
A policy based approach for the management of
Web browser resources to prevent anonymity
attacks in Tor

Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

Abstract Web browsers are becoming the universal interface to reach applications
and services related with these systems. Different browsing contexts may be re-
quired in order to reach them, e.g., use of VPN tunnels, corporate proxies, anonymis-
ers, etc. By browsingcontextwe mean how the user browsers the Web, including
mainly the concrete configuration of its browser. When the context of the browser
changes, its security requirements also change. In this work, we present the use of
authorisation policies to automatise the process of controlling the resources of a
Web browser when its context changes. The objective of our proposal is oriented
towards easing the adaptation to the security requirementsof the new context and
enforce them in the browser without the need for user intervention. We present a
concrete application of our work as aplug-in for the adaption of security require-
ments in Mozilla/Firefox browser when a context of anonymous navigation through
the Tor network is enabled.

1 Introduction

The Web is increasingly becoming a universal interface for the development of all
kinds of applications: from traditional electronic banking and electronic mail, to
text processors or even elaborated social networks. As the Web is evolving, the
surrounding and supporting technologies are becoming morecomplex. This is spe-
cially relevant in applications that enable the interaction with the Web from the
client side: the Web browsers. The current complexity of theWeb has a direct im-

G. Navarro-Arribas
IIIA - Artificial Intelligence Research Institute, CSIC - Spanish Council for Scientic Research.
Campus UAB s/n, 08193 Bellaterra (Catalonia, Spain) e-mail: guille@iiia.csic.es

J. Garcia-Alfaro
UOC - Universitat Oberta de Catalunya, Rambla Poble Nou 156,08018 Barcelona (Catalonia,
Spain), e-mail:joaquin.garcia-alfaro@acm.org

1

2 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

pact on the security of such applications and more preciselyin the treatment of its
resources. Attacks against Web browsers can compromise thesecurity and privacy
of its users. This can have serious consequences given the pervasive presence of
this piece of software in, for instance, important criticalsystems in industries such
as health care, banking, government administration, and soon. Let us mention, for
instance, the case of H.D. Moore, the lead developer of the Metasploit Project [12].
One of his projects is based on the exploitation of browser misconfiguration, such
as permission of Java and JavaScript code when browsing anonymously through
the The second generation Onion Router(Tor) network [5], with the objective of
catching digital pirates and child pornographers [9]. Evenif we agree in the legiti-
macy of these techniques for the discovery of criminals, these same techniques can
lead to violations of fair users. For instance, similar techniques were used by Dan
Egerstad in November 2007 [10], for capturing sensible information from legitimate
Tor users. As a result of these experiments, several government, embassy, NGO, and
other corporate user accounts and passwords were reported and disclosed.

We are currently working on the implementation of a contextual XACML [7]
policy manager for Web browsers. The main objective of our work is to be able to
automatise the management of resources associated with thebrowser in a dynamic
and flexible way. The use and enforcement of different security contexts will also
help in adapting the browsers to the security needs of the working environment of a
given user. Such an automatism aims to lead to an error-free process in which non-
expert users are protected about security and privacy weaknesses due to browser
misconfiguration. We present in this article a concrete application of our proposal
to adapt the browser security requirements when an anonymous navigation context
is in use. By browsingcontextwe mean how the user browsers the Web, including
mainly the concrete configuration of its browser. We also describe in this work the
current development of our proposal as aplug-in for the Mozilla/Firefox family of
Web browsers. We consider that our approach must be seen as a design recommen-
dation for future applications dealing with the Web paradigm.

2 Overview of the proposal and plan of the paper

The article is organised as follows. In this Sec. 2 we introduce the XACML
language, and the development of our proposal as aplug-in for Mozilla/Firefox
browsers. In Sec. 3 we show a concrete application of our proposal to adapt the
security requirements of Mozilla/Firefox to anonymous Webbrowsing through the
Tor project infrastructure. We conclude the article in Sec.4.

Preventing anonymity attacks in Tor 3

2.1 XACML

XACML (eXtensible Access Control Markup Language) is an XML based standard
language [7], which provides the ability to specify both theaccess control policy
and the request/response messages.

