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Abstract: This paper presents a technique to systematically discover insider attacks in 

applications. An attack model where the insider is in the same address space as the 

process and can corrupt arbitrary data is assumed. A formal technique based on sym-

bolic execution and model-checking is developed to comprehensively enumerate all 

possible insider attacks corresponding to a given attack goal. The main advantage of 

the technique is that it operates directly on the program code in assembly language 

and no manual effort is necessary to translate the program into a formal model. We 

apply the technique to security-critical segments of the OpenSSH application. 

 

1 Introduction 

Insider threats have gained prominence as an emerging and important class of security 

threats [1, 2]. An insider is a person who is part of the organization and either steals 

secrets or subverts the working of the organization by exploiting hidden system flaws 

for malicious purposes. For example, a web browser may have a malicious plugin that 

overwrites the address bar with the address of a phishing website. Or a disgruntled 

programmer may plant a logical flaw in a banking application that allows an external 

user to fraudulently withdraw money. Both are examples of how a trusted insider can 

compromise an application and subvert it for malicious purposes.  

This paper considers application-level insider attacks. We define an application-level 

insider attack as one in which a malicious insider attempts to overwrite one or more 

data items in the application, in order to achieve a specific attack goal. The overwriting 

may be carried out by exploiting existing vulnerabilities in the application (e.g. buffer 

overflows), by introducing logical flaws in the application code or through malicious 

third-party libraries. It is also possible (though not required) to launch insider attacks 

from a malicious operating system or higher-privileged process. Application-level in-

sider attacks are particularly insidious because, (1) by attacking the application an in-

sider can evade detection by mimicking its normal behavior (from the point of view of 

the system), and (2) to attack the application, it is enough for the insider to have the 

same privilege as that of the application (assuming a flat address space where all mod-

ules have equal privileges), whereas attacking the network or operating system may 

require super-user privileges. 
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Before defending against insider attacks, we need a model for reasoning about insid-

ers. Previous work has modeled insider attacks at the network and operating system 

(OS) levels using higher-level formalisms such as attack graphs [3] and process calculi 

[4]. However, modeling application-level insider attacks requires analysis of the appli-

cation‟s code as an insider has access to the application and can hence launch attacks 

on the application‟s implementation. Higher-level models are too coarse grained to en-

able reasoning about attacks that can be launched at the application code level. Further, 

higher-level models typically require application vulnerabilities to be identified up-

front in order to reason about insider attacks. 

This paper introduces a technique to formally model application-level insider attacks 

on the application code (expressed in assembly language). The advantage of modeling 

at the assembly level is that the assembly code includes the program, libraries, and any 

state added by the compiler (e.g. stack pointer and return addresses), and enables accu-

rate reasoning about all software-based insider attacks. 

The proposed technique uses a combination of symbolic execution and model check-

ing to systematically enumerate all possible insider attacks in a given application cor-

responding to an attack goal. The technique can be automatically deployed on the ap-

plication‟s code and no formal specifications need to be provided other than generic 

specifications about the attacker‟s end goal(s).   

The value of the analysis performed by the proposed technique is that it can expose 

non-intuitive cases of insider attacks that may be missed by manual code inspection. 

This is because the technique exhaustively considers corruptions of data items used in 

the application (under a given input), and enumerates all corruptions that lead to a suc-

cessful attack (based on the specified attack goal). The results of the analysis can be 

used to guide the development of defense mechanisms (e.g. assertions). 

We have implemented the proposed technique as a tool, SymPLAID, which directly 

analyzes MIPS-based assembly code. The tool identifies for each attack, (1) The pro-

gram point at which the attack must be launched, (2) The data item that must be over-

written by the attacker, and (3) The value that must be used for overwriting the data 

item in order to carry out the attack. 

