

Use of IP Addresses for High Rate Flooding Attack
Detection

Ejaz Ahmed1, George Mohay1, Alan Tickle1, Sajal Bhatia1

1 Queensland University of Technology, GPO Box 2434

Brisbane, QLD 4001, Australia
{e.ahmed, g.mohay, ab.tickle, s.bhatia}@qut.edu.au

Abstract. High-rate flooding attacks (aka Distributed Denial of Service or
DDoS attacks) continue to constitute a pernicious threat within the Internet
domain. In this work we demonstrate how using packet source IP addresses
coupled with a change-point analysis of the rate of arrival of new IP addresses
may be sufficient to detect the onset of a high-rate flooding attack. Importantly,
minimizing the number of features to be examined, directly addresses the issue
of scalability of the detection process to higher network speeds. Using a proof
of concept implementation we have shown how pre-onset IP addresses can be
efficiently represented using a bit vector and used to modify a “white list” filter
in a firewall as part of the mitigation strategy.

Keywords: IP addresses, bit vector, bloom filter, cumulative sum.

1. Introduction

It is now almost ten years since the first full-scale high-rate flooding attacks were
unleashed on the Internet community [1]. The vector for those attacks was a set of
compromised computer systems aka “zombies” that directed a high-volume stream of
packets towards the target hosts. Ten years on, and notwithstanding their conceptual
simplicity, high-rate flooding attacks (aka Distributed Denial of Service or DDoS
attacks) using the same basic modus operandi still constitute an extremely pernicious
threat within the Internet domain [2]. They also remain an unsolved problem.
Consequently techniques and processes that detect and mitigate the impact of this
form of attack continue to be an important and active area of research and
development [3]. They also form the basis for a joint research project currently being
undertaken under the auspices of the Australian and Indian Governments as part of
the Australia-India Strategic Research Fund (AISRF). A key deliverable of this
project is a DDoS Mitigation Module (DMM) i.e. a “network flooding attack
mitigation tool” which integrates the detection and mitigation capability into a single
device.

Ejaz Ahmed, George Mohay, Alan Tickle, Sajal Bhatia

Two of the key challenges in implementing a workable solution to the DDoS problem
are to operate the detection process at so-called “wire speed” i.e. speeds of at least
10Gbps [2, 4] and be able to activate a response in real-time to mitigate the impact of
the attack in order to protect some downstream target which may be an application
server or security device or a complete subnet. One important line of research is to
utilize IP-address related features as the primary means of detecting an attack [5-10].
In this work we demonstrate how using packet source IP addresses coupled with a
change-point analysis of the rate of arrival of new IP addresses may be sufficient to
detect the onset of a high-rate flooding attack. Importantly, minimizing the number of
features to be examined, directly addresses the issue of scalability of the detection
process to higher network speeds. We also show how this information about
potentially anomalous IP addresses could be used to modify a “white list” filter within
a firewall dynamically as part of the mitigation strategy. We intend in future work to
deploy and evaluate the approach with respect to protecting a security device,
specifically an application firewall, ModSecurity.
The remainder of the paper is structured as follows. Section 2 reviews previous work
on using features and characteristics of IP-addresses in detecting high-rate flooding
attacks. Section 3 introduces the proposed DDoS Mitigation Module (DMM). It
discusses the overall architecture of the DMM. Section 4 provides a detailed
description of the NSP algorithm which classifies IP addresses based on their
previous association with the host site and which is a core component in the DMM.
Because performance of the NSP algorithm is crucial to its successful deployment
actual operational networks, this section also shows a possible implementation based
on a Bit-Vector approach. Section 5 shows the results of the experiments to test the
“proof-of-concept” of the key ideas. Finally Section 6 summarizes the paper and
outlines the future work.

