A policy based approach for the management of
Web browser resourcesto prevent anonymity
attacksin Tor

Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

Abstract Web browsers are becoming the universal interface to regglications
and services related with these systems. Different braysontexts may be re-
quired in orderto reach them, e.g., use of VPN tunnels, gatp@roxies, anonymis-
ers, etc. By browsingontextwe mean how the user browsers the Web, including
mainly the concrete configuration of its browser. When thetext of the browser
changes, its security requirements also change. In thik,wa present the use of
authorisation policies to automatise the process of ctimgothe resources of a
Web browser when its context changes. The objective of copgsal is oriented
towards easing the adaptation to the security requirenadritee new context and
enforce them in the browser without the need for user integiga. We present a
concrete application of our work aspéug-in for the adaption of security require-
ments in Mozilla/Firefox browser when a context of anonysoavigation through
the Tor network is enabled.

1 Introduction

The Web is increasingly becoming a universal interfaceierdevelopment of all
kinds of applications: from traditional electronic bangiand electronic mail, to
text processors or even elaborated social networks. As thie ié/evolving, the
surrounding and supporting technologies are becoming cwrglex. This is spe-
cially relevant in applications that enable the interattwith the Web from the
client side: the Web browsers. The current complexity ofifeb has a direct im-

G. Navarro-Arribas
A - Artificial Intelligence Research Institute, CSIC - &pish Council for Scientic Research.
Campus UAB s/n, 08193 Bellaterra (Catalonia, Spain) ezrgail | | e@ i1 a. csi c. es

J. Garcia-Alfaro
UOC - Universitat Oberta de Catalunya, Rambla Poble Nou 086,18 Barcelona (Catalonia,
Spain), e-mailj oaqui n. gar ci a- al faro@cm or g

2 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

pact on the security of such applications and more precisdlye treatment of its
resources. Attacks against Web browsers can compromisetheity and privacy
of its users. This can have serious consequences given thaspe presence of
this piece of software in, for instance, important critisgstems in industries such
as health care, banking, government administration, arwhsbet us mention, for
instance, the case of H.D. Moore, the lead developer of theudyoit Project [12].
One of his projects is based on the exploitation of browseacomfiguration, such
as permission of Java and JavaScript code when browsingyamously through
the The second generation Onion Rou{d@pr) network [5], with the objective of
catching digital pirates and child pornographers [9]. Eifeme agree in the legiti-
macy of these techniques for the discovery of criminalssétsame techniques can
lead to violations of fair users. For instance, similar t@ghes were used by Dan
Egerstad in November 2007 [10], for capturing sensiblermgttion from legitimate
Tor users. As aresult of these experiments, several gowrhembassy, NGO, and
other corporate user accounts and passwords were repodetisglosed.

We are currently working on the implementation of a contakilACML [7]
policy manager for Web browsers. The main objective of ourkvi® to be able to
automatise the management of resources associated witina¥vser in a dynamic
and flexible way. The use and enforcement of different sgcadntexts will also
help in adapting the browsers to the security needs of th&ingenvironment of a
given user. Such an automatism aims to lead to an error-freegs in which non-
expert users are protected about security and privacy vesaks due to browser
misconfiguration. We present in this article a concreteiapppbn of our proposal
to adapt the browser security requirements when an anonymeuigation context
is in use. By browsingontextwe mean how the user browsers the Web, including
mainly the concrete configuration of its browser. We alsadbs in this work the
current development of our proposal aplag-in for the Mozilla/Firefox family of
Web browsers. We consider that our approach must be seenesfga decommen-
dation for future applications dealing with the Web paraalig

2 Overview of the proposal and plan of the paper

The article is organised as follows. In this Sec. 2 we intcalthe XACML
language, and the development of our proposal atug-in for Mozilla/Firefox
browsers. In Sec. 3 we show a concrete application of ourgea@pto adapt the
security requirements of Mozilla/Firefox to anonymous Viiebwsing through the
Tor project infrastructure. We conclude the article in Sec.

Preventing anonymity attacks in Tor 3

2.1 XACML

XACML (eXtensible Access Control Markup Langupigean XML based standard
language [7], which provides the ability to specify both #wess control policy
and the request/response messages.

