
1

Discovering Application-level Insider Attacks

using Symbolic Execution

Karthik Pattabiraman1, Nithin Nakka
1
, Zbigniew Kalbarczyk

1
, Ravishankar Iyer

1

Abstract: This paper presents a technique to systematically discover insider attacks in

applications. An attack model where the insider is in the same address space as the

process and can corrupt arbitrary data is assumed. A formal technique based on sym-

bolic execution and model-checking is developed to comprehensively enumerate all

possible insider attacks corresponding to a given attack goal. The main advantage of

the technique is that it operates directly on the program code in assembly language

and no manual effort is necessary to translate the program into a formal model. We

apply the technique to security-critical segments of the OpenSSH application.

1 Introduction

Insider threats have gained prominence as an emerging and important class of security

threats [1, 2]. An insider is a person who is part of the organization and either steals

secrets or subverts the working of the organization by exploiting hidden system flaws

for malicious purposes. For example, a web browser may have a malicious plugin that

overwrites the address bar with the address of a phishing website. Or a disgruntled

programmer may plant a logical flaw in a banking application that allows an external

user to fraudulently withdraw money. Both are examples of how a trusted insider can

compromise an application and subvert it for malicious purposes.

This paper considers application-level insider attacks. We define an application-level

insider attack as one in which a malicious insider attempts to overwrite one or more

data items in the application, in order to achieve a specific attack goal. The overwriting

may be carried out by exploiting existing vulnerabilities in the application (e.g. buffer

overflows), by introducing logical flaws in the application code or through malicious

third-party libraries. It is also possible (though not required) to launch insider attacks

from a malicious operating system or higher-privileged process. Application-level in-

sider attacks are particularly insidious because, (1) by attacking the application an in-

sider can evade detection by mimicking its normal behavior (from the point of view of

the system), and (2) to attack the application, it is enough for the insider to have the

same privilege as that of the application (assuming a flat address space where all mod-

ules have equal privileges), whereas attacking the network or operating system may

require super-user privileges.

1Center for Reliable and High-Performance Computing (CRHC), University of Illinois at Urbana-
Champaign (UIUC), Urbana, IL. email: {pattabir, nakka, kalbarcz, rkiyer} @uiuc.edu

2 Pattabiraman, Nakka, Kalbarczyk and Iyer

Before defending against insider attacks, we need a model for reasoning about insid-

ers. Previous work has modeled insider attacks at the network and operating system

(OS) levels using higher-level formalisms such as attack graphs [3] and process calculi

[4]. However, modeling application-level insider attacks requires analysis of the appli-

cation‟s code as an insider has access to the application and can hence launch attacks

on the application‟s implementation. Higher-level models are too coarse grained to en-

able reasoning about attacks that can be launched at the application code level. Further,

higher-level models typically require application vulnerabilities to be identified up-

front in order to reason about insider attacks.

This paper introduces a technique to formally model application-level insider attacks

on the application code (expressed in assembly language). The advantage of modeling

at the assembly level is that the assembly code includes the program, libraries, and any

state added by the compiler (e.g. stack pointer and return addresses), and enables accu-

rate reasoning about all software-based insider attacks.

The proposed technique uses a combination of symbolic execution and model check-

ing to systematically enumerate all possible insider attacks in a given application cor-

responding to an attack goal. The technique can be automatically deployed on the ap-

plication‟s code and no formal specifications need to be provided other than generic

specifications about the attacker‟s end goal(s).

The value of the analysis performed by the proposed technique is that it can expose

non-intuitive cases of insider attacks that may be missed by manual code inspection.

This is because the technique exhaustively considers corruptions of data items used in

the application (under a given input), and enumerates all corruptions that lead to a suc-

cessful attack (based on the specified attack goal). The results of the analysis can be

used to guide the development of defense mechanisms (e.g. assertions).

We have implemented the proposed technique as a tool, SymPLAID, which directly

analyzes MIPS-based assembly code. The tool identifies for each attack, (1) The pro-

gram point at which the attack must be launched, (2) The data item that must be over-

written by the attacker, and (3) The value that must be used for overwriting the data

item in order to carry out the attack.