2. Related Work

IP addresses play a pivotal role in identifying the communicating parties within the
TCP/ IP suite of protocols. Consequently there is now a distinct body of knowledge
surrounding the use of source IP address monitoring for detecting high-rate flooding
attacks [6, 8-14] and in particular those in which the source IP-address had been
“spoofed” [9]. Moreover such techniques are also capable of distinguishing
anomalous network traffic (e.g. a DDoS attack) from a legitimate network event such
as a so-called Flash Event [9, 11]. In addition IP address monitoring is able to detect
attacks where each compromised host in the so-called “botnet herd” mimics the
behavior of a legitimate user thereby making it difficult to distinguish between the
normal network traffic and the attack traffic [3, 8, 10].
Central to any detection process is the requirement to identify a feature or set of
features that appear more frequently in the target class but are less prominent in
normal traffic and which capture the inherent features of an attack [3]. Also, in light
of the adaptive behavior of the botnet masters, it is important to use features that are
difficult or impossible for an attacker to change [3]. Over time various IP-address
related features have been used in the detection process including basic features such

Use of IP Addresses for High Rate Flooding Attack Detection

as the traffic volume per IP address [12]. Other features include the change in the
number of network flows (i.e. distinct source/ destination IP address and port pairs)
[11] as well as a change in the number of clients and in the pattern or distribution of
clients across ISPs and networks [9]. The proportion of new source IP addresses seen
by the target [3, 6, 8] have also been used along with features such as evidence of
abrupt changes in traffic volume, flow dissymmetry as well as changes in the
distribution of source IP addresses and the level of concentration of target IP
addresses.
Two key issues in effectively utilizing IP address information in the detection process
are the impracticality of storing statistical data for each of the 232 elements in the IPv4
address space and the need accommodate a sharp increase in the rate of arrival of new
source IP addresses during a DDoS attack [3]. This necessitates minimizing the
number of IP addresses being tracked and optimizing the way in which information
about IP addresses is stored. For example Gil and Poletto [12] used a dynamic 4-level
256-ary tree (MULTOPS) to collect traffic date for each IP address. However Peng et
al. note that such a structure could itself succumb to a memory exhausting attack.
Hence Peng et al. and Takada et al. [3, 6, 13] only store information on IP addresses
that complete the TCP connect sequence correctly or send more than a threshold
minimum number of packets. Peng et al. [8] also use a data structure comprising 210
counters to (partially) aggregate the information about distinct IP addresses. Similarly
Cheng et al. [10] isolate those IP addresses that are “new” and which are concentrated
on a particular target IP address. Other authors have sought to exploit any inherent
clustering of IP addresses. For example, Le [14] aggregated IP addresses using
various subnet masks on the premise that in a Flash crowd most of the source IP
addresses are close to each other whilst in a DDoS attack the sources are assumed to
be more widely distributed. Finally, there is also a scalability issue for solutions in the
IPv6 address space where the number of addresses is 2128.
Once the feature vector has been created the remaining problem is to decide on a
suitable algorithm that can use this information for detecting a DDoS attack. For
example Cheng et al. [10] use a Support Vector Machine (SVM) classifier whilst
Peng et al. [6] used the Cumulative Sum (CUSUM) algorithm and a computation
involving a simplified Mahalanobis distance [8] to detect any abrupt change in the
fraction of new IP addresses (on the basis that an abrupt change of the proportion of
new source IP addresses is a strong indication of a DDoS attack). Takada et al. [13]
also used the CSUM algorithm whereas Le et al. [14] used filtering techniques from
the area of signal processing.
One of the earliest attempts at constructing a real-time adaptive system conceptually
similar to the proposed DMM can be found in the work of Lee et al.[15-17]. Whilst
their focus was on building an Intrusion Detection System, they demonstrated the
importance of carefully segmenting and parallelizing the individual tasks to be
performed in order to have a device that is capable of being scaled to operate in real-
time (or close to real-time) on high-speed, high-volume network traffic. They also
addressed the problem of updating the device’s internal knowledge base once it has
identified that a new attack has occurred. The basic idea used by Lee et al. is that of
incremental learning i.e. adding to the existing knowledge base without having to
completely retrain the underlying classifiers. Another example of previous work on
adaptive IDS and one that appears to be more closely related to the objectives of this

Ejaz Ahmed, George Mohay, Alan Tickle, Sajal Bhatia

project is that of the Cannady [18]. In particular Cannady examined the specific
problem of adapting an IDS in dealing with DoS attacks. He also utilized feedback
from the protected system in the form of system state variables such as CPU load,
available memory, etc.
More recent work on adaptive IDS can be found in Xu [19] and Moosa et al. [20]
(who specifically focused on adaptive application aware firewalls). All extend the
range of algorithms that could potentially be used as classifiers within the proposed
DMM (e.g. Fuzzy Logic, Support Vector Machines, etc.). Notwithstanding the many
variations on the theme, it would appear that the basic incremental learning
architecture proposed by Lee et al. [15-17] together with the ideas of Cannady [18]
offer a good starting point for building the proposed DMM.