In XACML, an access control policy presents an specific format, having as the
main element therule. Each rule has an associatedtarget, which determines to what
(or who) the rule is applied, aneffect, which is normallypermitor deny, and a condi-
tion. If the condition is evaluated in a favourable manner, the result of the evaluation
of the rule is the one determined by its effect. One or more rules are associated to
a policy, which also can specify a target andobligations. Such obligations specify
actions to be performed by the policy verifier when the policyis applied [16] (nor-
mally, these actions will be performed by a Policy Enforcement Point, e.g., a web
browser enforcement agent). Finally, one or more policies are included in apolicy
setwhich can also have an associated target and obligations.

In XACML, the combination of the results of evaluating the rules included in
the same policy and the evaluation of the policies included in the same policy set,
is given by the combining algorithms. Such algorithms are not only used for the
combination of rules and policies, but also for conflict resolution, because they are
used when more than one rule or policy is applicable to the same target. There
is a set of standard algorithms applied both to the combination of rules and the
combination of policies. Among them, we remark the following ones:

• deny-overrides: an evaluation withdenyeffect takes precedence over the rest.
• permit-overrides: an evaluation withpermiteffect takes precedence over the rest.

In our case, in a very summarised way, by using XACML, we can specify the
traditional tuple ‘subject-resource-action’ adapted to our concrete problem and con-
text. That is, specify if a given script (subject) is allowedor not to access and/or
modify (action) a given browser resource (object). In Sec. 3.3 we show with more
detail how are the policies of our proposal defined.

2.2 The Plug-in for Mozilla/Firefox of our proposal

The specific implementation of our authorisation proposal,from now on XAPO
(XAcml Policy Officer), is based on the Mozilla development framework for the im-
plementation of browser extensions (plug-ins) in the Mozilla/Firefox Web browser.
The development of XAPO is mainly based on Java, JavaScript,and XUL (XML
User Interface Language) [6]. The plug-in is executed in the browser through the
chromeinterface used by the Mozilla applications [11]. From this interface, XAPO,
as any other code executed inchromemode, can perform the actions required by
our proposal such as access to configuration options, storage and reading prefer-
ences, or activate and deactivate browser components (i.e Java, JavaScript, or Shock-
wave/Flash, etc.). This is done through the XPCOM interfaceof the Mozilla/Firefox

4 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

browser. This option is only available in version 3 of the browser. For the implemen-
tation of the XACML components we have usedSunXACML[18], an open source
implementation of the XACML standard in Java. Such implementation, is executed
inside XAPO by making use of theLiveConnectinterface provided by Mozilla. The
installation of all the set of components of XAPO is done witha singlexpi package.
The current version of XAPO is available under demand. In thefollowing section we
present the use of XAPO to adapt the security requirements ofthe Mozilla/Firefox
browser when an anonymous browsing context is activated.

3 Preventing attacks on a context of anonymous browsing

We present in this section a specific application of our proposal. It allows us to adapt
the security requirements of a browser when a context of anonymity is enabled on it.
Our example scenario is based on the anonymous infrastructure of the Tor project.
We introduce in the following subsection some characteristics of Tor, as well as the
specific attack which is going to be addressed by our proposal.

3.1 The anonymity infrastructure of Tor

Several anonymity designs have been proposed in the literature with the objective
of hiding senders identities for privacy purposes. From simple proxies to complex
systems, anonymity networks can offer either strong anonymity for high latency
services (e.g., email and Usenet messages) or weak anonymity for low-latency ser-
vices (e.g., Web browsing). The most widely-used of the latter solutions is based
on anonymous mixes and onion routing [15]. It is distributedas a free software im-
plementation known asThe second generation Onion Router(Tor) [5]. It can be
installed as an end-user application on a wide range of operating systems to redirect
the traffic of low-latency services with a very acceptable overhead.

The Tor objective is the protection of the anonymity of a sender as well as the
contents of its messages. To do so, it transforms cryptographically those messages
and mixes them via a circuit of routers. Through this circuit, routers transport the
original message in an unpredictable way. The content of each message is moreover
re-encrypted within each router with the objective of achieving anonymous com-
munication even if a set of routers are compromised by an attacker. As soon as a
router receives a new message, it decrypts its corresponding encryption layer with
its private key to obtain the following hop and the encryption key of the following
router in the path. This path is initially defined at the beginning of the process. Only
the entity that creates the circuit — and which remains at thesender’s side during all
the process — knows the complete path to deliver a given message. The last router
of the path, theexitnode, decrypts the last layer and delivers an unencrypted version
of the message to its target.