In XACML, an access control policy presents an specific fdfrhaving as the
main element theule. Each rule has an associatadyet which determines to what
(or who) the rule is applied, affect which is normallypermitor deny and a condi-
tion. If the condition is evaluated in a favourable manrez,result of the evaluation
of the rule is the one determined by its effect. One or moresrakre associated to
apolicy, which also can specify a target anobligations Such obligations specify
actions to be performed by the policy verifier when the poiécsipplied [16] (nor-
mally, these actions will be performed by a Policy Enforcatrfeoint, e.g., a web
browser enforcement agent). Finally, one or more policiesrecluded in golicy
setwhich can also have an associated target and obligations.

In XACML, the combination of the results of evaluating thédesuincluded in
the same policy and the evaluation of the policies includetthé same policy set,
is given by the combining algorithms. Such algorithms areamdy used for the
combination of rules and policies, but also for conflict taon, because they are
used when more than one rule or policy is applicable to theedanget There
is a set of standard algorithms applied both to the comlmnati rules and the
combination of policies. Among them, we remark the follogvomes:

e deny-overridesan evaluation witldenyeffect takes precedence over the rest.
e permit-overridesan evaluation witlpermiteffect takes precedence over the rest.

In our case, in a very summarised way, by using XACML, we cascip the
traditional tuple ‘subject-resource-action’ adapteduo@ncrete problem and con-
text. That is, specify if a given script (subject) is allowednot to access and/or
modify (action) a given browser resource (object). In Se8.v@e show with more
detail how are the policies of our proposal defined.

2.2 ThePlug-in for Mozlla/Firefox of our proposal

The specific implementation of our authorisation proposain now on XAPO
(XAcml Policy Office), is based on the Mozilla development framework for the im-
plementation of browser extensions (plug-ins) in the Ma#irefox Web browser.
The development of XAPO is mainly based on Java, JavaSenigt, XUL (XML
User Interface Languagd6]. The plug-in is executed in the browser through the
chromeinterface used by the Mozilla applications [11]. From thiterface, XAPO,
as any other code executedédhromemode, can perform the actions required by
our proposal such as access to configuration options, st@ad reading prefer-
ences, or activate and deactivate browser componentayaeJavaScript, or Shock-
wave/Flash, etc.). This is done through the XPCOM intertddhe Mozilla/Firefox

4 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

browser. This option is only available in version 3 of theveser. For the implemen-
tation of the XACML components we have us8dnXACML[18], an open source
implementation of the XACML standard in Java. Such impletagaon, is executed
inside XAPO by making use of tHeveConnecinterface provided by Mozilla. The
installation of all the set of components of XAPO is done veitinglexpi package.
The currentversion of XAPOQ is available under demand. Iddhewing section we
present the use of XAPO to adapt the security requiremeritedflozilla/Firefox
browser when an anonymous browsing context is activated.

3 Preventing attacks on a context of anonymous browsing

We present in this section a specific application of our psajpadt allows us to adapt
the security requirements of a browser when a context ofyandgis enabled on it.
Our example scenario is based on the anonymous infrasteuatuhe Tor project.
We introduce in the following subsection some characiessif Tor, as well as the
specific attack which is going to be addressed by our proposal

3.1 Theanonymity infrastructure of Tor

Several anonymity designs have been proposed in the literatith the objective
of hiding senders identities for privacy purposes. Frompéinproxies to complex
systems, anonymity networks can offer either strong andtyyfor high latency
services (e.g., email and Usenet messages) or weak angrgmibw-latency ser-
vices (e.g., Web browsing). The most widely-used of thestagblutions is based
on anonymous mixes and onion routing [15]. It is distribudsda free software im-
plementation known a¥he second generation Onion Rouf@or) [5]. It can be
installed as an end-user application on a wide range of tipgrsystems to redirect
the traffic of low-latency services with a very acceptablerbead.

The Tor objective is the protection of the anonymity of a sarak well as the
contents of its messages. To do so, it transforms cryptbgrally those messages
and mixes them via a circuit of routers. Through this circrouters transport the
original message in an unpredictable way. The content d¢f sessage is moreover
re-encrypted within each router with the objective of aeimg anonymous com-
munication even if a set of routers are compromised by amclk®taAs soon as a
router receives a new message, it decrypts its correspgedicryption layer with
its private key to obtain the following hop and the encryptiey of the following
router in the path. This path is initially defined at the begng of the process. Only
the entity that creates the circuit— and which remains asémeler’s side during all
the process — knows the complete path to deliver a given rges3#e last router
of the path, thexitnode, decrypts the last layer and delivers an unencryptsibve
of the message to its target.

