the feedback of its source agents. The function rep⊕ implements the reputation
of an agent t as the mean of the feedbacks of all its source agents. Our decision
to define reputation in such simple but intuitive terms is influenced by the eBay
reputation system (ebay.com). The eBay reputation system, which is one of the
most successful reputation systems, represents reputation as the simple sum of all
feedbacks. We go one step further and derive the average from the sum in order to
normalize the reputation values. Please note that rep⊕ is a function constructed
from summation. With summation, it is possible to model reputation as any
function that can be approximated as a polynomial expression.

Definition 5. Reputation Protocol. Let Π be a multi-party protocol. Then Π
is a Reputation Protocol, if 1) the participants of the protocol include: a querying
agent q, a target agent t and all n source agents of t in a context ψ, 2) the inputs
include: the feedbacks of the source agents in context ψ, and 3) the output of the
protocol is: agent q learns the reputation rt,ψ of agent t.

2.2 Adversary

We refer to the coalition of dishonest agents as the adversary. Adversarial models:

Semi-Honest. In the semi-honest (honest-but-curious) model, the agents al-
ways execute the protocol according to specification. The adversary abstains
from wiretapping and tampering of the communication channels. However,
within these constraints, the adversary passively attempts to learn the in-
puts of honest agents by using intermediate information received during the
protocol.

Malicious. Malicious agents are not bound to conform to the protocol. They
may attempt to learn private inputs as well as to disrupt the protocol for hon-
est agents. The reasons for disrupting the protocol may range from gaining
illegitimate advantage over honest agents to completely denying the service
of the protocol to honest agents.

In this paper, we propose a solution for the first model. Ideas for an efficient
solution for the second model are discussed in section 5.

2.3 Privacy

Definition 6. Private Data. Let x be some data and an agent a be the owner
of x. Then x is agent a’s private data if agent a desires that no other agent
learns x. An exception is those agents to whom a reveals x herself. However, if
a reveals x to an agent b, then a desires that b does not use x to infer more
information. Moreover, a desires that b does not reveal x to any third party.

Definition 7. Preserving Privacy (by an Agent). Let x be an agent a’s
private data. Then an agent b is said to preserve the privacy of agent a, if 1) a
reveals x to b, 2) b does not use x to infer more information, and 3) b does not
reveal x to any third party. We define action ρ = “preserve privacy”.

The action “preserve privacy” is synonymous with the action “be honest”,
since an agent preserves privacy only if it is honest, and an honest agent always
preserves privacy since it has no ulterior motives.

Definition 8. Trusted Third Party (TTP). Let S ⊆ A be a set of n agents,
and TTPS ∈ A be an agent. Then TTPS is a Trusted Third Party (TTP) for
the set of agents S if for each a ∈ S, P (perform(a, TTPS , ρ) = true) = 1.

We adopt the Ideal-Real approach [5] to formalize the privacy preservation
property of a protocol. In this article we use the term high as a probability
variable that may be realized to a specific value according to the security needs of
an application. For example, in the experiments (section 6) on the Advogato.org
web of trust, we consider high probability as 0.90. Consequently, low probability
is the complement of high probability.

Definition 9. Ideal Privacy Preserving Reputation Protocol. Let Π be a
reputation protocol, which includes as participants: a querying agent q, a target
agent t, and St = St,ψ, the set of all n source agents of t in context ψ. Then
Π is an ideal privacy preserving reputation protocol under a given adversarial
model, if: 1) the inputs of all n source agents of t are private; 2) TTPSt is also
a participant; 3) m < n of the source agents (given as set M) and agents q and
t are considered to be dishonest, however, q wishes to learn the correct output;
4) agents St − M and TTPSt are honest; 5) as part of the protocol, TTPSt
receives the private inputs from the source agents and outputs the reputation
rt,ψ to agent q; and 6) over the course of the protocol, the private input of each
agent a ∈ St −M is revealed only to TTPSt .

In an ideal privacy preserving reputation protocol, it is assumed that for each
agent a ∈ St −M , the adversary does not gain any more information about the
private input of agent a from the protocol other than what it can deduce from
what it knows before the execution of the protocol and the output, with probability
P (perform(a, TTPSt , ρ) = true), under the given adversarial model.