Preventing anonymity attacks in Tor 5

The maturity of the project and its low impact to the performance of on-line ser-
vices make the infrastructure of Tor a promising solution toanonymously browse on
Internet. To obtain this low impact over the performance of the services tunnelled
by Tor, it relies on a very pragmatic threat model. Such a model assumes that ad-
versaries can compromise some fraction of the onion routersin the network. If so,
adversaries can not only observe but also manipulate some fraction of the network
traffic of Tor. A first implication of this assumption is that the exit node has a com-
plete view of the sender’s messages. Therefore, without other countermeasures, it
could perform aMan-in-the-Middleattack to forge answers. As a result, a malicious
onion router acting as the exit router could try to redirect the client to malicious
services or to perform denial of service. A second implication of the threat model of
Tor is the possibility of suffering traffic analysis attackswith the objective of trac-
ing back the sender’s origin or to degrade Tor’s anonymity. Several traffic analysis
attacks against Tor have been reported in the literature, such as [2, 13, 19].

A third problem raises when the configuration of a browser is not handled prop-
erly. Beyond the proper installation and configuration of the software downloaded
from the Tor project, some aspects of the browser must be adapted. Anonymous
browsing with Tor requires not only different habits, but also reconfiguration of
some resources. It is necessary to disable, for example, theexecution of JavaScript
and Java code, as well as plug-ins like Flash, ActiveX, etc. The use of cookies asso-
ciated with previous visited sites, on the other hand, must also be taken into account.
It might be relatively simple for an attacker to manipulate these components in order
to obtain the identity or location of the user (e.g., by obtaining a public IP address
associated with the user). We show in the following subsection a practical example
that shows how to obtain the IP address of a browser configuredto browse through
the Tor network. The attack exploits a misconfigured browserthat allows the execu-
tion of Java code.

3.2 Bypassing Tor via attacks targeting Web browsers

In order to browse through the network of Tor, users should first configure their
browsers to redirect its requests and responses via an HTTP proxy, such as Privoxy
[14]. In fact, not only HTTP traffic must be redirected by the proxy. Any other traf-
fic, such as DNS requests and responses, must be redirected. Privoxy and Tor allow
these later redirections through the use of the SOCKS protocol [8]. There are many
other resources on the browser that could leak information if they are not redirected
by the proxy. The large amount of options on current browsersleads to an error
prone process. The activation and execution of code by plug-ins, such as Flash, Java,
ActiveX, etc., increases the dynamism of Web services, but also increases the num-
ber of potential targets to exploit. If these resources are not properly managed, an
attacker can get control of them and violate user’s anonymity via covered channels.

In [1], Abbott et al. describe the use of this kind of attacks,executed within Web
browsers, in order to bypass the anonymity of Tor. Forcing the user to visit a specific

6 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

Fig. 1 Example of a Web attack to bypass the anonymity of Tor.

Web site, e.g., using social engineering, phishing, orMan-in-the-Middleattacks, a
malicious code embedded within the pages of such service opens a secret channel
between the user and the attacker’s Web domain. Later, performing an analysis of
the traffic exchanged with each victim, the attacker collects and stores data related
with the resources of each browser (e.g., IP addresses, operating system, browser
characteristics, etc.). It is important to note that the collection of this information is
not indeed an attack against Tor’s infrastructure (cf. Fig.1). The attack relies on the
exploitation of tools and browser runtime components. Morespecifically, the attack
is exploiting browser misconfiguration to bypass its proxy settings.

In [4], Christensen et al. extend this previous attack in order to compromise the
identity of Tor users without the necessity of controlling end services (i.e., the vis-
ited Web service). The attacker only needs to control exit nodes of Tor. From these
nodes, and modifying HTTP traffic, the attacker can successfully execute aMan-in-
the-Middleattack to reveal user and hidden service identities. The modification of
HTTP traffic aims at marking the traffic. For example, the use of HTML elements of
typeiframe, can allow the attacker to include unique references leading to malicious
Web sites, as well as to associate a specificcookieto collect user data. This refer-
ence can force the browser to download malicious code, such as Java or Flash code.
If the plug-in that is required by such code is enabled, the code can manage to steal
user information and direct the output towards the attacker. Similarly to the attack
shown in Fig. 1, the attacker can post-process the information in order to perform
an analysis of traffic trying to reveal the identity and activities of the set of victim
users. Abbot et al. show in [1] how this and other similar attacks can be extended in
order to increase the chance of discovery of Tor users and hidden services.