Preventing anonymity attacks in Tor 5

The maturity of the project and its low impact to the perfonoeof on-line ser-
vices make the infrastructure of Tor a promising solutioarionymously browse on
Internet. To obtain this low impact over the performancehef $ervices tunnelled
by Tor, it relies on a very pragmatic threat model. Such a rhaggumes that ad-
versaries can compromise some fraction of the onion routdfre network. If so,
adversaries can not only observe but also manipulate sautdin of the network
traffic of Tor. A first implication of this assumption is thduet exit node has a com-
plete view of the sender’'s messages. Therefore, withowratbuntermeasures, it
could perform avian-in-the-Middleattack to forge answers. As a result, a malicious
onion router acting as the exit router could try to rediréet tlient to malicious
services or to perform denial of service. A second implaratf the threat model of
Tor is the possibility of suffering traffic analysis attackih the objective of trac-
ing back the sender’s origin or to degrade Tor's anonymigyeBal traffic analysis
attacks against Tor have been reported in the literatuch, asi[2, 13, 19].

A third problem raises when the configuration of a browsewishandled prop-
erly. Beyond the proper installation and configuration & software downloaded
from the Tor project, some aspects of the browser must betedlapnonymous
browsing with Tor requires not only different habits, bus@lreconfiguration of
some resources. It is necessary to disable, for examplexdgmution of JavaScript
and Java code, as well as plug-ins like Flash, ActiveX, ete 0se of cookies asso-
ciated with previous visited sites, on the other hand, misstlze taken into account.
It might be relatively simple for an attacker to manipulditede components in order
to obtain the identity or location of the user (e.g., by ohitag a public IP address
associated with the user). We show in the following subeaddi practical example
that shows how to obtain the IP address of a browser configaretbwse through
the Tor network. The attack exploits a misconfigured browsatrallows the execu-
tion of Java code.

3.2 Bypassing Tor via attacks targeting Web browsers

In order to browse through the network of Tor, users shoult tionfigure their
browsers to redirect its requests and responses via an HiioKy, such as Privoxy
[14]. In fact, not only HTTP traffic must be redirected by threxy. Any other traf-
fic, such as DNS requests and responses, must be rediregteckyRand Tor allow
these later redirections through the use of the SOCKS pobf8L There are many
other resources on the browser that could leak informatitirely are not redirected
by the proxy. The large amount of options on current browtsads to an error
prone process. The activation and execution of code by iplsigsuch as Flash, Java,
ActiveX, etc., increases the dynamism of Web services, Isotiacreases the num-
ber of potential targets to exploit. If these resources atgproperly managed, an
attacker can get control of them and violate user’s anorywigt covered channels.
In [1], Abbott et al. describe the use of this kind of attackecuted within Web
browsers, in order to bypass the anonymity of Tor. Forcirguer to visit a specific

6 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

Malicious code

. e |
o o

\/ 1_\\\
/> Tor Network . _.“
User \ / | ;
- n

Attacker’s web site

Fig. 1 Example of a Web attack to bypass the anonymity of Tor.

Web site, e.g., using social engineering, phishingylan-in-the-Middleattacks, a
malicious code embedded within the pages of such servicesopsecret channel
between the user and the attacker’s Web domain. Later, pp@rfg an analysis of
the traffic exchanged with each victim, the attacker codlertd stores data related
with the resources of each browser (e.g., IP addressesatopgesystem, browser
characteristics, etc.). It is important to note that théempion of this information is
not indeed an attack against Tor's infrastructure (cf. E)gThe attack relies on the
exploitation of tools and browser runtime components. Miuecifically, the attack
is exploiting browser misconfiguration to bypass its proitiags.