3. Detection Architecture

The design goal is for the DMM to have the capability to protect two “common
monitoring environments” (i.e. security devices) viz. an application-aware firewall
and a network-based intrusion detection system (IDS), from high-rate network
flooding attacks. This includes protecting the devices under the so-called zero-day
attack scenario i.e. a pattern of attack that has not previously appeared. Figure 1
shows a schematic of a version of the proposed DMM that would operate in real-time
but off-line with the task of protecting an application-aware firewall (or an Intrusion
Prevention System).

Fig. 1. Schematic of the proposed DMM protecting an application-aware firewall (or
a Intrusion Prevention System).

The key functions of the proposed DDoS Mitigation Module (DMM) are to detect the
onset of a DDoS attack, use “state information” about the set of devices to be
protected by the DMM to predict if any of them are at imminent risk of failing, and
formulate and then direct a set of “control commands” to the devices “at risk” to
enable them to manage (or “shape”) the network traffic situation (e.g. jettisoning

Use of IP Addresses for High Rate Flooding Attack Detection

anomalous network packets). Since the intention is to develop a prototype DMM that
can be deployed on existing networks, one of the initial design decisions is use COTS
(Commercial off-the-shelf) offerings for components such as the designated
“application-aware firewall” shown in Fig 1. As such, the designated “control
commands” would then be rules expressed in the formats used internally in such
devices. For example, one potential candidate “router/ firewall” device (at least for
the purposes of the initial prototype) is a platform supporting the Open BSD Packet
Filter (PF) [21]. (One of the key attractions of PF is that the filtering mechanism is
externally configurable [22, 23].) In this case, the format of the designated “control
commands” would be rules that conform to the PF syntax. Similarly the (Open Source
Web) Application firewall ModSecurity [24, 25] is a potential candidate application
firewall. (As with Packet Filter (PF) discussed above, ModSecurity has the underlying
framework to deal with DoS attacks as well as an Automated Rule Update
Capability.) As was the case with PF, the function of the DMM would be to generate
rules in a format compatible with the ModSecurity rule set. A review of the literature
highlights a degree of overlap between the core ideas of the proposed DMM and both
current and previous work in constructing Intrusion Detection Systems that are
adaptive (i.e. the ability to update the system rule set dynamically) and proactive (i.e.
the ability to discern that an intrusion attack is in progress and react before it actually
reaches its final stage) [26]. In fact, building an IDS with the capabilities to be
adaptive and/ or proactive has been the subject of research in various guises for
almost twenty years so there is a significant body of work from which it may be
possible to draw a number of ideas as to how to approach the problem of building the
required DMM.

4. Detection Algorithm

The basis of our algorithm is essentially that we expect to be able to detect whether
currently incoming network traffic represents an attack on our system or not. We
represent the two system states: NA (not under attack) and A (under attack)
respectively. The algorithm is based on two top level functions, ipac and ddos.
The ddos function (described below) analyses the rate of arrival of packets from
previously unseen IP addresses and on that basis assigns the system state to A or NA.
It is invoked at regular intervals, and based on the rate of arrival of packets from
previously unseen IP addresses determines a state change form NA to A, or vice
versa, from A to NA.
The ipac address classification function examines the IP addresses of incoming
network traffic. It extracts the source IP address of each incoming packet and
determines if the IP address is new or not seen previously - NSP. To do so, ipac
maintains two data structures which represent the IP addresses of incoming packets:
W for ‘Whitelist’, and R for ‘Recent’.
The data structure W is initialized with the source IP addresses of a known attack-free
traffic sample, the data structure R is initialized to empty at system start-up. The
point of R is that as packets arrive from new IP addresses, we need to note those IP
addresses in a temporary location – the structure R. Only once the ddos function has