Definition 10. Real Privacy Preserving Reputation Protocol. Let I be
an ideal privacy preserving reputation protocol. Then R is a real privacy preserv-
ing reputation protocol under a given adversarial model, if: 1) R has the same

parameters (participants, private inputs, output, adversary, honest agents, setup,
etc.) as I, except that there is no TTPSt as a participant; and 2) the adversary
learns no more information about the private input of an agent a than it learns
in protocol I, with high probability, when both protocols are operating under the
given adversarial model.

3 Problem Definition

Definition 11. Problem Definition. Let St,ψ = {a1 . . . an} be the set of all
source agents of agent t in the context of action ψ. Find a reputation protocol
Π, which takes private input lat ≡ P (perform(a, t, ψ) = true) from each agent
a ∈ St, and outputs the reputation rt,ψ of the target agent t to a querying agent
q. Reputation is realized as rep⊕. Agents q, t, and m < n of the source agents
are considered to be dishonest, however, q wishes to learn the correct output.
The reputation protocol Π is required to be decentralized and secure under the
semi-honest model.

4 The k-Shares Reputation Protocol

In this section we present our k-shares protocol, which is a real privacy preserv-
ing reputation protocol under the semi-honest model. The k-shares protocol is
inspired by a protocol in [6] (section 5.2). However, our protocol has a lower
message complexity of only O(kn) as opposed to the complexity of O(n2) of the
protocol in [6]. In the experiments we observe that k can be set as low as 2, while
preserving the privacy of a high majority of agents. Moreover, the extended ver-
sion of our protocol allows agents to abstain when their privacy is not assured.
The important steps of the protocol are outlined below.

1. Initiate. The protocol is initiated by a querying agent q to determine the
reputation rt,ψ of a target agent t. Agent q retrieves St ≡ St,ψ, the set of
source agents of agent t in context ψ. Agent q then sends St to each agent
a ∈ St.

2. Select Trustworthy Agents. Each agent a ∈ St selects upto k other
agents in St. Let’s refer to these agents selected by a as the set Ua =
{ua,1 . . . ua,ka}, where 1 ≤ ka ≤ k. Agent a selects these agents such that:
P (perform(a, ua,1, ρ) = false) × . . . × P (perform(a, ua,ka , ρ) = false) is
low. That is, the probability that all of the selected agents will collude to
break agent a’s privacy is low.

3. Prepare Shares. Agent a then prepares ka+ 1 shares of its secret feedback
value lat. The shares, given as: xa,1 . . .xa,ka+1, are prepared as follows:
The first ka shares are random numbers uniformly distributed over a large
interval. The last share is selected such that:

∑ka+1
i=1 xa,i = lat. That is, the

sum of the shares is equal to the feedback value. Since each of the ka + 1
shares is a number uniformly distributed over a large interval, no information
about the secret can be learnt unless all of the shares are known.

4. Send Shares. Agent a sends the set Ua = {ua,1 . . . ua,ka} to agent q. Agent
a sends xa,i to agent ua,i, where i ∈ {1 . . . ka}.

5. Receive Shares. Agent q receives Ua from each agent a ∈ St. Then for each
agent a, agent q: 1) compiles the list of agents from whom a should expect
to receive shares, and 2) sends this list to agent a. Agent a then proceeds to
receive shares from the agents on the list provided by q.

6. Compute Sums. Agent a computes σa, the sum all shares received and its
own final share xa,ka+1. Agent a sends the sum σa to q.

7. Compute Reputation. Agent q receives the sum σa from each agent a ∈
St. q computes rt,ψ = (

∑
a∈St σa)/n.

4.1 Protocol Specification

The protocol is specified in Figure 1. The function set of trustworthy(a, S)
returns a set of agents Ua = {ua,1 . . . ua,ka}, where 1 ≤ ka ≤ k, and Ua ⊆
S. The set Ua is selected such that: P (perform(a, ua,1, ρ) = false) × . . . ×
P (perform(a, ua,ka , ρ) = false) is low, with the minimum possible ka.

4.2 Security Analysis

Correctness. Each agent a ∈ St prepares the shares xa,1 . . . xa,ka+1 of its
feedback value lat, such that:

∑ka+1
j=1 xa,j = lat. The sum of the feedback values

of all agents in St = {a1 . . . an} is given as:
∑n
i=1 lait. Thus, the sum of the

feedback values of all agents in St can be stated as:
∑n
i=1(

∑kai+1

j=1 xai,j). That
is, the sum of all shares of all agents.