SymPLAID builds on our earlier tool, SymPLFIED [5], used to evaluate the effect of

transient errors on the application. SymPLFIED groups individual errors into a single

abstract class (err), and considers the effect of the entire class of errors on the pro-

gram. This is because in the case of randomly occurring errors, we are more interested

in the propagation of the error rather than the precise set of circumstances that caused

the error. In contrast, security attacks are launched by an intelligent adversary and

hence it is important to know precisely what values are corrupted by the attacker in

order to design efficient defense mechanisms against the attack(s). Therefore, Sym-

PLAID was built from the ground up to emphasize precision in terms of identifying

the specific conditions for an attack. Thus, rather than abstracting the attacker‟s beha-

vior into a single class, the effect of each value corruption is considered individually,

and its propagation is tracked in the program. The key contributions of the paper are:

1. Introduces a formal model for reasoning about application-level insider attacks at

the assembly-code level,

2. Shows how application-level insiders may be able to subvert the execution of the

application for malicious purposes,

3. Describes a technique to automatically discover all possible insider attacks in an

application using symbolic execution and model checking,

4. Demonstrates the proposed techniques using a case-study drawn from the authen-

tication module of the OpenSSH application [6].

Discovering Application-level Insider Attacks 3

2 Insider Attack Model

This section describes the attack model for insider attacks and an example scenario for

an insider attack.

2.1 Characterization of Insider

Capabilities: The insider is a part of the application and has unfettered access to the

program‟s address space. This includes the ability to both read and write the program‟s

memory and registers. However, we assume that the insider cannot modify the pro-

gram‟s code, which is reasonable since in most programs the code segment is marked

read-only after the program is loaded. An attacker may get into the application (and

become an insider) in one or more of the following ways:

1. By a logical loophole in the application planted by a disgruntled or malicious pro-

grammer,

2. Through a malicious (or buggy) third-party library loaded into the address space

of the application,

3. By exploiting known security loopholes such as buffer overflow attacks and plant-

ing the attack code,

4. By overwriting the process‟s registers or memory from another process (with

higher privilege) or debugger,

5. Through a security vulnerability in the operating system or virtual machine (if

present)

In each of the above scenarios, the insider can corrupt the values of either memory lo-

cations or registers while the application is executing. The first three scenarios only

require the insider to have the same privileges as the applications, while the last two

require higher privileges.

Goal: The attacker‟s goal is to subvert the application to perform malicious functions

on behalf of the attacker. However, the attacker wants to elude detection or culpability

(as far as possible), so the attacker‟s code may not directly carry out the attack, but

may instead overwrite elements of the program‟s data or control in order to achieve the

attacker‟s aims. From an external perspective, it will appear as though the attack origi-

nated due to an application malfunction, and hence the attack code will not be blamed.

Therefore, the attacker can execute code to overwrite crucial elements of the pro-

gram‟s data or control elements.

It is assumed that the attacker does not want to crash the application, but wants to sub-

vert its execution for some malicious purpose. The attack is typically launched only

under a specific set of inputs to the program (known to the attacker), and the input se-

quence that launches the attack is indistinguishable from a legitimate input for the pro-

gram. Even if the insider is unable to launch the attack by himself/herself, he/she may

have a colluding user who supplies the required inputs to launch the attack.

2.2 Attack Scenario

Figure 1 shows an example attack scenario where the insider has planted a “logic

bomb” in the application which is triggered under a specific set of inputs. Normal us-

ers are unlikely to accidentally supply the trigger sequence and will be able to use the

application without any problems. However, a colluding user knows about the time-

bomb and supplies the trigger sequence as input. Perimeter based protection tech-

niques such as firewalls will not notice anything unusual as the trigger sequence is in-

4 Pattabiraman, Nakka, Kalbarczyk and Iyer

distinguishable from a regular input for all practical purposes. However, the input will

trigger the time-bomb in the application thereby launching the security attack on be-

half of the insider.

Figure 1: Attack scenario of an insider attack

2.3 Problem Definition

The problem of attack generation from the insider‟s point of view may be summed up

as follows: “If the input sequence to trigger the attack is known (AND) the attacker‟s

code is executed at specific points in the program, what data items in the program

should be corrupted and in what way to achieve the attack goal?”