SymPLAID builds on our earlier tool, SymPLFIED [5], used to evaluate the effect of 

transient errors on the application. SymPLFIED groups individual errors into a single 

abstract class (err), and considers the effect of the entire class of errors on the pro-

gram. This is because in the case of randomly occurring errors, we are more interested 

in the propagation of the error rather than the precise set of circumstances that caused 

the error. In contrast, security attacks are launched by an intelligent adversary and 

hence it is important to know precisely what values are corrupted by the attacker  in 

order to design efficient defense mechanisms against the attack(s). Therefore, Sym-

PLAID was built from the ground up to emphasize precision in terms of identifying 

the specific conditions for an attack. Thus, rather than abstracting the attacker‟s beha-

vior into a single class, the effect of each value corruption is considered individually, 

and its propagation is tracked in the program. The key contributions of the paper are: 

1. Introduces a formal model for reasoning about application-level insider attacks at 

the assembly-code level, 

2. Shows how application-level insiders may be able to subvert the execution of the 

application for malicious purposes, 

3. Describes a technique to automatically discover all possible insider attacks in an 

application using symbolic execution and model checking, 

4. Demonstrates the proposed techniques using a case-study drawn from the authen-

tication module of the OpenSSH application [6].  
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2 Insider Attack Model  

This section describes the attack model for insider attacks and an example scenario for 

an insider attack.  

2.1 Characterization of Insider  

Capabilities: The insider is a part of the application and has unfettered access to the 

program‟s address space. This includes the ability to both read and write the program‟s 

memory and registers. However, we assume that the insider cannot modify the pro-

gram‟s code, which is reasonable since in most programs the code segment is marked 

read-only after the program is loaded.  An attacker may get into the application (and 

become an insider) in one or more of the following ways: 

1. By a logical loophole in the application planted by a disgruntled or malicious pro-

grammer, 

2. Through a malicious (or buggy) third-party library loaded into the address space 

of the application,  

3. By exploiting known security loopholes such as buffer overflow attacks and plant-

ing the attack code,  

4. By overwriting the process‟s registers or memory from another process (with 

higher privilege) or debugger, 

5. Through a security vulnerability in the operating system or virtual machine (if 

present) 

In each of the above scenarios, the insider can corrupt the values of either memory lo-

cations or registers while the application is executing. The first three scenarios only 

require the insider to have the same privileges as the applications, while the last two 

require higher privileges. 

Goal: The attacker‟s goal is to subvert the application to perform malicious functions 

on behalf of the attacker. However, the attacker wants to elude detection or culpability 

(as far as possible), so the attacker‟s code may not directly carry out the attack, but 

may instead overwrite elements of the program‟s data or control in order to achieve the 

attacker‟s aims. From an external perspective, it will appear as though the attack origi-

nated due to an application malfunction, and hence the attack code will not be blamed.  

Therefore, the attacker can execute code to overwrite crucial elements of the pro-

gram‟s data or control elements.  

It is assumed that the attacker does not want to crash the application, but wants to sub-

vert its execution for some malicious purpose. The attack is typically launched only 

under a specific set of inputs to the program (known to the attacker), and the input se-

quence that launches the attack is indistinguishable from a legitimate input for the pro-

gram. Even if the insider is unable to launch the attack by himself/herself, he/she may 

have a colluding user who supplies the required inputs to launch the attack.  

2.2 Attack Scenario 

Figure 1 shows an example attack scenario where the insider has planted a “logic 

bomb” in the application which is triggered under a specific set of inputs. Normal us-

ers are unlikely to accidentally supply the trigger sequence and will be able to use the 

application without any problems. However, a colluding user knows about the time-

bomb and supplies the trigger sequence as input. Perimeter based protection tech-

niques such as firewalls will not notice anything unusual as the trigger sequence is in-
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distinguishable from a regular input for all practical purposes. However, the input will 

trigger the time-bomb in the application thereby launching the security attack on be-

half of the insider.  

 

 
Figure 1: Attack scenario of an insider attack 

2.3 Problem Definition 

The problem of attack generation from the insider‟s point of view may be summed up 

as follows: “If the input sequence to trigger the attack is known (AND) the attacker‟s 

code is executed at specific points in the program, what data items in the program 

should be corrupted and in what way to achieve the attack goal?” 