Ejaz Ahmed, George Mohay, Alan Tickle, Sajal Bhatia

determined that the system is not under attack can those addresses be copied to the
whitelist – the structure W. This avoids polluting the whitelist W. If on the other
hand, the ddos function determines that the system is under attack, then R is
discarded. The system starts in state NA.
The ipac(ip) function examines the source address ip of an incoming packet and if the
IP address has not been seen previously, updates the structure R:

if NOT ((ip IN W) OR (ip IN R)) then INC(newIP)
add ip to R

The ddos function is invoked at regular intervals, intervals of the order of 1 to 10
seconds. It has a simple purpose: it analyses the recent change in arrival rate of
packets from NSP IP addresses. It uses the function StateChange which in turn uses a
cumulative sum algorithm (CUSUM) to detect abrupt changes in that rate of arrival
and determines system state changes. The ddos function does as follows:

if (in state NA) then

if NOT (StateChange(NA)) then //no state change
add R to W

else //state change to A
state = A
communicate W to the protected security
device to use as a white list
R= empty

if ((in state A) then

if (StateChange(A)) then //state change to NA
state = NA
communicate to the protected security device to
stop using the white list.

There are also two obvious limitations in the above algorithm. The first is that when
the system is deemed to be under attack, that new IP addresses are treated as
malicious – this can give rise to false positives. Further work will extend the basis for
rejection of packets beyond the simple property of NSP. The further work will
attempt to identify malicious traffic using other features also, to be used in tandem
with NSP, features like subnet source addresses, IP distribution, traffic volume, traffic
volume per IP address, etc. The second limitation concerns what to do about the
interval of time during which ipac and ddos functions are executing. We hope to
keep these functions very small and efficient, so this may not be a problem. It will
however pose the problem of incoming packets not being properly processed if the
functions are indeed too slow. We now discuss the implementation of the above NSP
algorithm using bit vectors.

Use of IP Addresses for High Rate Flooding Attack Detection

4.1. Bit Vector Implementation

For IPv4, a bit vector can be used for the implementation of W and R in the above
algorithm. Using a bit vector, requires 0.5 GB to represent the 232 address space of
IPv4. (In contrast, an IPv6 bit vector needs to represent 2128 addresses. We are
currently investigating the use of Bloom filters for IPv6).
Implementation via bit vectors allows for a number of optimizations to the algorithm.
The step ‘add R to W’ in the ddos function can be optimized by modifying the ipac
function so that when setting the appropriate bit in R, it keeps a temporary copy of the
ip value, or better still, a copy of the address of the bit being set. This optimization
allows the ‘add R to W’ step to be implemented as a series of set bit operations rather
than having to OR the entire bit vector R into W. The second optimization relates to
the step ‘R = empty’. This step is optimized in a similar fashion, by unsetting the
relevant bits rather than zeroising the entire bit vector.

4.2. Change Detection

On the onset of malicious activity, it is expected that the statistical properties of the
traffic parameters no longer remain constant, resulting in an abrupt change. These
change points can be detected using sequential analysis methods such as the
cumulative sum (CUSUM) change point detection algorithm. CUSUM is a sequential
analysis technique which assumes that the mean value of the (suitably transformed)
parameter under observation will change from negative to positive in the event of a
change in its statistical properties. Detecting this requires knowledge of the data
distribution both before and after a malicious event.
In real time network traffic analysis, estimating traffic distribution both before and
after a malicious event is rather a difficult task if not impossible due to the lack of a
complete model. In change detection, this problem can be solved using a non-
parametric CUSUM method as described by Blazek et al.[27]. In this paper we have
adopted a non-parametric sliding window CUSUM change detection technique
proposed by Ahmed et.al. [28, 29] for the analysis of source IP addresses. For the
detailed description of the CUSUM technique, the interested readers are referred to
[28, 29]. We use the CUSUM technique to detect changes in the number of new
source IP addresses being observed in the network traffic during a measurement
interval.