Each agent a ∈ St provides agent q the set Ua, which is the set of agents
whom a is going to send its shares. After q has received this set from all agents
in St, it compiles and sends to each agent a, the set Ja, which is the set of agents
who are in the process of sending a share to agent a. Thus, each agent a knows
exactly which and how many agents, it will receive a share from. When agent a
has received all of those shares, it sends σa, the sum of all shares received and
its final share, to agent q. Previously, each agent a ∈ St sends each of his shares
xa,1 . . . xa,ka , once to only one other agent, and adds the final share xa,ka+1 once
to his own σa. It follows that the sums σa1 . . . σan include all shares of all agents
and that they include each share only once.

The final value of r in the protocol is: r =
∑n
i=1 σai =

∑n
i=1(

∑kai+1

j=1 xai,j) =∑n
i=1 lait. Thus when q computes rt,ψ = r/n, it is the correct reputation of agent

t in context ψ (Definition 3).

Privacy. Let’s consider an agent a ∈ St. Agent a prepares the shares xa,1 . . . xa,ka+1

of its secret feedback value lat. The first ka shares xa,1 . . . xa,ka are random
numbers uniformly distributed over a large interval [−X,X]. The final share,
xa,ka+1 = lat −

∑ka
i=1 xa,i, is also a number uniformly distributed over a large

interval since it is a function of the first ka shares which are random numbers.
Thus, individually each of the shares does not reveal any information about the

secret feedback value lat. Moreover, no information is learnt about lat even if
upto ka shares are known, since there sum would be some random number uni-
formly distributed over a large interval. The only case in which information can
be gained about lat is if all ka + 1 shares are known. Then, lat =

∑ka+1
i=1 xa,i.

We now analyze if the ka + 1 shares of an agent a can be learnt by the
adversary from the protocol.

Agent a sends each share xa,i only to agent ua,i, where i ∈ {1 . . . ka}. Each
ua,i then computes σua,i , which is the sum of all shares that it receives and its
own final share xua,i,kua,i+1. Even if agent a is the only agent to send agent ua,i
a share, σua,i = xa,i+xua,i,kua,i+1. That is, the sum of agent a’s share and agent
ua,i’s final share. σua,i is a number uniformly distributed over a large interval.
Thus, when agent ua,i sends this number to agent q, it is impossible for q to
distinguish the individual shares from the number. Therefore, each share xa,i
that agent a sends to agent ua,i will only be known to agent ua,i. Unless, agent
ua,i is dishonest. The probability that agent ua,i is dishonest, that is, it will
attempt to breach agent a’s privacy is given as: P (perform(a, ua,i, ρ) = false).

To learn the first ka shares of agent a, all agents ua,1 . . . ua,ka would have to be
dishonest. The probability of this scenario is given as: P (perform(a, ua,1, ρ) =
false)× . . .× P (perform(a, ua,ka , ρ) = false).

Even in the above scenario, the adversary does not gain information about
lat, without the knowledge of agent a’s final share xa,ka+1. However, agent a has
to send σa = xa,ka+1 +

∑
v∈Ja xv, and agent a has no control over the

∑
v∈Ja xv

portion of the equation. Therefore, we assume that agent q learns the final share
of agent a.

Thus the probability that the protocol will not preserve agent a’s privacy can
be stated as: P (perform(a, ua,1, ρ) = false) × . . . × P (perform(a, ua,ka , ρ) =
false). If we assume that the agents ua,1 . . . ua,ka are selected such that this
probability is low, then with high probability, the adversary learns no more
information about lat than it can learn in an ideal protocol with what it knows
before the execution of the protocol and the outcome.

The protocol Semi-Honest-k-Shares is a real privacy preserving reputation
protocol (Definition 10) under the semi-honest model, since: 1) Semi-Honest-k-
Shares has the same parameters as an ideal protocol (except the TTP), and 2)
the adversary learns no more information about the private input of an agent a in
Semi-Honest-k-Shares than it learns in an ideal protocol, with high probability,
under the semi-honest adversarial model.

4.3 An Extension

The privacy of the k-Shares protocol depends on the assumption that each agent
a ∈ St will find trustworthy agents in St. However, the protocol may be extended
such that agents are allowed to abstain when they don’t find trustworthy agents.
In that case, an agent would generate two shares whose sum equals zero. One
of the shares would be sent to a random source agent and the other to the
querying agent along with any shares received added to it. In section 6.2, we

observe that the protocol computes sufficiently accurate reputation scores even
if a large number of agents abstain.