This paper develops a technique to automatically discover conditions for insider at-

tacks in an application given (i) the inputs to trigger the attack (e.g. a specific user-

name as input), (ii) the attacker‟s objective stated in terms of the final state of the ap-

plication (e.g. to allow a particular user to log in with the wrong password) and (iii) the

attacker‟s capabilities in terms of the points from which the attack can be launched

(e.g. within a specific function). The analysis identifies both the target data to be cor-

rupted and what value it should be replaced with to achieve the attacker‟s goal. To fa-

cilitate the analysis, the following assumptions are made about the attacker by the

technique. (1) Only one value can be corrupted, but the corrupted value can be any va-

lid value. This assumption ensures that the footprint of the attack is kept small which

makes it easier to evade detection (from a defense technique) and (2) Corruption is on-

ly allowed at fixed program points. This assumption reflects the fact that an insider

may be able launch their attacks only at fixed program points – for example, where the

untrusted library function is called.

3 Example Code and Attacks

This section considers an example code fragment to illustrate the attack scenario in

Section 2.2. The example is motivated by the OpenSSH program [6], but is not the ac-

tual code extract (we consider the real OpenSSH application in Section 5).

Figure 2 shows an example code fragment containing the authenticate function. The

authenticate function reads the values of the system password and the user password

into the tmp buffer. It copies the value of the system password into the src buffer and

the value of the user password into the dst buffer. It then compares the values in the

src and dst buffers and if they match, it returns the value 1 (authenticated). Otherwise

it returns the value 0 (unauthenticated) to the caller.

Discovering Application-level Insider Attacks 5

int authenticate(void* src, void* dst, void* temp, int len){

 1: readSystemPassword(temp);
 2: strncpy(src, temp, len)

 3: readUserPassword(temp);
 4: strncpy(dst, temp, len);

 5: if (! strncmp(dst, src, len)) return 1;

 return 0;
}

Figure 2: Code of the authenticate function

We take the attacker‟s perspective in coming up with insider attacks on the code in

Figure 2. The attacker‟s goal is to allow a colluding user (who may be the same person

as the attacker) to be validated even if he/she has entered the wrong password. The fol-

lowing assumptions are made in this example, for simplicity of explanation:

1. The attack can be invoked only within the body of the authenticate function.

2. The attacker can overwrite the value of registers and local variables, but not glob-

al variables and heap buffers (due to practical limitations such as not knowing the

exact address of global variables and dynamic memory objects).

3. The attack points are immediately before the function calls within the authenticate

function, i.e., the arguments to any of the functions called by the authenticate

function may be overwritten prior to the function call.

Table 1 shows the set of all possible attacks the attacker could launch in the above

function. A particularly interesting attack found is presented in row 6 of Table 1,

where the dst argument of the strncpy function was set to overlay the src string in

memory. This replaces the first character of the src string with „\0‟, effectively con-

verting it to a NULL string. The dst string also becomes NULL as the dst buffer is not

filled by the strncpy function (we assume that it has initially been filled with all ze-

roes). The two strings will match when compared and the authenticate function will

return „1‟. This allows the colluding user to be authenticated.

Table 1: Insider attacks on the authenticate function
Pro-

gram

Point

Variable to

be corrupted

Corrupted

value of

variable

Comments/Explanation

strncmp

point
(line 5)

dst src buf The src buffer is compared with itself

src dst buf The dst buffer is compared with itself

src temp buf
The dst buffer is compared with the temp buffer which

contains the same string

len <= 0
The strncmp function terminates early and returns 0 (the
strings are identical)

strncpy

point

(line 4)

temp src buf
This copies the string in the src buffer to the dst buffer,

thereby ensuring that the strings match

dst
srcBuf –

strlen(buf)

This writes a „\0‟ character in the src buffer, effectively

converting it to a empty string. The dst buffer is also

empty as it is not initialized (assuming it is initially set to
all zeroes), and hence the strings match.

readUser

Pass-
word

point

(line 3)

temp dst buf
The temp buffer originally contains the system password.