This paper develops a technique to automatically discover conditions for insider at-

tacks in an application given (i) the inputs to trigger the attack (e.g. a specific user-

name as input), (ii) the attacker‟s objective stated in terms of the final state of the ap-

plication (e.g. to allow a particular user to log in with the wrong password) and (iii) the 

attacker‟s capabilities in terms of the points from which the attack can be launched 

(e.g. within a specific function). The analysis identifies both the target data to be cor-

rupted and what value it should be replaced with to achieve the attacker‟s goal.  To fa-

cilitate the analysis, the following assumptions are made about the attacker by the 

technique. (1) Only one value can be corrupted, but the corrupted value can be any va-

lid value. This assumption ensures that the footprint of the attack is kept small which 

makes it easier to evade detection (from a defense technique) and (2) Corruption is on-

ly allowed at fixed program points. This assumption reflects the fact that an insider 

may be able launch their attacks only at fixed program points – for example, where the 

untrusted library function is called. 

3 Example Code and Attacks 

This section considers an example code fragment to illustrate the attack scenario in 

Section 2.2.  The example is motivated by the OpenSSH program [6], but is not the ac-

tual code extract (we consider the real OpenSSH application in Section 5).  

Figure 2 shows an example code fragment containing the authenticate function. The 

authenticate function reads the values of the system password and the user password 

into the tmp buffer. It copies the value of the system password into the src buffer and 

the value of the user password into the dst buffer. It then compares the values in the 

src and dst buffers and if they match, it returns the value 1 (authenticated). Otherwise 

it returns the value 0 (unauthenticated) to the caller. 
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int authenticate(void* src, void* dst, void* temp, int len){ 

     1: readSystemPassword(temp); 
     2: strncpy(src, temp, len) 

     3: readUserPassword(temp); 
     4: strncpy(dst, temp, len); 

     5: if (! strncmp(dst, src, len) ) return 1; 

     return 0; 
}  

Figure 2: Code of the authenticate function 

 

We take the attacker‟s perspective in coming up with insider attacks on the code in 

Figure 2. The attacker‟s goal is to allow a colluding user (who may be the same person 

as the attacker) to be validated even if he/she has entered the wrong password. The fol-

lowing assumptions are made in this example, for simplicity of explanation: 

1. The attack can be invoked only within the body of the authenticate function.  

2. The attacker can overwrite the value of registers and local variables, but not glob-

al variables and heap buffers (due to practical limitations such as not knowing the 

exact address of global variables and dynamic memory objects).  

3. The attack points are immediately before the function calls within the authenticate 

function, i.e., the arguments to any of the functions called by the authenticate 

function may be overwritten prior to the function call.  

Table 1 shows the set of all possible attacks the attacker could launch in the above 

function. A particularly interesting attack found is presented in row 6 of Table 1, 

where the dst argument of the strncpy function was set to overlay the src string in 

memory. This replaces the first character of the src string with „\0‟, effectively con-

verting it to a NULL string. The dst string also becomes NULL as the dst buffer is not 

filled by the strncpy function (we assume that it has initially been filled with all ze-

roes). The two strings will match when compared and the authenticate function will 

return „1‟. This allows the colluding user to be authenticated.  

 

Table 1: Insider attacks on the authenticate function 
Pro-

gram 

Point 

Variable  to 

be corrupted 

Corrupted 

value of 

variable 

Comments/Explanation 

strncmp 

point 
(line 5) 

dst src buf The src buffer is compared with itself 

src dst buf The dst buffer is compared with itself 

src temp buf 
The dst buffer is compared with the temp buffer which 

contains the same string 

len <= 0  
The strncmp function terminates early and returns 0 (the 
strings are identical) 

strncpy 

point 

(line 4) 

temp src buf 
This copies the string in the src buffer to the dst buffer, 

thereby ensuring that the strings match 

dst 
srcBuf – 

strlen(buf) 

This writes a „\0‟ character in the src buffer, effectively 

converting it to a empty string. The dst buffer is also 

empty as it is not initialized (assuming it is initially set to 
all zeroes), and hence the strings match. 

readUser

Pass-
word 

point 

(line 3) 

temp dst buf 
The temp buffer originally contains the system password. 

Due to the attack, the value in the temp buffer is not re-
placed with the user password. Therefore, the system 

password is copied to the dst buffer, which matches the 

contents of  the src buffer i.e., the system password.  

temp 

Any un-

used loca-
tion in 

memory  
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As Table 1 shows, discovering all possible insider attacks manually (by inspection) is 

cumbersome and non-trivial even for the modestly sized piece of code that is consi-

dered in Figure 2. Therefore, we have developed a tool, SymPLAID, to automatically 

generate insider attacks scenarios. The attacks in Table 1 were discovered by Sym-

PLAID. Although the tool works on assembly language programs, we have shown the 

program as C-language code in Figure 2 for simplicity. We have validated the attacks 

shown in Table 1 using the GNU debugger (gdb) to corrupt the values of chosen va-

riables in the application on an AMD machine running the Linux operating system. All 

the attacks in Table 1 were found to be successful i.e. they led to the user being au-

thenticated in spite of providing the wrong password. 