4.4 Complexity Analysis

The protocol requires 4n + O(kn) + 2 messages to be exchanged (complexity:
O(n)). In terms of bandwidth used, the protocol requires transmission of the
following amount of information: n2+5n+O(n2)+O(3kn) agent IDs (complexity:
O(n2)), and n+O(kn) numbers (complexity: O(n)).

The protocol requires 4n+O(kn)+2 messages to be exchanged (complexity:
O(n)). In terms of bandwidth used, the protocol requires transmission of the
following amount of information: n2+5n+O(n2)+O(3kn) agent IDs (complexity:
O(n2)), and n+O(kn) numbers (complexity: O(n)).

4.5 Discussion

We pose the following question: Why send shares of the secret feedback value
to n − 1 potentially unknown agents when privacy can be assured by sending
shares to only k < n − 1 trustworthy agents? In the k-Shares protocol, each
agent a relies on at most k agents who are selected based on a’s knowledge of
their trustworthiness in the context of preserving privacy. This is in contrast to
the protocol in [6] which requires each agent to send shares to all other n − 1
source agents in the protocol. As we observe in section 6, the privacy of a high
majority of agents can be assured with k as small as 2. Moreover, increasing k
to values approaching n− 1 has no significant advantage.

5 Extensions for the Malicious Model – Future Work

Malicious agents may take the following additional actions: 1) drop messages,
2) add values that are out of range. The solution that we propose for the first
problem is to extend the k-Shares protocol as follows: all messages are encrypted
with an additive homomorphic cryptosystem, and relayed through the querying
agent. Thus, the querying agent would know if an agent has dropped a message.
The solution to the second problem is that along with its shares, each source
agent provides a zero knowledge proof demonstrating that the sum of the shares
lies in the correct range. Wiretapping and tampering may be prevented by se-
curing communication channels with a protocol such as SSL or IPSec. These
extensions would raise the computational complexity of the protocol, however
the message complexity would remain as O(n). This is in contrast to the protocol
for the malicious model in [6] which has a complexity of O(n3).

6 Experiments

6.1 The Dataset: Advogato.org

We use the real web of trust of Advogato.org [2] as the dataset for our experi-
ments. The members of Advogato rate each other in the context of being active

and responsible members of the open source software developer community. The
choice of feedback values are master, journeyer, apprentice, and observer, with
master being the highest level in that order. The result of these ratings is a rich
web of trust, which comprises of 13, 904 users and 57, 114 trust ratings (Novem-
ber 20, 2009). The distribution of ratings is as follows: master : 31.7%, journeyer :
40.3%, apprentice: 18.7%, and observer : 9.3%.

The members of Advogato are expected to not post spam, not attack the
Advogato trust metric, etc. Thus we posit that on Advogato, the context “be
a responsible member of the open source software developer community”, com-
prises of the context “be honest”. Since we quantify trust as probability, we
substitute the four feedback values of Advogato as follows: master = 0.99,
journeyer = 0.70, apprentice = 0.40, and observer = 0.10. These substitu-
tions are made heuristically based on our experience with Advogato.

For the experiments, we define the lowest acceptable probability that privacy
will be preserved as 0.90. This means that a set of two trustworthy agents must
include either one master rated agent or two journeyer rated agents for this
threshold to be satisfied.

6.2 Experiment 1

Objective: In the protocol Semi-Honest-k-Shares, the following assumption
must hold for an agent a’s privacy to be preserved: P (perform(a, ua,1, ρ) =
false) × . . . × P (perform(a, ua,ka , ρ) = false) is low. That is, the probability
that the agents to whom agent a sends shares, are all dishonest must be low.
We would like to know the percentage of instances of source agents
for whom this assumption holds true.

Algorithm: A randomly selected querying agent queries the reputation
of every other agent who has at least min source agents. Over the course of
all queries, we observe the probability P (perform(a, ua,1, ρ) = false) × . . . ×
P (perform(a, ua,ka , ρ) = false), for each source agent a. The experiment is run
for each value of min in {5, 10, 15, 20, 25, 50, 75, 100, 500}.