3.3 Using XAPO and XACML policies to prevent the attack

To prevent attacks against the anonymity provided by Tor as the one described in
Sec. 3.2, we use a concrete type of policy, which allows not only to prevent such
attacks but also to introduce enough flexibility and fine-grained specification to be
adapted to several contexts and degrees of anonymity.

Preventing anonymity attacks in Tor 7

The XACML policy used is divided in two specific policies. On one hand there is
a general policy, which explicitly determines the browser resources that have to be
protected: Java, JavaScript, . . . and on the other hand thereis awhitelist-like policy
that provides a fine-grained control of the trusted domains for which the activation
and/or access to concrete resources is allowed.

The first policy is thegeneric-tor-policy. It is composed of apolicyelement con-
taining a rule for each browser resource to be protected. Theeffect of such rules is
alwaysdeny, indicating that such resource cannot be accessed when the policy is
enforced (c.f. Fig. 2).

Generic-tor-policy

Target

Subject:
any-subject

Action:
any-action

Resource:
any-resource

Rule-1 Rule-n

Resource:
browser-resource-n

Effect:
deny

Effect:
deny

Resource:
browser-resource-1

Fig. 2 Generic-tor-policy.

The main purpose of thegeneric-tor-policyis to globally avoid problems such
as the one described in Sec. 3.2. To that end, the access to allsensitive resources
is explicitly denied when Tor is in use. Some important resources that need to be
protected are1:

• Browser plug-ins such as: Java, Flash, ActiveX, RealPlayer, Quicktime, Adobe
PDF, One can specify in the policy plug-ins one by one or use the special
resourceall-plugins. With this last reference, XAPO looks all the plug-ins cur-
rently installed in the browsers and turns them off.

• Cookies: it is important to protect the access to cookies, which could have been
created previously to the activation of the Tor navigation.

As it can be appreciated, this policy is very restrictive andcan limit the func-
tionality of the applications accessed by the user. In orderto improve the user ex-
perience, we consider it important to provide awhitelist-like policy to allow the
definition of trusted domains, which are allowed to access some browser resources.
This avoids the common scenario where a user is using two different browsers, one
with Tor activated and with a minimal functionality and another one without Tor
and with a compete or extended functionality. That is, the user can determine some
trusted applications and allow them to access given resources without giving up the
anonymity measures provided by Tor and XAPO in the other domains.

Thetor-whitelist-policydefines the domains which are allowed to access concrete
browser resources. For each trusted domain, there is an specific policy, which has
rules to describe which actions are allowed over which resources. The effect of

1 The policy may include other needed resources a part from plug-ins and cookies.

8 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

Whitelist-Tor-policy-1

Target

Subject:
trusted domain 1

Rule-1

Resource:
browser-resource-1

Effect:
permit

Action:
action-1

Rule-n

Resource:
browser-resource-r

Effect:
permit

Action:
action-r

Whitelist-Tor-policy-2

Target

Subject:
trusted domain 2

Rule-1

Resource:
browser-resource-1

Effect:
permit

Action:
action-1

Rule-n

Resource:
browser-resource-s

Effect:
permit

Action:
action-s

Whitelist-Tor-policy-m

Target

Subject:
trusted domain m

Rule-1

Resource:
browser-resource-1

Effect:
permit

Action:
action-1

Rule-n

Resource:
browser-resource-t

Effect:
permit

Action:
action-t

Fig. 3 Tor whitelist policy.

these rules ispermitand it will have preference over the evaluation of thegeneric-
tor-policy (c.f. Fig. 3). Through XAPO, the user can choose the trusted domains
and enable all the desired browser options and resources forthem. This changes are
stored in the corresponding whitelist policy and will take effect for the successive
executions of the browser.

Both the generic policy and the whitelist policy are combined in an XACML
policy set by thepermit-overridespolicy combining algorithm (c.f. Sec. 2.1). This
makes the whitelist policy to take precedence over the generic one. Or in other
words, the whitelist policy expressesexceptionsof the generic policy.