Due to the attack, the value in the temp buffer is not re-
placed with the user password. Therefore, the system

password is copied to the dst buffer, which matches the

contents of the src buffer i.e., the system password.

temp

Any un-

used loca-
tion in

memory

6 Pattabiraman, Nakka, Kalbarczyk and Iyer

As Table 1 shows, discovering all possible insider attacks manually (by inspection) is

cumbersome and non-trivial even for the modestly sized piece of code that is consi-

dered in Figure 2. Therefore, we have developed a tool, SymPLAID, to automatically

generate insider attacks scenarios. The attacks in Table 1 were discovered by Sym-

PLAID. Although the tool works on assembly language programs, we have shown the

program as C-language code in Figure 2 for simplicity. We have validated the attacks

shown in Table 1 using the GNU debugger (gdb) to corrupt the values of chosen va-

riables in the application on an AMD machine running the Linux operating system. All

the attacks in Table 1 were found to be successful i.e. they led to the user being au-

thenticated in spite of providing the wrong password.

The attacks in Table 1 contain both “obvious attacks” as well as surprising corner cas-

es. It can be argued that finding obvious attacks is not very useful as they are likely to

be revealed by manual inspection of the code. However, the power of the proposed

technique is that it can reveal all such attacks on the code, whereas a human operator

may miss one or more attacks. This is especially important from the developer‟s pers-

pective, as all the security holes in the application need to be plugged before it can be

claimed that the application is secure (as all the attacker needs to exploit is a single

vulnerability). Moreover, the ability to discover corner-case attacks is the real benefit

of using an automated approach.

The attacks discovered by SymPLAID can be used to guide the development of de-

fense mechanisms. For example, for the attacks discovered in Table 1, we insert run-

time checks at the following points:

1. Before the call to the strncmp function to ensure that the src and dst buffers of the

strncmp function do not overlap with each other or with the temp buffer in terms

of physical locations. This prevents attacks in rows 1 to 4 of Table 1.

2. After the call to the readUserPassword function in line 3 to ensure that the temp

buffer is non-empty. This prevents attacks in the rows 7 and 8 of Table 1.

3. Before the call to the strncpy function to ensure that neither the temp buffer nor

the dst buffer overlap with the src buffer. This prevents attacks in the rows 5 and

6 of Table 1.

Figure 3 shows the code in Figure 2 with the checks inserted as assert statements. It is

assumed that the checks are themselves immune to attack from an insider.

int authenticate(void* src, void* dst, void* temp, int len){

 1: readSystemPassword(temp);

 2: strncpy(src, temp, len)

 3: readuserPassword(temp);

 assert(isNotEmpty(temp)); assert(noOverlap(temp, src) and noOverlap(temp, dst))

 4: strncpy(dst, temp, len);

 assert(noOverlap(src, dst) and noOverlap(src, temp)); assert(len > 0);

 5: if (! strncmp(dst, src, len)) return 1;

 return 0;

}

Figure 3: Code of authenticate function with assertions

4 Technique and Tool

This section describes the key techniques used in the automation and the design of a

tool to automatically discover insider attacks in an application.

Discovering Application-level Insider Attacks 7

4.1 Symbolic Execution Technique

We represent an insider attack as a corruption of data values at specific points in the

program‟s execution i.e. attack points. The attack points are chosen by the program

developer based on knowledge of where an insider can attack the application. For ex-

ample, all the places where the application calls an untrusted third-party library are at-

tack points as an insider can launch an attack from these points. In the worst-case,

every instruction in the application can be an attack point.

The program is executed with a known (concrete) input, and when one of the specified

execution points is reached, a single variable2 is chosen from the set of all variables in

the program and assigned a symbolic value (i.e. not a concrete value). The program‟s

execution is continued with the symbolic value for the chosen variable. All other va-

riables in the program are unchanged. The above procedure is repeated exhaustively

for each data value in the program at each of the specified attack points. This allows

enumeration of all insider attacks on a given program.

The key technique used to comprehensively enumerate insider attacks is symbolic ex-

ecution-based model checking. This means that the program is executed with a combi-

nation of concrete values and symbolic values, and model-checking is used to “fill-in”

the symbolic values as and when needed. Symbolic values are treated similar to con-

crete values in arithmetic and logical computations performed in the system. The main

difference is in how branches and memory accesses based on expressions involving

symbolic values are handled. When a memory access is performed with a symbolic

expression as the address operand, the execution of the program is forked and the

symbolic expression is equated to a different memory address in each fork. The value

stored at the address is read or written in the corresponding fork and the program‟s ex-

ecution is continued. Once the symbolic value has been assigned to an address, all ex-

pressions involving the symbolic value in the state are concretized.