Results: For min = 25, we observe that the assumption holds for 81.7% of
instances of source agents. Additionally, 85.8% for min = 50, 87.0% for min =
75, 87.4% for min = 100, and 87.5% for min = 500. We note that the increase in
the percentage is significant up to min = 100. This is due to the greater choice
of trustworthy agents available for each agent when the protocol has more source
agents. At min = 5, the percentage is 72.5%, which implies that approximately
30% of the source agents will have to abstain. However, in a separate experiment
(full details not included due to space limitation), we observed that at min =
25, even if only around 40% of agents participate, over 95% of the computed
reputation scores have an error of at most 0.1 compared to the true scores.
Additionally, over 85% at min = 10, and over 90% at min = 15. Thus, even a
significant portion of agents abstaining does not pose an issue.

6.3 Experiment 2

Objective: We would like to know the effect of increasing k on the
percentage of instances of source agents whose privacy is preserved in
the protocol Semi-Honest-k-Shares.

Algorithm: A randomly selected querying agent queries the reputation of
every other agent who has at least min source agents. We vary k and observe
the percentage of instances of source agents whose privacy is preserved. The set
of experiments is run with min = 50.

Results: For min = 50, and k = 1, we observe that the percentage is 75.4%,
and at k = 2, the percentage is 85.8%. The jump is due to the possibility with
k = 2 to rely on two journeyer agents. With k = 1, the only possibility is to
rely on one master agent. However, increasing k over 2, even up to 500, does
not result in a significant advantage (86.3% at k = 500). Thus, in this dataset,
privacy can be preserved for a high percentage of source agents with k as small
as 2. This results in a very efficient protocol. This is in contrast to the protocol
presented in [6], which requires each agent to send shares to n−1 agents, resulting
in O(n2) message complexity.

7 Related Work

The inspiration for the k-Shares protocol comes from [6]. However, among other
advantages (section 4.5), our protocol requires O(kn) messages as opposed to the
O(n2) required by [6]. Additionally, we also evaluate our protocols on a large
and real dataset.

A number of privacy preserving reputation systems are based on the premise
that a trusted hardware module is present at every agent. The systems that fall
under this category include [7], [8], [9]. A system by Kinateder et al [10] avoids
the hardware modules, however it requires anonymous routing infrastructure at
the network level. These systems clearly differ from our approach, which does
not mandate specialized platforms.

Several privacy preserving reputation systems have the concept of e-cash as
their basis. These systems include [11], [12], [13]. However, these systems either
rely on TTPs or centralized constructs, such as the “bank” in [13]. In contrast,
our reputation protocols are decentralized.

8 Conclusion

In this article we have presented the k-Shares privacy preserving reputation
protocol. A defining characteristic of this protocol is that an agent a himself
selects the agents that are critical for preserving its privacy. The selection is
based on a’s knowledge of the trustworthiness of those agents in the context of
preserving privacy, thus a is able to maximize the probability that its privacy
will be preserved.

The experiments conducted on the real and large dataset of Advogato.org
yield favorable results. It is shown that the k-Shares protocol is able to assure the

privacy of a large majority of the source agents. The extended protocol allows
agents to abstain from providing feedback when their privacy is at risk.

As analyzed, the protocol has linear message complexity and is thus quite
efficient. We designed the k-Shares protocol such that the number of trustworthy
agents that each agent can send shares to is limited to k. This design choice
is validated by the experiment results, which show that the privacy of a high
majority of agents can be assured with k as small as 2. Moreover, increasing k
to values approaching n− 1 has no significant advantage.

In conclusion, the k-shares reputation protocol is decentralized, efficient, pro-
vides accurate results, and is either able to preserve the privacy of participants
with high probability or otherwise allows them to abstain.

References

1. Kamvar, S.D., Schlosser, M.T., GarciaMolina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: Proc. of the 12th Intl. Conf. on
World Wide Web (WWW 2003). (2003)

2. Levien, R.: Attack resistant trust metrics. Manuscript, University of California -
Berkeley. www.levien.com/thesis/compact.pdf (2002)

3. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions. The
Economics of the Internet and E-Commerce. Vol. 11 of Advances in Applied Mi-
croeconomics (2002) 127–157

4. Gambetta, D.: Can We Trust Trust? In: Trust: Making and Breaking Cooperative
Relatioins. Department of Sociology, University of Oxford (2000) 213 – 237