3.4 Example of XAPO policies for Tor

In this section we will show a simple example of XAPO policiesfor Tor in order to
ensure an additional enforcement level and to prevent attacks against the anonymity
of users even when they are browsing with Tor enabled. The description of the poli-
cies has been simplified to improve its legibility. At the same time, the example is
quite simple, but it shows clearly and concisely, the way these policies work.

In the following listing (Listing 1) we show an example of ageneric-tor-policy.
The policy includes three rules:java-plugin, javascript-plugin, cookies. The first
one makes XAPO to disable the Java plug-in, the second ones disables the JavaScript
interpreter, and the third one prevents the reading of cookies for all domains.

<Policy PolicyId=”tor−generic:default−tor−firefox”
RuleCombiningAlgId=”deny−overrides”>

<Target> ... </Target>
<Rule RuleId=”java−plugin” Effect=”Deny”>

<Target>
...
<Resources>

<Resource>

<ResourceMatch
MatchId=”function:anyURI−equal”>

<AttributeValue DataType=”XMLSchema \
#anyURI”>urn:browser:plugin:java

</AttributeValue>

<ResourceAttributeDesignator
DataType=”XMLSchema#anyURI”
AttributeId =”resource:resource−id”/>

</ResourceMatch>

</Resource>

</Resources>

</Target>
</Rule>

<Rule RuleId=”javascrip−plugin” Effect=”Deny”>
<Target>

...

Preventing anonymity attacks in Tor 9

<Resources>

<Resource>

<ResourceMatch MatchId=”function:\
anyURI−equal”>

<AttributeValue DataType=”XMLSchema\
#anyURI”>

urn:browser:plugin:javascript
</AttributeValue>

<ResourceAttributeDesignator
DataType=”XMLSchema#anyURI”
AttributeId =”resource:resource−id”/>

</ResourceMatch>

</Resource>

</Resources>

</Target>
</Rule>

<Rule RuleId=”cookies” Effect=”Deny”>
<Target>

<Subjects><AnySubject/></Subjects>

<Actions>

<Attribute AttributeId =”action:action−id”
DataType=”XMLSchema#string”>

<AttributeValue>read</AttributeValue>

</Attribute>

</Actions>

<Resources>

<Resource>

<ResourceMatch
MatchId=”function:anyURI−equal”>

<AttributeValue
DataType=”XMLSchema#anyURI”>

urn:browser:document.cookie
</AttributeValue>

<ResourceAttributeDesignator
DataType=”XMLSchema#anyURI”
AttributeId =”resource:resource−id”/>

</ResourceMatch>

</Resource>

</Resources>

</Target>
</Rule>

</Policy>

Listing 1 Generic policy for Tor.

Following the example, the user may want to activate the JavaScript inter-
preter and the Java plug-in but just for a concrete trusted email Web application
(mail.trusted.domain.org), which is accessed through HTTPS. Instead of
having to change or disable the Tor generic policy or initiate a new session without
Tor, the user can include a whitelist policy to make XAPO allow the execution of
JavaScript code from the trusted domain. The following listing (Listing 2) shows a
policy to apply the corresponding domain with two rules, oneto activate the Java
plug-in and another for JavaScript.

<Policy PolicyId=”tor−whitelist:mail ”
RuleCombiningAlgId=”permit−overrides”>

<Target>
<Subjects>

<Attribute AttributeId =”subject:subject−id”
DataType=”XMLSchema#anyURI”>

<AttributeValue>

https: // mail. trusted .domain.org
</AttributeValue>

</Attribute>

</Subjects>

...
</Target>
<Rule RuleId=”java−rule” Effect=”Permit”>

<Target>
...
<Resources>

<Resource>

<ResourceMatch
MatchId=”function:anyURI−equal”>

<AttributeValue DataType=”XMLSchema\
#anyURI”>urn:browser:plugin:java

</AttributeValue>

<ResourceAttributeDesignator
DataType=”XMLSchema#anyURI”
AttributeId =”resource:resource−id”/>

</ResourceMatch>

</Resource>

</Resources>

</Target>
</Rule>

<Rule RuleId=”javascrip−rule” Effect=”Permit”>
<Target>

...
<Resources>

<Resource>

<ResourceMatch
MatchId=”function:anyURI−equal”>

<AttributeValue DataType=”XMLSchema\
#anyURI”>urn:browser:plugin:javascript
</AttributeValue>

<ResourceAttributeDesignator
DataType=”XMLSchema#anyURI”
AttributeId =”resource:resource−id”/>

</ResourceMatch>

</Resource>

</Resources>

</Target>
</Rule>

</Policy>

Listing 2 Tor-whitelist policy for the domain
trusted.domain.org.