In [4], Christensen et al. extend this previous attack ireotd compromise the
identity of Tor users without the necessity of controllimgleservices (i.e., the vis-
ited Web service). The attacker only needs to control exdtesaof Tor. From these
nodes, and modifying HTTP traffic, the attacker can sucadigsfxecute aMan-in-
the-Middleattack to reveal user and hidden service identities. Theiffnation of
HTTP traffic aims at marking the traffic. For example, the udd ML elements of
typeiframe can allow the attacker to include unique references lggdimalicious
Web sites, as well as to associate a specifickieto collect user data. This refer-
ence can force the browser to download malicious code, sudhwa or Flash code.
If the plug-in that is required by such code is enabled, tflleatan manage to steal
user information and direct the output towards the attackenilarly to the attack
shown in Fig. 1, the attacker can post-process the infoomati order to perform
an analysis of traffic trying to reveal the identity and aititss of the set of victim
users. Abbot et al. show in [1] how this and other similarettacan be extended in
order to increase the chance of discovery of Tor users arttehidervices.

3.3 Using XAPO and XACML policiesto prevent the attack

To prevent attacks against the anonymity provided by Tohasohe described in
Sec. 3.2, we use a concrete type of policy, which allows nbt tmprevent such
attacks but also to introduce enough flexibility and fineirggd specification to be
adapted to several contexts and degrees of anonymity.

Preventing anonymity attacks in Tor 7

The XACML policy used is divided in two specific policies. Onehand there is
a general policy, which explicitly determines the browsesaurces that have to be
protected: Java, JavaScript, ...and on the other handitharghitelistlike policy
that provides a fine-grained control of the trusted domainsvhich the activation
and/or access to concrete resources is allowed.

The first policy is thegeneric-tor-policy It is composed of @olicy element con-
taining a rule for each browser resource to be protectedeffeet of such rules is
alwaysdeny indicating that such resource cannot be accessed wherolicy |3
enforced (c.f. Fig. 2).

Generic-tor-policy

Rule-1 Rule-n

any-subject Resource: = Resource:
browser-resource-1 browser-resource-n
m—
- -
any-resource

Fig. 2 Generic-tor-policy.

The main purpose of thgeneric-tor-policyis to globally avoid problems such
as the one described in Sec. 3.2. To that end, the accessgenaltive resources
is explicitly denied when Tor is in use. Some important reses that need to be
protected aré:

e Browser plug-ins such as: Java, Flash, ActiveX, RealP|ayaicktime, Adobe
PDF, One can specify in the policy plug-ins one by onegw the special
resourceall-plugins With this last reference, XAPO looks all the plug-ins cur-
rently installed in the browsers and turns them off.

e Cookies: it is important to protect the access to cookieschvbould have been
created previously to the activation of the Tor navigation.

As it can be appreciated, this policy is very restrictive @ad limit the func-
tionality of the applications accessed by the user. In otémprove the user ex-
perience, we consider it important to providevaitelistlike policy to allow the
definition of trusted domains, which are allowed to accessesbrowser resources.
This avoids the common scenario where a user is using twerdiit browsers, one
with Tor activated and with a minimal functionality and anet one without Tor
and with a compete or extended functionality. That is, thex gan determine some
trusted applications and allow them to access given resswrithout giving up the
anonymity measures provided by Tor and XAPO in the other dasna

Thetor-whitelist-policydefines the domains which are allowed to access concrete
browser resources. For each trusted domain, there is aifisgmgicy, which has
rules to describe which actions are allowed over which resgsu The effect of

1 The policy may include other needed resources a part frogripsiand cookies.

8 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

Whitelist-Tor-policy-1 Whitelist-Tor-policy-2 Whitelist-Tor-policy-m
g | -
Subject: Subject: Subject:
trusted domain 1 trusted domain 2 trusted domain m
Rule-1 1 Rule-1
Resource: Resource:
Action: [Ac?ﬂon'
action-1 action).
Effect: Effect:
Ermll
Rule-n] Rule-n
‘Resource: Resource:
Action: Action:
action-r_ action-s_
Effect: Effect:
Elmll

Fig. 3 Tor whitelist policy.

these rules ipermitand it will have preference over the evaluation of gemeric-
tor-policy (c.f. Fig. 3). Through XAPO, the user can choose the trustadains
and enable all the desired browser options and resourcésdior. This changes are
stored in the corresponding whitelist policy and will takéeet for the successive
executions of the browser.

Both the generic policy and the whitelist policy are combirie an XACML
policy set by thegpermit-overridegolicy combining algorithm (c.f. Sec. 2.1). This
makes the whitelist policy to take precedence over the dgewae. Or in other
words, the whitelist policy expressesception®f the generic policy.