The attacks in Table 1 contain both “obvious attacks” as well as surprising corner cas-

es. It can be argued that finding obvious attacks is not very useful as they are likely to 

be revealed by manual inspection of the code. However, the power of the proposed 

technique is that it can reveal all such attacks on the code, whereas a human operator 

may miss one or more attacks. This is especially important from the developer‟s pers-

pective, as all the security holes in the application need to be plugged before it can be 

claimed that the application is secure (as all the attacker needs to exploit is a single 

vulnerability). Moreover, the ability to discover corner-case attacks is the real benefit 

of using an automated approach.  

The attacks discovered by SymPLAID can be used to guide the development of de-

fense mechanisms. For example, for the attacks discovered in Table 1, we insert run-

time checks at the following points: 

1. Before the call to the strncmp function to ensure that the src and dst buffers of the 

strncmp function do not overlap with each other or with the temp buffer in terms 

of physical locations. This prevents attacks in rows 1 to 4 of Table 1. 

2. After the call to the readUserPassword function in line 3 to ensure that the temp 

buffer is non-empty. This prevents attacks in the rows 7 and 8 of Table 1.  

3. Before the call to the strncpy function to ensure that neither the temp buffer nor 

the dst  buffer overlap with the src buffer. This prevents attacks in the rows 5 and 

6 of Table 1. 

Figure 3 shows the code in Figure 2 with the checks inserted as assert statements. It is 

assumed that the checks are themselves immune to attack from an insider. 

 

 

int authenticate(void* src, void* dst, void* temp, int len){ 

     1: readSystemPassword(temp); 

     2: strncpy(src, temp, len) 

     3: readuserPassword(temp);  

 assert( isNotEmpty(temp) );  assert( noOverlap(temp, src) and noOverlap(temp, dst) ) 

     4: strncpy(dst, temp, len); 

 assert( noOverlap(src, dst) and noOverlap(src, temp) ); assert( len > 0 ); 

     5: if (! strncmp(dst, src, len) ) return 1; 

     return 0; 

}  

Figure 3: Code of authenticate function with assertions 

4 Technique and Tool 

This section describes the key techniques used in the automation and the design of a 

tool to automatically discover insider attacks in an application. 
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4.1 Symbolic Execution Technique 

We represent an insider attack as a corruption of data values at specific points in the 

program‟s execution i.e. attack points. The attack points are chosen by the program 

developer based on knowledge of where an insider can attack the application. For ex-

ample, all the places where the application calls an untrusted third-party library are at-

tack points as an insider can launch an attack from these points. In the worst-case, 

every instruction in the application can be an attack point.  

The program is executed with a known (concrete) input, and when one of the specified 

execution points is reached, a single variable2 is chosen from the set of all variables in 

the program and assigned a symbolic value (i.e. not a concrete value). The program‟s 

execution is continued with the symbolic value for the chosen variable. All other va-

riables in the program are unchanged. The above procedure is repeated exhaustively 

for each data value in the program at each of the specified attack points. This allows 

enumeration of all insider attacks on a given program. 

The key technique used to comprehensively enumerate insider attacks is symbolic ex-

ecution-based model checking. This means that the program is executed with a combi-

nation of concrete values and symbolic values, and model-checking is used to “fill-in” 

the symbolic values as and when needed. Symbolic values are treated similar to con-

crete values in arithmetic and logical computations performed in the system. The main 

difference is in how branches and memory accesses based on expressions involving 

symbolic values are handled. When a memory access is performed with a symbolic 

expression as the address operand, the execution of the program is forked and the 

symbolic expression is equated to a different memory address in each fork. The value 

stored at the address is read or written in the corresponding fork and the program‟s ex-

ecution is continued. Once the symbolic value has been assigned to an address, all ex-

pressions involving the symbolic value in the state are concretized.  