Similarly, in the case of branches involving symbolic expressions, the program execu-

tion is forked at the branch point. The branch condition is added as a constraint to the

first fork, while the negation of the condition is added as a constraint to the second

fork. For each program fork encountered above, the model checker checks whether (1)

The fork is a viable one, based on the past constraints of the symbolic expressions, and

(2) whether the fork leads to a desired outcome (of the attacker). If these two condi-

tions are satisfied, the model checker will print the state of the program corresponding

to the fork i.e. attack state.

As in most model-checking approaches, the number of states explored can be exponen-

tial in the size of the program and its address space. However, very few of the states

explored by the model-checker will satisfy the attacker‟s goal(s). Hence, the model-

checker can prune branches of the search tree once it is clear that the branch will not

lead to a state satisfying the goal. This is the key to the scalability of the approach, and

underlies the importance of specifying an attack goal for the insider.

4.2 SymPLAID Tool

The symbolic execution technique described in the previous section has been imple-

mented in an automated tool – SymPLAID (Symbolic Program Level Attack Injection

and Detection). This is based on our earlier tool, SymPLFIED, used to study the effect

of transient errors on programs [5].

2 We use the generic term variable to refer to both registers and memory locations in the program.

8 Pattabiraman, Nakka, Kalbarczyk and Iyer

SymPLAID accepts the following inputs: (1) an assembly language program along

with libraries (if any), (2) a set of pre-defined inputs for the program, (3) a specifica-

tion of the desired goal of the attacker (expressed as a formula in first-order logic) and

(4) a set of attack points in the application. It generates a comprehensive set of insider

attacks that lead to the goal state. For each attack, SymPLAID generates both the loca-

tion (memory or register) to be corrupted as well as the value that must be written to

the location by the attacker.

SymPLAID directly parses and interprets assembly language programs written for a

MIPS processor. The current implementation supports the entire range of MIPS in-

structions, including (1) arithmetic/logical instructions, (2) memory accesses (both

aligned and unaligned) and (3) branches (both direct and indirect). However, it does

not support system calls. The lack of system call support is compensated for by the

provision of native support for input/output operations. Floating point operations are

also not considered by SymPLAID. This is not a bottleneck as floating-point opera-

tions are typically not used by security-critical code in applications.

SymPLAID is implemented using Maude, a high-performance language and system

that supports specification and programming in rewriting logic [7]. SymPLAID models

the execution semantics of an assembly language program using both equations and

rewriting rules. Equations are used to model the concrete semantics of the machine,

while rewriting rules are used for introducing non-determinism due to symbolic evalu-

ation. SymPLAID maintains precise dependencies both in terms of arithmetic and log-

ical constraints and solves the constraints without incurring false-positives. This is the

biggest difference between SymPLAID and SymPLFIED [5], which aggregates sym-

bolic values into a single class and hence incurs false-positives.

5 Case Study: OpenSSH Authentication Module

To evaluate the SymPLAID tool on a real application, we considered a reduced ver-

sion of the OpenSSH application [6] involving only the user-authentication part. This

is because SymPLAID does not support all the features used in the complete SSH ap-

plication, e.g. system calls. We retain the core functions in the authentication part of

OpenSSH with little or no modifications, and replace the more complex ones with stub

versions – i.e. simplified functions that approximate the behavior of their original ver-

sions. We also replace the system calls with stubs. The reduced version, the authenti-

cation module, consists of about 250 lines of C code and emulates the behavior of the

SSH application starting from the point after the user enters his/her username and

password to the point that he/she is authenticated or denied authentication by the sys-

tem (we consider only password-based authentication).

We ran SymPLAID on the authentication module after compiling it to MIPS assembly

using the gcc compiler. As before, the goal is to find insider attacks that will allow the

user to be authenticated. It is assumed that the insider can overwrite the value of any

register prior to executing any instruction within the authentication module. The input

to the authentication module is the username and password. The username may or may

not be a valid username in the system, and the password may or may not be correct.

These lead to four possible categories of inputs.