3.4 Example of XAPO policiesfor Tor

In this section we will show a simple example of XAPO policiesTor in order to
ensure an additional enforcement level and to preventi@@gainst the anonymity
of users even when they are browsing with Tor enabled. Therig¢ion of the poli-
cies has been simplified to improve its legibility. At the gatime, the example is
quite simple, but it shows clearly and concisely, the wagéheolicies work.

In the following listing (Listing 1) we show an example ofjaneric-tor-policy
The policy includes three rulegava-plugin javascript-plugin cookies The first
one makes XAPO to disable the Java plug-in, the second osaislds the JavaScript
interpreter, and the third one prevents the reading of asolar all domains.

<Policy Policyld="tor—generic:default—tor—firefox” </AttributeValue >
RuleCombiningAlgld="deny—overrides”> <ResourceAttributeDesignator
<Target> ... </Target> DataType="XMLSchema#anyURI”
<Rule Ruleld="java—plugin” Effect="Deny”> Attributeld ="resource:resource —id"/>
<Target> </ResourceMatch>
</Resource>
<Resources> </Resources>
<Resource> <[Target>
<ResourceMatch </Rule>
Matchld="function:anyURI—equal”> <Rule Ruleld="javascrip—plugin” Effect="Deny”>

<AttributeValue DataType="XMLSchema \ <Target>
#anyURI”>urn:browser:plugin:java

Preventing anonymity attacks in Tor 9
<Resources> </Attribute >
<Resource> </Actions>

<ResourceMatch Matchld="function:\ <Resources>
anyURI—equal”> <Resource>

<AttributeValue DataType="XMLSchema\ <ResourceMatch

#anyURI"> Matchld="function:anyURI—equal”>
urn:browser:plugin:javascript <AttributeValue

</AttributeValue >

< ResourceAttributeDesignator
DataType="XMLSchema#anyURI"
Attributeld ="resource:resource —id"/>

DataType="XMLSchema#anyURI">
urn:browser:document.cookie
</AttributeValue >
< ResourceAttributeDesignator

</ResourceMatch > DataType="XMLSchema#anyURI”
</Resource> Attributeld ="resource:resource —id"/>
</Resources> </ResourceMatch >
<[Target> </Resource>
</Rule> </Resources>
<Rule Ruleld="cookies” Effect="Deny”> <[Target>
<Target> </Rule>
< Subjects > <AnySubject/> </Subjects > </Policy>
<Actions>

<Attribute Attributeld ="action:action —id” Listing 1 Generic pOIiCV for Tor.

DataType="XMLSchema#string”>
<AttributeValue >read </AttributeValue >

Following the example, the user may want to activate the Serit inter-
preter and the Java plug-in but just for a concrete trustedileivieb application
(mai | . trusted. domai n. or g), which is accessed through HTTPS. Instead of
having to change or disable the Tor generic policy or irgt@anew session without
Tor, the user can include a whitelist policy to make XAPO wllbve execution of
JavaScript code from the trusted domain. The followingrgs(Listing 2) shows a
policy to apply the corresponding domain with two rules, tmeactivate the Java

plug-in and another for JavaScript.

<Policy Policyld="tor— whitelist:mail ”
RuleCombiningAlgld="permit—overrides”>
< Target>
<Subjects>
<Attribute Attributeld ="subject:subject —id”
DataType="XMLSchema#anyURI">
< AttributeValue >
https: // mail. trusted .domain.org
</AttributeValue >
</Attribute >
</Subjects>

<[Target>
<Rule Ruleld="java—rule” Effect="Permit”>
<Target>

<Resources>
<Resource >
<ResourceMatch

Matchld="function:anyURI—equal”>

<AttributeValue DataType="XMLSchema\
#anyURI”>urn:browser:plugin:java

</AttributeValue >

<ResourceAttributeDesignator

DataType="XMLSchema#anyURI"

</Resource>
</Resources>
<[Target>
</Rule>
<Rule Ruleld="javascrip—rule” Effect="Permit”>
<Target>

<Resources>
<Resource>
<ResourceMatch
Matchld="function:anyURI—equal”>
<AttributeValue DataType="XMLSchema
#anyURI”>urn:browser:plugin:javascript
</AttributeValue >
<ResourceAttributeDesignator
DataType="XMLSchema#anyURI”
Attributeld ="resource:resource —id"/>
</ResourceMatch >
</Resource>
</Resources>
<[Target>
</Rule>

</Policy >
Listing 2 Tor-whitelist policy for the domain

Attributeld ="resource:resource —id"/> trusted.domain.org.