Similarly, in the case of branches involving symbolic expressions, the program execu-

tion is forked at the branch point. The branch condition is added as a constraint to the 

first fork, while the negation of the condition is added as a constraint to the second 

fork. For each program fork encountered above, the model checker checks whether (1) 

The fork is a viable one, based on the past constraints of the symbolic expressions, and 

(2) whether the fork leads to a desired outcome (of the attacker). If these two condi-

tions are satisfied, the model checker will print the state of the program corresponding 

to the fork i.e. attack state.   

As in most model-checking approaches, the number of states explored can be exponen-

tial in the size of the program and its address space. However, very few of the states 

explored by the model-checker will satisfy the attacker‟s goal(s). Hence, the model-

checker can prune branches of the search tree once it is clear that the branch will not 

lead to a state satisfying the goal. This is the key to the scalability of the approach, and 

underlies the importance of specifying an attack goal for the insider.  

4.2 SymPLAID Tool 

The symbolic execution technique described in the previous section has been imple-

mented in an automated tool – SymPLAID (Symbolic Program Level Attack Injection 

and Detection). This is based on our earlier tool, SymPLFIED, used to study the effect 

of transient errors on programs [5].  

                                                             
2 We use the generic term variable to refer to both registers and memory locations in the program.  
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SymPLAID accepts the following inputs: (1) an assembly language program along 

with libraries (if any), (2) a set of pre-defined inputs for the program, (3) a specifica-

tion of the desired goal of the attacker (expressed as a formula in first-order logic) and 

(4) a set of attack points in the application. It generates a comprehensive set of insider 

attacks that lead to the goal state. For each attack, SymPLAID generates both the loca-

tion (memory or register) to be corrupted as well as the value that must be written to 

the location by the attacker.  

SymPLAID directly parses and interprets assembly language programs written for a 

MIPS processor. The current implementation supports the entire range of MIPS in-

structions, including (1) arithmetic/logical instructions, (2) memory accesses (both 

aligned and unaligned) and (3) branches (both direct and indirect). However, it does 

not support system calls. The lack of system call support is compensated for by the 

provision of native support for input/output operations. Floating point operations are 

also not considered by SymPLAID. This is not a bottleneck as floating-point opera-

tions are typically not used by security-critical code in applications.  

SymPLAID is implemented using Maude, a high-performance language and system 

that supports specification and programming in rewriting logic [7]. SymPLAID models 

the execution semantics of an assembly language program using both equations and 

rewriting rules. Equations are used to model the concrete semantics of the machine, 

while rewriting rules are used for introducing non-determinism due to symbolic evalu-

ation.  SymPLAID maintains precise dependencies both in terms of arithmetic and log-

ical constraints and solves the constraints without incurring false-positives. This is the 

biggest difference between SymPLAID and SymPLFIED [5], which aggregates sym-

bolic values into a single class and hence incurs false-positives. 

5 Case Study: OpenSSH Authentication Module 

To evaluate the SymPLAID tool on a real application, we considered a reduced ver-

sion of the OpenSSH application [6] involving only the user-authentication part. This 

is because SymPLAID does not support all the features used in the complete SSH ap-

plication, e.g. system calls. We retain the core functions in the authentication part of 

OpenSSH with little or no modifications, and replace the more complex ones with stub 

versions – i.e. simplified functions that approximate the behavior of their original ver-

sions. We also replace the system calls with stubs. The reduced version, the authenti-

cation module, consists of about 250 lines of C code and emulates the behavior of the 

SSH application starting from the point after the user enters his/her username and 

password to the point that he/she is authenticated or denied authentication by the sys-

tem (we consider only password-based authentication).  

We ran SymPLAID on the authentication module after compiling it to MIPS assembly 

using the gcc compiler. As before, the goal is to find insider attacks that will allow the 

user to be authenticated. It is assumed that the insider can overwrite the value of any 

register prior to executing any instruction within the authentication module. The input 

to the authentication module is the username and password. The username may or may 

not be a valid username in the system, and the password may or may not be correct. 

These lead to four possible categories of inputs.  