SymPLAID discovered attacks corresponding to the categories where an invalid user-

name is supplied with a valid password (for the application) and where a valid user-

name is supplied with an incorrect password. An example of an attack where the

invalid username is supplied is considered. Due to space constraints, the other attacks

are not described and may be found in the technical report [8].

Discovering Application-level Insider Attacks 9

5.1 Example Attack: Invalid User-name

The authentication part of SSH works as follows: when the user enters his/her name,

the program first checks the user-name against a list of users who are allowed to log

into the system. If the user is allowed to log into the system, the user record is assigned

to a data-structure called an authctxt and the user details are stored into the authctxt

structure. If the name is not found on the list, the record is assigned to a special data-

structure in memory called as fake. fake is also an authctxt structure, except that it

holds a dummy username and password. This ensures that there is no observable dif-

ference in the time it takes to process legitimate and illegitimate users (which may en-

able attackers to learn if a username is valid by repeated attempts).

In order to prevent potential attackers from logging on by providing this dummy pass-

word, the authctxt structure has an additional field called valid. This field is set to true

only for legitimate authctxt records i.e. those for which the username is in the list of

valid users for the system. The fake structure has the valid field set to false by default.

In order for the authentication to succeed, the encrypted value of the user password

must match the (encrypted) system password, and the valid flag of the authctxt record

must be set to 1. Figure 4 shows the auth_password function that performs the above

checks. The function first calls the sys_auth_passwd to check if the passwords match,

and then checks if the valid flag is set in the authctxt record. Only if both conditions

are true will the function return 1 (authenticated) to its caller.

int sys_auth_passwd(Authctxt *authctxt, const char *password) {

1: struct passwd *pw = authctxt->pw;

2: char *encrypted_password;
3: char *pw_password = authctxt->valid ?

4: shadow_pw(pw) : pw->pw_passwd;

5: if (strcmp(pw_password, "") == 0 &&

6: strcmp(password, "") == 0)

7: return (1);
8: encrypted_password = xcrypt(password,

9: (pw_password[0] && pw_password[1]) ?
10: pw_password : "xx");

11: return (strcmp(encrypted_password, pw_password) == 0);

}

int auth_password(Authctxt *authctxt, const char *password) {
12: int permit_empty_passwd = 0;

13: struct passwd * pw = authctxt->pw;

14: int result, ok = authctxt->valid;
15: if (*password == '\0' && permit_empty_passwd == 0)

16: return 0;
17: result = sys_auth_passwd(authctxt, password);

18: if (authctxt->force_pwchange)

19: disable_forwarding();

20: return (result && ok);

}

Figure 4: SSH code fragment corresponding to the attack

An insider can launch an attack by setting the valid flag to true for the fake authctxt

structure. This will authenticate a user who enters an invalid user name, but enters the

password stored in the fake structure. The password in the fake structure is a string that

is hardcoded into the program. To mimic this attack, we supply an invalid user-name

10 Pattabiraman, Nakka, Kalbarczyk and Iyer

and a password that matches the fake (dummy) password. We expected SymPLAID to

find the attack where the insider overwrites the valid flag of the fake structure. Sym-

PLAID found this attack, but it also found other interesting attacks.

We consider an example of an attack found by SymPLAID. The attack occurs in the

sys_auth_password function, at line 11 before the call to the strcmp function (in Figure

4). At this point, the insider corrupts the value of the stack pointer (stored in register

$30 in the MIPS architecture) to point within the stack frame of the caller function,

namely auth_password. When the strcmp function is called, it pushes the current

frame pointer onto the stack, increments the stack pointer and sets its frame pointer to

be equal to the value of the stack pointer (corrupted by the attacker).

Figure 5: Stack layout when strcmp() is called

Figure 5 shows the stack layout when the function is called (only the variables relevant

to the attack are shown). The top-row of Figure 5 shows the frame-pointers of the

functions on the stack due to the attack. Observe that the attack causes the stack frame

of the strcmp function to overlap with that of the auth_password function. The strcmp

function is invoked with the addresses of the encrypted_pasword and the pw_password

buffers in registers $3 and $4 (function arguments are passed in registers on MIPS

processors). The function copies the contents of these registers to locations within its

stack frame at offsets of 4 and 8 respectively from its frame pointer. This overwrites

the value of the local variable ok in the auth_password function with a non-zero value

(since both buffers are at non-zero addresses). When the strcmp function returns, the

value of $30 is restored to the frame pointer of sys_auth_passwd, which in turn returns

to the auth_password function. The auth_password function checks if the result re-

turned from sys_auth_password is non-zero and if the ok flag is non-zero. Both condi-

tions are satisfied, so it returns the value 1 to its caller, and the user is authenticated

successfully by the system.