10 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

Finally, in the following listing we show another whitelistpolicy (Listing 3),
which tells XAPO to enable JavaScript only for the domaintrusted-bank.org.

<Policy PolicyId=”tor−whitelist:bank”
RuleCombiningAlgId=”permit−overrides”>

<Target>
<Subjects>

<Attribute AttributeId =”subject:subject−id”
DataType=”XMLSchema#anyURI”>

<AttributeValue>trusted−bank.org</AttributeValue>

</Attribute>

</Subjects>

...
</Target>
<Rule RuleId=”javascrip−rule” Effect=”Permit”>

<Target>
<Subjects><AnySubject/></Subjects>

<Actions><AnyAction/></Actions>

<Resources>

<Resource>

<ResourceMatch

MatchId=”function:anyURI−equal”>
<AttributeValue

DataType=”XMLSchema#anyURI”>
browser:plugin:javascript

</AttributeValue>

<ResourceAttributeDesignator
DataType=”XMLSchema#anyURI”
AttributeId =”resource:resource−id”/>

</ResourceMatch>

</Resource>

</Resources>

</Target>
</Rule>

</Policy>

Listing 3 Tor-whitelist policy for the domain
trusted-bank.org.

As it can be seen, the policy allows the activation of the JavaScript interpreter for
the concrete domain through the corresponding rule.

The three policies we have seen in the example, are combined in a policy set. A
simplified example of such policy set can be seen in the following listing (Listing 4).

<PolicySet PolicySetId=”xapo:tor−policyset”
PolicyCombiningAlgId=”permit−overrides”>

<Target />
<PolicyIdReference>

tor−generic:default−tor−firefox
</PolicyIdReference>

<PolicyIdReference>

tor−whitelist:mail

</PolicyIdReference>

<PolicyIdReference>

tor−whitelist:bank
</PolicyIdReference>

</PolicySet>

Listing 4 Policy set example for Tor.

To conclude this section, we show with the practical examplepresented in
Figs. 4(a) and 4(b), the way the activation of XAPO prevents the attacks seen in
Sec. 3.2. The browser used is the Mozilla/Firefox 3 Beta 1, configured with XAPO
and the Torbutton extension [17] (used for the automatic configuration of Privoxy
in the browsing preferences of Mozilla/Firefox). As it has already been discussed,
the elevated number of configuration options present in a Mozilla/Firefox browser
make it possible, without the proper measures, to third parties to violate the anony-
mous channels provided by Tor and retrieve without problemsthe identity of the
browser. The attack shown exploits the use of a Java code executed from JavaScript
in order to open a socket throughLiveConnect. This code makes an HTTP request to
the server hosting the web page (http://ha.ckers.org/weird/tor.cgi).
Given that the request does not go through the nodes of the Tornetwork, after a
simple analysis of the received request, and automatically, the attacker of the visited
web site gets to know and shows in the screen information associated to the user,
such as the IP address. Fig. 4(b) shows how the activation of XAPO and thus the
protections of resources associated with the XAPO policies, prevents the creation of
the channel between the attacker and the victim browser.

Preventing anonymity attacks in Tor 11

(a) Torbutton enabled and XAPO disabled.

(b) Torbutton and XAPO enabled.

Fig. 4 (a): Example of an attack to bypass the configuration of Privoxy in a Mozilla/Firefox
browser with the Torbutton extension enabled and the XAPO extension disabled. The attack opens
an addition channel between the execution environment of the browser and the attacker and,
through this channel, it extracts the information associated with the browser; (b): Prevention of
the attack by enabling the XAPO extension.

4 Conclusions

In this article we have presented a proposal to apply security policies in a Web
browser. More precisely, we have presented a Mozilla/Firefox extension, which al-
lows the use of policies expressed in the XACML standard language to protect the
resources of the browser. Furthermore, we have shown how this extension, named
XAPO, can be used to enhance the anonymity of the users as a complement to the
network infrastructure of the Tor project.