SymPLAID discovered attacks corresponding to the categories where an invalid user-

name is supplied with a valid password (for the application) and where a valid user-

name is supplied with an incorrect password. An example of an attack where the 

invalid username is supplied is considered. Due to space constraints, the other attacks 

are not described and may be found in the technical report [8].  
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5.1 Example Attack: Invalid User-name 

The authentication part of SSH works as follows: when the user enters his/her name, 

the program first checks the user-name against a list of users who are allowed to log 

into the system. If the user is allowed to log into the system, the user record is assigned 

to a data-structure called an authctxt and the user details are stored into the authctxt 

structure. If the name is not found on the list, the record is assigned to a special data-

structure in memory called as fake. fake is also an authctxt structure, except that it 

holds a dummy username and password. This ensures that there is no observable dif-

ference in the time it takes to process legitimate and illegitimate users (which may en-

able attackers to learn if a username is valid by repeated attempts). 

In order to prevent potential attackers from logging on by providing this dummy pass-

word, the authctxt structure has an additional field called valid. This field is set to true 

only for legitimate authctxt records i.e. those for which the username is in the list of 

valid users for the system. The fake structure has the valid field set to false by default. 

In order for the authentication to succeed, the encrypted value of the user password 

must match the (encrypted) system password, and the valid flag of the authctxt record 

must be set to 1. Figure 4 shows the auth_password function that performs the above 

checks. The function first calls the sys_auth_passwd to check if the passwords match, 

and then checks if the valid flag is set in the authctxt record. Only if both conditions 

are true will the function return 1 (authenticated) to its caller. 

 
int sys_auth_passwd(Authctxt *authctxt, const char *password)  { 

1: struct passwd *pw = authctxt->pw; 

2: char *encrypted_password; 
3: char *pw_password = authctxt->valid ?  

4:                                     shadow_pw(pw) : pw->pw_passwd; 

5: if (strcmp(pw_password, "") == 0 &&  

6:                    strcmp(password, "") == 0) 

7:  return (1); 
8: encrypted_password = xcrypt(password, 

9:                            (pw_password[0] && pw_password[1]) ?                                                             
10:                                    pw_password : "xx"); 

11:    return (strcmp(encrypted_password, pw_password) == 0); 

} 
 

int auth_password(Authctxt *authctxt, const char *password) { 
12:                int permit_empty_passwd = 0; 

13: struct passwd * pw = authctxt->pw; 

14: int result, ok = authctxt->valid; 
15: if (*password == '\0' && permit_empty_passwd == 0) 

16:  return 0; 
17: result = sys_auth_passwd(authctxt, password); 

18: if (authctxt->force_pwchange) 

19:  disable_forwarding(); 

20: return (result && ok); 

} 

Figure 4: SSH code fragment corresponding to the attack 

 

An insider can launch an attack by setting the valid flag to true for the fake authctxt 

structure. This will authenticate a user who enters an invalid user name, but enters the 

password stored in the fake structure. The password in the fake structure is a string that 

is hardcoded into the program. To mimic this attack, we supply an invalid user-name 
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and a password that matches the fake (dummy) password. We expected SymPLAID to 

find the attack where the insider overwrites the valid flag of the fake structure. Sym-

PLAID found this attack, but it also found other interesting attacks.  

We consider an example of an attack found by SymPLAID. The attack occurs in the 

sys_auth_password function, at line 11 before the call to the strcmp function (in Figure 

4). At this point, the insider corrupts the value of the stack pointer (stored in register 

$30 in the MIPS architecture) to point within the stack frame of the caller function, 

namely auth_password. When the strcmp function is called, it pushes the current 

frame pointer onto the stack, increments the stack pointer and sets its frame pointer to 

be equal to the value of the stack pointer (corrupted by the attacker).  

 

 
Figure 5: Stack layout when strcmp() is called 

 

Figure 5 shows the stack layout when the function is called (only the variables relevant 

to the attack are shown). The top-row of Figure 5 shows the frame-pointers of the 

functions on the stack due to the attack. Observe that the attack causes the stack frame 

of the strcmp function to overlap with that of the auth_password function. The strcmp 

function is invoked with the addresses of the encrypted_pasword and the pw_password 

buffers in registers $3 and $4 (function arguments are passed in registers on MIPS 

processors). The function copies the contents of these registers to locations within its 

stack frame at offsets of 4 and 8 respectively from its frame pointer. This overwrites 

the value of the local variable ok in the auth_password function with a non-zero value 

(since both buffers are at non-zero addresses). When the strcmp function returns, the 

value of $30 is restored to the frame pointer of sys_auth_passwd, which in turn returns 

to the auth_password function. The auth_password function checks if the result re-

turned from sys_auth_password is non-zero and if the ok flag is non-zero. Both condi-

tions are satisfied, so it returns the value 1 to its caller, and the user is authenticated 

successfully by the system. 