5.2 Performance Results

The model-checking task is highly parallelizable and can be broken into independent

sub-tasks, with each sub-task considering attacks in a different code region of the ap-

plication. The authentication module consists of about 500 assembly language instruc-

tions, and the task was broken up into 50 parallel sub-tasks each of which analyzes 10

instructions in the program. We executed the sub-tasks on a parallel cluster consisting

of dual-processor AMD Opteron nodes, each of which has 2 GB RAM. The maximum

time allowed for each task was capped at 48 hours (2 days).

The total time taken to execute all sub-tasks is at most 36 days. However, the task fi-

nished in less than 2 days due to the highly parallel nature of the search task. While

Discovering Application-level Insider Attacks 11

the running time seems high, it is not a concern as the goal is to discover all potential

insider attacks (in a reasonable time) and to find protection mechanisms against them.

6 Related Work

Insider attacks have traditionally been modeled at the network level. Philips and Swi-

ler [9] introduced the attack graph model to represent the set of all possible attacks that

can be launched in a network. Ammann et al. [10] introduce a model-checking based

technique to automatically find attacks starting from a known goal state of the attacker.

Sheyner et al. generalize this technique to generate all possible attack paths, thereby

generating the entire attack graph [11]. Chinchani et al. [3] present a variant of attack

graphs called key-challenge graphs to represent insider attacks, and use model-

checking to generate all possible insider attacks in a network.

Insider attacks have been modeled at the operating system level by Probst et al. [4]. In

this model, applications are represented as sets of processes that can access sets of re-

sources in the system. An insider is modeled as a malicious process in the system.

Attack-graphs and process graphs are too coarse grained for representing application-

level attacks, and hence we directly analyze the application‟s code. Further, we do not

require the developer to provide a formal description of the system being analyzed,

which can require significant effort. Since we analyze the application‟s code directly,

we can model attacks both in the design and implementation of the application. This is

important as an insider typically has access to the application‟s source code, and can

launch low-level attacks on its implementation.

Symbolic execution is a well-explored technique to find program errors [12]. Recent-

ly, it has also been used to find security vulnerabilities in applications [13-16]. Sym-

bolic techniques are typically concerned with generating application inputs to exploit

known or unknown vulnerabilities. In contrast, our technique attempts to generate at-

tacks under a given input, assuming that the attacker is already present in the applica-

tion. Further, the attacks found using our technique do not require the application to

have an exploitable vulnerability (e.g. buffer overflows), but can be launched by a ma-

licious insider in the system.

Fault-injection is an experimental technique to assess the vulnerability of computer

systems to random events or faults [17]. Fault-injection has also been used to expose

security vulnerabilities in applications. Fault-injection studies [18, 19] into commonly

used cryptographic systems have shown that transient faults can weaken the guarantees

provided by these systems. The main difference between these studies and ours is that

our technique can be applied for any general security-critical system, and not just cryp-

to-systems. Xu et al. [20] consider the effect of transient errors (single-bit flips) in in-

structions on application security. Govindavajhala and Appel [21] explore the effects

of transient errors on the security of the Java virtual machine, assuming the attacker

can execute a specially crafted application. The main difference between these tech-

niques and our technique is that we consider all possible attacks on the application, and

are not restricted to injecting single bit-flips. Further, we do not require the attacker to

execute specially crafted programs as assumed by [21].

7 Conclusions

This paper presented a novel approach to discover insider attacks in applications. An

automated technique to find all possible insider attacks on application code is pre-

sented. The technique uses a combination of symbolic execution and model-checking

to systematically enumerate insider attacks for a given goal of the attacker. We have

12 Pattabiraman, Nakka, Kalbarczyk and Iyer

implemented the technique in the SymPLAID tool, and demonstrate it using the code

segments corresponding to the authentication part of the OpenSSH program.