5. Experimentation

In order to establish the use of source IP address as a key feature to detect flooding
attack, a comparative analysis of two different traffic traces has been conducted. In
one analysis Peng et. al. [7] compared daily Auckland data trace [30] with the
previous two week’s data traces to observe the persistence of the source IP addresses.
We have carried out a similar analysis using network traffic collected from a

Ejaz Ahmed, George Mohay, Alan Tickle, Sajal Bhatia

dedicated block of unused IP addresses (commonly known as a Darknet) and
Auckland traffic trace has been carried out. In contrast to used address spaces where
there are production hosts connected to the Internet, unused address spaces are
routable Internet addresses which do not have any production host connected to
Internet. Due to the absence of any production host the traffic observed on a darknet
is by definition unsolicited and likely to be either opportunistic or malicious. Table 1
provides the comparative analysis of the percentage of source IP addresses appearing
in the fortnight previous to the listed dates for both Auckland and darknet network
traffic traces.

Table 1. Persistance of source IP addresses.

Auckland Trace Darknet Trace
Date Percentage Date Percentage

2001-Mar-26 88.7% 2009-Dec-25 1.25%
2001-Mar-27 90.3% 2009-Dec-26 1.05%
2001-Mar-28 89.1% 2009-Dec-27 1.03%
2001-Mar-29 89.2% 2009-Dec-28 0.91%
2001-Mar-30 90.2% 2009-Dec-29 0.94%
2001-Mar-31 89.9% 2009-Dec-30 1.07%
2001-Apr-01 88.1% 2009-Dec-31 7.99%

From Table 1, it can be observed that high percentage of source IP addresses appear
in the last fortnight in Auckland traffic, a normal behavior in network traffic. In
contrast, very low percentages of source IP’s reappear during malicious network
traffic such as the one collected from the darknet.
In order to evaluate the performance of the proposed NSP algorithm described in
Section 4, the test bed shown in Figure 2 was being used.

Victim

Normal Traffic (tcpreplay)Attack Traffic (fudp)
Switch

Fig. 2. The test bed architecture.

The normal network trace used in the experiment is the a real network traffic taken
from the University of Auckland [30] known as Auckland VIII dataset. The IP
addresses in the traffic trace have been mapped into 10.*.*.* using one to one hash
mapping for privacy. The dataset is first analyzed to remove the SYN attacks which
constitute the majority of the attacks [31]. In this regard TCP flows with less than 3

Use of IP Addresses for High Rate Flooding Attack Detection

packets are treated as malicious packets and are being ignored. The cleaned data is
then reproduced over the test bed using TCPREPLAY1 utility. The traffic is replayed
at the rate of around 300 packets per seconds. For attack traffic, fudp2 utility was used
to flood the victim machine with UDP packets with varying number of spoofed source
IP addresses. The average attack traffic rate is set to around 3000 packets per second
(10 times the normal background traffic). Table 2 provides the statistics of the attack
traffic being used in the experimentation.

Table 2. Statistics of the attack traffic.

Unique Source
IP

Number of
Packets

Duration
(seconds)

Traffic Rate(Mbps)

35 342141 134.38 1.01
40 328579 129.35 1.01
45 321433 129.29 1.01
50 313747 123.23 1.01
100 237831 93.49 1.01
150 201020 86.83 1.01

5.1. Performance Evaluation

In order to evaluate the performance of the proposed algorithm, the UDP flooding
attack with varying number of source IP addresses has been embedded in the network
traffic. UDP flooding with constant packet rate and constant set of source IP
addresses has been generated, see Table 2 for detail. Due to space limitations, Figure
3 shows the result of UDP flood only for the case of 35 unique source IP addresses.

1 TCPReplay web page, http://tcpreplay.synfin.net/

2 Fudp download page, http://linux.softpedia.com/get/Security/fudp-35626.shtm

Fig. 3. UDP flooding attack with 35 source IP addresses.