5.2 Performance Results 

The model-checking task is highly parallelizable and can be broken into independent 

sub-tasks, with each sub-task considering attacks in a different code region of the ap-

plication. The authentication module consists of about 500 assembly language instruc-

tions, and the task was broken up into 50 parallel sub-tasks each of which analyzes 10 

instructions in the program. We executed the sub-tasks on a parallel cluster consisting 

of dual-processor AMD Opteron nodes, each of which has 2 GB RAM. The maximum 

time allowed for each task was capped at 48 hours (2 days). 

The total time taken to execute all sub-tasks is at most 36 days. However, the task fi-

nished in less than 2 days due to the highly parallel nature of the search task.  While 
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the running time seems high, it is not a concern as the goal is to discover all potential 

insider attacks (in a reasonable time) and to find protection mechanisms against them.  

6 Related Work 

Insider attacks have traditionally been modeled at the network level. Philips and Swi-

ler [9] introduced the attack graph model to represent the set of all possible attacks that 

can be launched in a network. Ammann et al. [10]  introduce a model-checking based 

technique to automatically find attacks starting from a known goal state of the attacker.  

Sheyner et al. generalize this technique to generate all possible attack paths, thereby 

generating the entire attack graph [11]. Chinchani et al. [3] present a variant of attack 

graphs called key-challenge graphs to represent insider attacks, and use model-

checking to generate all possible insider attacks in a network. 

Insider attacks have been modeled at the operating system level by Probst et al. [4]. In 

this model, applications are represented as sets of processes that can access sets of re-

sources in the system. An insider is modeled as a malicious process in the system.  

Attack-graphs and process graphs are too coarse grained for representing application-

level attacks, and hence we directly analyze the application‟s code. Further, we do not 

require the developer to provide a formal description of the system being analyzed, 

which can require significant effort. Since we analyze the application‟s code directly, 

we can model attacks both in the design and implementation of the application. This is 

important as an insider typically has access to the application‟s source code, and can 

launch low-level attacks on its implementation.  

Symbolic execution is a well-explored technique to find program errors [12]. Recent-

ly, it has also been used to find security vulnerabilities in applications [13-16]. Sym-

bolic techniques are typically concerned with generating application inputs to exploit 

known or unknown vulnerabilities. In contrast, our technique attempts to generate at-

tacks under a given input, assuming that the attacker is already present in the applica-

tion. Further, the attacks found using our technique do not require the application to 

have an exploitable vulnerability (e.g. buffer overflows), but can be launched by a ma-

licious insider in the system. 

Fault-injection is an experimental technique to assess the vulnerability of computer 

systems to random events or faults [17]. Fault-injection has also been used to expose 

security vulnerabilities in applications. Fault-injection studies [18, 19] into commonly 

used cryptographic systems have shown that transient faults can weaken the guarantees 

provided by these systems. The main difference between these studies and ours is that 

our technique can be applied for any general security-critical system, and not just cryp-

to-systems. Xu et al. [20] consider the effect of transient errors (single-bit flips) in in-

structions on application security. Govindavajhala and Appel [21] explore the effects 

of transient errors on the security of the Java virtual machine, assuming the attacker 

can execute a specially crafted application. The main difference between these tech-

niques and our technique is that we consider all possible attacks on the application, and 

are not restricted to injecting single bit-flips. Further, we do not require the attacker to 

execute specially crafted programs as assumed by [21].  

7 Conclusions 

This paper presented a novel approach to discover insider attacks in applications. An 

automated technique to find all possible insider attacks on application code is pre-

sented. The technique uses a combination of symbolic execution and model-checking 

to systematically enumerate insider attacks for a given goal of the attacker. We have 
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implemented the technique in the SymPLAID tool, and demonstrate it using the code 

segments corresponding to the authentication part of the OpenSSH program. 
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