</ResourceMatch >

10 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

Finally, in the following listing we show another whiteligblicy (Listing 3),
which tells XAPO to enable JavaScript only for the dontaiust ed- bank. or g.

<Policy Policyld="tor—whitelist:bank” Matchld="function:anyURI—equal”>
RuleCombiningAlgld="permit—overrides”> < AttributeValue
<Target> DataType="XMLSchema#anyURI">
<Subjects> browser:plugin:javascript
<Attribute Attributeld ="subject:subject —id” </AttributeValue >
DataType="XMLSchema#anyURI"> <ResourceAttributeDesignator
< AttributeValue >trusted—bank.org</AttributeValue > DataType="XMLSchema#anyURI"
</Attribute > Attributeld ="resource:resource —id"/>
</Subjects> </ResourceMatch>
</Resource>
</Target> </Resources>
<Rule Ruleld="javascrip—rule” Effect="Permit”> <[Target>
< Target> </Rule>
< Subjects > <AnySubject/> </Subjects > </Policy >
jﬁ‘;ﬂ‘;ﬂf;?ﬁ”y‘\c“c’”b<’AC“°”S> Listing 3 Tor-whitelist policy for the domain
<Resource> trusted-bank.org.
<ResourceMatch

As it can be seen, the policy allows the activation of the Saviat interpreter for
the concrete domain through the corresponding rule.

The three policies we have seen in the example, are comhiregolicy set. A
simplified example of such policy set can be seen in the faligwsting (Listing 4).

<PolicySet PolicySetld="xapo:tor—policyset” </PolicyldReference >
PolicyCombiningAlgld="permit—overrides”> <PolicyldReference >
<Target /> tor —whitelist:bank
<PolicyldReference > </PolicyldReference >
tor —generic:default—tor—firefox </PolicySet>

</PolicyldReference >
<PolicyldReference >
tor — whitelist:mail

Listing 4 Policy set example for Tor.

To conclude this section, we show with the practical exanmgpiesented in
Figs. 4(a) and 4(b), the way the activation of XAPO prevehtsdttacks seen in
Sec. 3.2. The browser used is the Mozilla/Firefox 3 Beta hfigared with XAPO
and the Torbutton extension [17] (used for the automatidigaration of Privoxy
in the browsing preferences of Mozilla/Firefox). As it hdseady been discussed,
the elevated number of configuration options present in ailMd#zirefox browser
make it possible, without the proper measures, to thirdgmato violate the anony-
mous channels provided by Tor and retrieve without probldmsidentity of the
browser. The attack shown exploits the use of a Java codetxkeirom JavaScript
in order to open a socket througtveConnectThis code makes an HTTP request to
the server hosting the web padpt € p: / / ha. ckers. or g/ wei rd/ t or. cgi).
Given that the request does not go through the nodes of thedtarork, after a
simple analysis of the received request, and automatjcaéyattacker of the visited
web site gets to know and shows in the screen informatiorcagsd to the user,
such as the IP address. Fig. 4(b) shows how the activationrA®fCXand thus the
protections of resources associated with the XAPO polipiesvents the creation of
the channel between the attacker and the victim browser.

Preventing anonymity attacks in Tor 11

(@06 Mozllla Firefox o
(<] 4% (B hrp:/ /ha. ckers.orgweird ftor.cgi v | (G~ Google Q) 3

B8] http://ha.ckers...q/weird /tor.cgi @ | @ hrp://www.fro...hp7mode=utf16 & 4 Cross-Browser Proxy Unmaskin... &

Proxy De-anonymization

This is example code that attempts to bypass the proxy settings in a browser by opening up a Java socket directly to the same machine.
Java does not follow the same proxy settings as the browser does, and therefor we can get the real IP address (not internal, but external)
of the user. Jeremiah Grossman and I prescated this originally at Blackhat 2007. Although originally designed for Tor, it works on all
proxics (iested on Firefox 2.0.0.5-7):

Your current IP is: 91.66.32.145
Your real IP is: 64.230.115.183

Have a nice day. Go home.