Acknowledgments: This work was supported in part by NSF grants CNS-0406351 (Next-generation

Software), CNS-05-24695, CNS-05-51665, the Gigascale Systems Research Center (GSRC/MARCO),
and Boeing Corporation as part of Boeing Trusted Software Center at the Information Trust Institute.

References

1. Randazzo, M.R., et al., Insider Threat Study: Illicit Cyber Activity in the Banking and
Finance Sector. 2004, ERT Coordination Center/Software Engineering Institute: Philadel-

phia, PA. p. 25.

2. Keeney, M.M. and E.F. Kowalski, Insider Threat Study: Computer System Sabotage in

Critical Infrastructure Sectors. 2005, CERT/CC: Philadelphia, PA.

3. Chinchani, R., et al., Towards a Theory of Insider Threat Assessment, in Proceedings of the
2005 International Conference on Dependable Systems and Networks. 2005, IEEE Com-

puter Society.
4. Probst, C.W., R.R. Hansen, and F. Nielson, Where can an Insider Attack ?, in Formal As-

pects in Security and Trust. 2007, Springer Berlin / Heidelberg. p. 127-142.

5. Pattabiraman, K., N. Nakka, and Z. Kalbarczyk. SymPLFIED: Symbolic Program Level
Fault-Injection and Error-Detection Framework. in International Conference on Dependa-

ble Systems and Networks (DSN). 2008.
6. OpenSSH Development Team., OpenSSH 4.21. 2004.

7. Clavel, M., et al. The Maude 2.0 System. in Rewriting Technologies and Applications. 2001:

Springer.
8. Pattabiraman, K., et al., Discovering Application-level Insider Attacks using Symbolic Ex-

ecution, in CRHC Technical Report. 2008, UIUC: Champaign, IL.
9. Phillips, C. and L.P. Swiler, A graph-based system for network-vulnerability analysis, in

Proceedings of the 1998 workshop on New security paradigms. 1998, ACM: Charlottes-

ville, Virginia,.

10. Ammann, P., D. Wijesekera, and S. Kaushik, Scalable, graph-based network vulnerability

analysis, in Proceedings of the 9th ACM conference on Computer and communications se-
curity. 2002, ACM: Washington, DC, USA.

11. Sheyner, O., et al., Automated Generation and Analysis of Attack Graphs, in Proceedings of

the 2002 IEEE Symposium on Security and Privacy. 2002, IEEE Computer Society.
12. King, J.C., Symbolic execution and program testing. Commun. ACM, 1976. 19(7): p. 385-

394.
13. Costa, M., et al., Bouncer: securing software by blocking bad input, in Proceedings of twen-

ty-first ACM SIGOPS symposium on Operating systems principles. 2007, ACM: Stevenson,

Washington,.
14. Kruegel, C., et al., Automating mimicry attacks using static binary analysis, in Proceedings

of the 14th conference on USENIX Security Symposium - Volume 14. 2005, USENIX,: Bal-
timore, MD.

15. Molnar, D.A. and D. Wagner, Catchconv: Symbolic execution and run-time type inference

for integer conversion errors. 2007, EECS Department, University of California, Berkeley.
16. Cadar, C., et al., EXE: automatically generating inputs of death, in Proceedings of the 13th

ACM conference on Computer and communications security. 2006, ACM: Virginia.
17. Hsueh, M.-C., T.K. Tsai, and R.K. Iyer, Fault Injection Techniques and Tools. IEEE Com-

puter, 1997. 30(4): p. 75-82.

18. Boneh, D., R. DeMillo, and R.J. Lipton. On the importance of checking crypto-graphic pro-
tocols for faults. in Advances in Cryptgraphy (EuroCrypt). 1997: Springer.

19. Kocher, P.C., J. Jaffe, and B. Jun, Differential Power Analysis, in Proceedings of the 19th
Annual International Cryptology Conference on Advances in Cryptology. 1999, Springer..

20. Xu, J., et al., An Experimental Study of Security Vulnerabilities Caused by Errors, in Pro-

ceedings of International Conference on Dependable Systems and Networks (DSN), 2001.
21. Govindavajhala, S. and A.W. Appel, Using Memory Errors to Attack a Virtual Machine, in

Proceedings of the 2003 IEEE Symposium on Security and Privacy. 2003, IEEE.