Tor suffers some security problems, since there are alreadyknown attacks, which
can violate the anonymity of its users. By using a malicious code based on, for ex-
ample Java or Flash animations, an attacker can set up a direct connection with Web
servers under its control and the browser, jeopardising theanonymity of the user.
Although the attack is actually exploiting the tools and theexternal environment of
the Tor network, there are attacks in the literature (see, for instance, [1]) showing
how to extend this and other similar attacks with the aim of augmenting the proba-
bilities of an attacker to violate the anonymity of the usersand services hided behind
the network of the Tor project.

Our proposal allows to prevent such attacks by defining an enhanced security
policy oriented to Tor, which guarantees to the user a betterprotection of his identity

12 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

and sensitive information. To that end, the policy allows the definition of the browser
resources that have to be protected as an additional measureto the protection already
provided by Tor. Such policy is flexible enough to be adapted to all the browsing
habits of the user. For example, while it provides a completeprotection, it also
allows the definition of awhitelist of trusted domains, which are allowed to use
some given resources, improving the browsing experience ofthe user

Currently, the prototype of the proposal is being developedas an extension of
the Mozilla/Firefox browser, but we are working on the development of equivalent
extension for other browser such as Safari, or Internet Explorer. The use of an stan-
dard language such as XACML, allows to easily reuse and interchange the policies
between different browsers.

Acknowledgements Partial support by the Spanish MEC (projects eAEGIS TSI2007-65406-
C03-02, and ARES - CONSOLIDER INGENIO 2010 CSD2007-00004) is acknowledged.

References

1. Abbott, T., Lai, K., Lieberman, M., and Price, E. Browser-Based Attacks on Tor.7th Workshop
on Privacy Enhancing Technologies (PET 2007), LNCS 4776(1):184–199, 2007.

2. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., and Sicker,D. Low-resource routing attacks
against Tor.ACM workshop on Privacy in electronic society, pp. 11–20, 2007.

3. Chaum, D. Untraceable electronic mail, return addresses, and digital pseudonyms.In: Com-
munications of the ACM, 24(2):84–88, 1981.

4. Christensen, A. et al. Practical Onion Hacking..FortConsult, October 2006.
5. Dingledine, R., Mathewson, N., and Syverson, P. F. Tor: The second-generation Onion Router.

In: 13th conference on USENIX Security Symposium, 2004.
6. Ginda, R. Writing a Mozilla Application with XUL and Javascript. O’Reilly, USA, 2000.
7. Godik, S., et al. eXtensible Access Control Markup Language (XACML) Version 2. Standard,

OASIS. February 2005.
8. Leech, M., et al. SOCKS Protocol Version 5.RFC1928, March 1996.
9. Lemos, R. Tor hack proposed to catch criminals. SecurityFocus, March 2007. [Online].

Available: http://www.securityfocus.com/news/11447
10. Lemos, R. Embassy leaks highlight pitfalls of Tor. SecurityFocus, September 2007. [Online].

Available: http://www.securityfocus.com/news/11486
11. Mcfarlane, N.Rapid Application Development with Mozilla. Prentice Hall PTR., 2004.
12. Moore, H. D. et al. The Metasploit Project. [Online]. Available: http://www.metasploit.com/
13. Murdoch, S. J. and Danezis, G. Low-cost traffic analysis of Tor. IEEE Symposium on Security

and Privacy), pp. 183–195, 2005.
14. Privoxy - Home Page [Online]. Available: http://www.privoxy.org/
15. Reed, M. G., Syverson, P. F., and Goldschlag, D. M. Anonymous connections and onion

routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494, 1998.
16. Sloman, M. Policy Driven Management for Distributed Systems Journal of Network and

Systems Management, vol. 2, part 4. Plenum Press. 1994.
17. Perry M. and Squires S. Torbutton. [Online]. Available:https://www.torproject.org/torbutton/
18. Sun Microsystems SunXACML. [Online]. Available: http://sunxacml.sourceforge.net
19. Wright, M. K., Adler, M., Levine, B. N., Shields, C. Passive-Logging Attacks Against Anony-

mous Communications Systems.ACM Transactions on Information and System Security (TIS-
SEC), Vol. 11, No. 2, Article 7, 1–33, Pub. date: May 2008.

20. Yavatkar, R., Pendarakis, D. and Guerin, R. A Framework for Policy-based Admission Control
RFC 2753. The Internet Society. January, 2000.