Ejaz Ahmed, George Mohay, Alan Tickle, Sajal Bhatia

In Figure 3 the horizontal axis represents the observation period in 10 second bins, the
left vertical axis represents total number of new source IP addresses in the
measurement interval and the right axis represents the CUSUM decision function with
1 being attack and 0 being no attack. The number of new source IP addresses in the
10 second measurement interval is calculated using the proposed algorithm described
in Section 4. The UDP flooding attack was started at measurement interval 260 and
ended at 280 and is detected by the CUSUM technique. The large increase in the new
IP addresses at the start in Figure 3 is due to the fact that the bit vector W is empty at
the start of the analysis. The subsequent inclusion of the source IP addresses in the bit
vector W results in the constant decrease of new IP address counter. The CUSUM
change detection technique is not applied during the training period, which is up to
measurement interval 230, which enables the sliding window to learn the normal
network traffic behavior. A manual analysis of the generated white list was performed
post attack to check for the presence of any attack sources in the list. No attacking
source IP addresses were found in the white list (for all the UDP attacks). The
detection delay is bound by the measurement interval which is selected as 10 seconds
in this paper. All the attacks listed in Table 2 have been detected in less than 10
seconds which can further be reduced using smaller measurement intervals.

6. Conclusion and Future Directions

In this paper, we have proposed a technique for detecting high rate flooding attacks. A
proof of concept implementation of the proposed technique using bit vectors is
provided in this paper. We have shown how a simple traffic feature such as source IP
addresses can be used to effectively detect flooding attacks.
Our ongoing work focuses on implementing the algorithm using bloom filter in order
to compare the results with the bit vector implementation and to enable us to extend
the approach to IPv6 with its much bigger IP address space. In addition we seek to
investigate the performance of both bit vectors and bloom filters under high speed
network flooding attack in both IPv4 and IPv6 networks. Moreover the analysis of
algorithm under different and diverse flooding attacks needs to be investigated.
We expect also in further work to extend the basis for rejection of packets beyond the
simple property of IPs Not Seen Previously. The further work will attempt to identify
malicious traffic using other features also, to be used in tandem with NSP, features
like subnet source addresses, IP distribution, traffic volume, traffic volume per IP
address, packet inter-arrival time etc.

Acknowledgement

This work was supported by the Australia-India Strategic Research Fund 2008-
2011.

Use of IP Addresses for High Rate Flooding Attack Detection

References

1. Garber, L., Denial-of-Service Attacks Rip the Internet. Computer, 2000.
33(4): p. 12-17.

2. Nazario, J., Political DDoS: Estonia and Beyond (Invited Talk), in 17th
USENIX Security Symposium. 2008: San Jose, CA, USA.

3. Peng, T., C. Leckie, and K. Ramamohanarao, Survey of network-based
defense mechanisms countering the DoS and DDoS problems. ACM
Comput. Surv., 2007. 39(1): p. 3.

4. Miercom, Enterprise Firewall: Lab Test Summary Report. 2008.
5. Peng, T., C. Leckie, and K. Ramamohanarao, Information sharing for

distributed intrusion detection systems. J. Netw. Comput. Appl., 2007. 30(3):
p. 877-899.

6. Peng, T., C. Leckie, and K. Ramamohanarao, Proactively Detecting
Distributed Denial of Service Attacks Using Source IP Address Monitoring,
in NETWORKING 2004, Networking Technologies, Services, and Protocols;
Performance of Computer and Communication Networks; Mobile and
Wireless Communications. 2004. p. 771-782.

7. Peng, T., C. Leckie, and K. Ramamohanarao. Protection from distributed
denial of service attacks using history-based IP filtering. in Proceeding of
the 38th IEEE International Conference on Communications (ICC 2003).
2003. Anchorage, Alaska.

8. Peng, T., C. Leckie, and K. Ramamohanarao, System and Process For
Detecting Anomalous Network Traffic, W.I.P. Organisation, Editor. 2008.

9. Jung, J., B. Krishnamurthy, and M. Rabinovich. Flash Crowds and Denial of
Service Attacks: Characterization and Implications for CDNs and Web Sites.
in Proceeding of 11th World Wide Web Conference. 2002. Honolulu,
Hawaii, USA.

10. Cheng, J., et al., DDoS Attack Detection Algorithm Using IP Address
Features in Frontiers in Algorithmics. 2009, Springer Berlin / Heidelberg. p.
207-215.

11. Barford, P. and D. Plonka. Characteristics of Network Traffic Flow
Anomalies. in Proceedings of ACM SIGCOMM Internet Measurement
Workshop 2001.

12. Gil, T.M. and M. Poletto. MULTOPS: A data-structure for bandwidth attack
detection. in Proceedings of 10th Usenix Security Symposium. 2001.