5. Goldreich, O.: The Foundations of Crypto. - Vol. 2. Cambridge Univ. Press (2004)
6. Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized ad-

ditive reputation systems. In: Proc. of the 2nd Intl. Conf. on Trust Management
(iTrust 2004). (2004)

7. Kinateder, M., Pearson, S.: A privacy-enhanced peer-to-peer reputation system.
In: Proc. of the 4th Intl. Conf. on E-Commerce and Web Techs. (2003)

8. Voss, M., Heinemann, A., Muhlhauser, M.: A privacy preserving reputation system
for mobile info. dissemination networks. In: Proc. of the 1st Intl. Conf. on Security
and Privacy for Emerging Areas in Comm. Networks (SECURECOMM). (2005)

9. Bo, Y., Min, Z., Guohuan, L.: A reputation system with privacy and incentive.
In: Proc. of the 8th ACIS Intl. Conf. on Soft. Eng., AI, Networking, and Paral-
lel/Distributed Comp. (SNPD’07). (2007)

10. Kinateder, M., Terdic, R., Rothermel, K.: Strong pseudonymous comm. for p2p
reputation systems. In: Proc. of the 2005 ACM Symp. on Applied Comp. (2005)

11. Ismail, R., Boyd, C., Josang, A., Russell, S.: Strong privacy in reputation systems.
In: Proc. of the 4th Intl. Workshop on Info. Security Apps. (WISA’03). (2004)

12. Ismail, R., Boyd, C., Josang, A., Russell, S.: Private reputation schemes for p2p
systems. In: Proc. of the 2nd Intl. Workshop on Security in Info. Systems. (2004)

13. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for
anonymous networks. In: Proc. of the 8th Privacy Enhancing Technologies Symp.
(PETS 2008). (2008)

Protocol: Semi-Honest-k-Shares

Participants: Agents: q, t, St = St,ψ = {a1 . . . an}. Agents q, t, and a subset of St,ψ of size m < n
are dishonest, however, q wishes to learn the correct output.

Input: Each source agent a has a private input lat = P (perform(a, t, ψ) = true).

Output: Agent q learns rt,ψ , the reputation of agent t in context ψ.

Setup: Each agent a maintains Sa = Sa,ψ , the set of its source agents in context ψ.

Events and Associated Actions (for an Agent a):

need arises to determine rt,ψ

� initiate query
1 send tuple (request for sources, ψ) to t
2 receive tuple (sources, ψ, St) from t
3 for each agent v ∈ St
4 do Jv ← φ
5 S′

t ← St
6 r ← 0
7 q ← a
8 s← timestamp()
9 send tuple (prep, q, t, s, St) to each agent v ∈ St

tuple (request for sources, ψ) received from agent q

1 send tuple (sources, ψ, Sa) to q

tuple (prep, q, t, s, St) received from agent q

1 I ← φ
2 J ← φ
3 σa ← 0
4 Ua ← set of trustworthy(a, St − a)
5 ka ← |Ua|
6 for i← 1 to ka
7 do xa,i ← random(−X,X)

8 xa,ka+1 ← lat −
∑ka
i=1 xa,i

9 send tuple (recipients, q, t, s, Ua) to agent q
10 for each agent ua,i ∈ Ua = {ua,1 . . . ua,ka}
11 do send tuple (share, q, t, s, xa,i) to agent ua,i

tuple (recipients, q, t, s, Uv) received from an agent v ∈ St
1 for each agent u ∈ Uv
2 do Ju ← Ju ∪ v
3 S′

t ← S′
t − v

4 if S′
t = φ

5 then S′
t ← St

6 for each agent w ∈ St
7 do send tuple (senders, q, t, s, Jw) to agent w

tuple (share, q, t, s, xv) received from an agent v ∈ St
1 I ← I ∪ v
2 σa ← σa + xv
3 if I = J
4 then σa ← σa + xa,ka+1
5 send tuple (sum, q, t, s, σa) to agent q

tuple (senders, q, t, s, Ja) received from agent q

1 J ← Ja
2 if I = J
3 then σa ← σa + xa,ka+1
4 send tuple (sum, q, t, s, σa) to agent q

tuple (sum, q, t, s, σv) received from an agent v ∈ St
1 S′

t ← S′
t − v

2 r ← r + σv
3 if S′

t = φ
4 then rt,ψ ← r/n

Fig. 1. Protocol: Semi-Honest-k-Shares