13. Takada, H.H. and A. Anzaloni. Protecting servers against DDoS attacks with
improved source IP address monitoring scheme. in 2nd Conference on Next
Generation Internet Design and Engineering (NGI '06). 2006.

14. Le, Q., M. Zhanikeev, and Y. Tanaka. Methods of Distinguishing Flash
Crowds from Spoofed DoS Attacks. in Next Generation Internet Networks,
3rd EuroNGI Conference on. 2007.

15. Lee, W., S.J. Stolfo, and K.W. Mok, Adaptive Intrusion Detection: A Data
Mining Approach Artificial Intelligence Review, 2000. 14(6): p. 533-567.

16. Lee, W. and S.J. Stolfo, A framework for constructing features and models
for intrusion detection systems. ACM Trans. Inf. Syst. Secur., 2000. 3(4): p.
227-261.

Ejaz Ahmed, George Mohay, Alan Tickle, Sajal Bhatia

17. Lee, W., et al. Real time data mining-based intrusion detection. in DARPA
Information Survivability Conference & Exposition II, 2001. DISCEX '01.
2001. Anaheim, CA, USA.

18. Cannady, J. Next Generation Intrusion Detection: Autonomous
Reinforcement Learning of Network Attacks. in Proc. 23rd National
Information Systems Security Conf., NISSC 2000. 2000.

19. Xu, X., Adaptive Intrusion Detection Based on Machine Learning: Feature
Extraction, Classifier Construction and Sequential Pattern Prediction.
International Journal of Web Services Practices, 2006. 2(1-2): p. 49-58.

20. Moosa, A. and E.M. Alsaffar, Proposing a hybrid-intelligent framework to
secure e-government web applications, in Proceedings of the 2nd
International Conference on Theory and Practice of Electronic Governance.
2008, ACM: Cairo, Egypt.

21. OpenBSD. PF: The OpenBSD Packet Filter. 2009 [cited 11 November
2009]; Available from: http://www.openbsd.org/faq/pf/.

22. OpenBSD. OpenBSD Programmer's Manual: ioctl - control device. 2009;
Available from: http://www.openbsd.org/cgi-bin/man.cgi?query=
ioctl&sektion=2&arch=&apropos=0&manpath=OpenBSD+4.6.

23. OpenBSD. OpenBSD System Manager's Manual: pfctl - control the packet
filter (PF) device. 2009 [cited 11 November 2009]; Available from:
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&arch=&
apropos=0&manpath=OpenBSD+4.6.

24. Barnett, R. ModSecurity Core Rule Set (CRS) v2.0. 2009; Available from:
http://www.owasp.org/index.php/File:OWASP_ModSecurity_Core_Rule_Se
t.ppt.

25. ModSecurity. ModSecurity Open Source Web Application Firewall. 2009;
Available from: http://www.modsecurity.org/index.html.

26. Kabiri, P. and A.A. Ghorbani, Research on Intrusion Detection and
Response: A Survey. International Journal of Network Security, 2005. 1(2):
p. 84–102.

27. Tartakovsky, A.G., et al., A novel approach to detection of intrusions in
computer networks via adaptive sequential and batch-sequential change-
point detection methods. IEEE Transactions on Signal Processing, 2006. 54:
p. 3372--3382.

28. Ahmed, E., A. Clark, and G. Mohay, Change Detection in Large
Repositories of Unsolicited Traffic, in The Fourth International Conference
on Internet Monitoring and Protection (ICIMP 2009). 2009: Venice, Italy

29. Ahmed, E., A. Clark, and G. Mohay, A Novel Sliding Window Based Change
Detection Algorithm for Asymmetric Traffic, in IFIP International
Conference on Network and Parallel Computing (NPC 2008). 2008:
Shanghai, China. p. 168-175.

30. Waikato Applied Network Dynamic Research Group.,
http://wand.cs.waikato.ac.nz/.

31. Mirkovic, J., et al. DDoS Benchmarks and Experimenter's Workbench for the
DETER Testbed. in 3rd International Conference on Testbeds and Research
Infrastructure for the Development of Networks and Communities
(TridentCom 2007) 2007.