T x 3OO |
(a) Torbutton enabled and XAPO disabled.
[XEYE) Mozilla Firefox =
@ {3 Mo/ /ha.ckers.orgjweird [ror.cgi v (T Googe Qs

M8 http://ha.ckers...g/weird/tor.cgi @ | @ http://www.fro...hnp7mode=utfl6 @ 4 Cross-Browser Proxy Unmaskin... @

Proxy De-anonymization

This is example code that attempts to bypass the proxy settings in a browser by opening up a Java socket dircetly (o the same machine.
Java does not follow the same proxy settings as the browser does, and therefor we can get the real IP address (not internal, but external)
of the user. Jeremiah Grossman and I presented this originally at Blackhat 2007. Although originally designed for Tor, it works on all
proxies (tested on Firefox 2.0.0.5-7):

Your current IP is: 91.66.32.145
‘Your real IP is: unavailible because you don't have JavaScript mmed on

Have a nice day. Go home.
o dee
(b) Torbutton and XAPO enabled.

Fig. 4 (a): Example of an attack to bypass the configuration of Ryivim a Mozilla/Firefox
browser with the Torbutton extension enabled and the XAR@nsion disabled. The attack opens
an addition channel between the execution environment efbtiowser and the attacker and,
through this channel, it extracts the information assedatith the browser; (b): Prevention of
the attack by enabling the XAPO extension.

4 Conclusions

In this article we have presented a proposal to apply secpdticies in a Web
browser. More precisely, we have presented a Mozilla/Bikeiktension, which al-
lows the use of policies expressed in the XACML standarduaigg to protect the
resources of the browser. Furthermore, we have shown hevwegténsion, named
XAPO, can be used to enhance the anonymity of the users as gaoent to the
network infrastructure of the Tor project.

Tor suffers some security problems, since there are alre@olyn attacks, which
can violate the anonymity of its users. By using a malicicadecbased on, for ex-
ample Java or Flash animations, an attacker can set up actir@eection with Web
servers under its control and the browser, jeopardisingatfeaymity of the user.
Although the attack is actually exploiting the tools and ¢éixéernal environment of
the Tor network, there are attacks in the literature (seeinkiance, [1]) showing
how to extend this and other similar attacks with the aim @fraenting the proba-
bilities of an attacker to violate the anonymity of the ussard services hided behind
the network of the Tor project.

Our proposal allows to prevent such attacks by defining ammecgd security
policy oriented to Tor, which guarantees to the user a bpttgection of his identity

12 Guillermo Navarro-Arribas and Joaquin Garcia-Alfaro

and sensitive information. To that end, the policy allowesdlefinition of the browser
resources that have to be protected as an additional meashesprotection already
provided by Tor. Such policy is flexible enough to be adaptedltthe browsing
habits of the user. For example, while it provides a comppetaection, it also
allows the definition of awhitelist of trusted domains, which are allowed to use
some given resources, improving the browsing experienteeofiser

Currently, the prototype of the proposal is being developedn extension of
the Mozilla/Firefox browser, but we are working on the deyshent of equivalent
extension for other browser such as Safari, or Internetdepl The use of an stan-
dard language such as XACML, allows to easily reuse anddhgsrge the policies
between different browsers.

Acknowledgements Partial support by the Spanish MEC (projects eAEGIS TSI260406-
C03-02, and ARES - CONSOLIDER INGENIO 2010 CSD2007-00084cknowledged.

References

1. Abbott, T., Lai, K., Lieberman, M., and Price, E. Brow&ased Attacks on Toi7th Workshop
on Privacy Enhancing Technologies (PET 20aMNCS 4776(1):184-199, 2007.
2. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., and Sick&r,Low-resource routing attacks
against Tor ACM workshop on Privacy in electronic socigpp. 11-20, 2007.
3. Chaum, D. Untraceable electronic mail, return addressesdigital pseudonymsn: Com-
munications of the ACM24(2):84—-88, 1981.
4. Christensen, A. et al. Practical Onion HackirfgprtConsult October 2006.
5. Dingledine, R., Mathewson, N., and Syverson, P. F. Toe §édtond-generation Onion Router.
In: 13th conference on USENIX Security Symposi2004.
6. Ginda, R. Writing a Mozilla Application with XUL and Jawagpt. O'Reilly, USA, 2000.
7. Godik, S., et al. eXtensible Access Control Markup Lamggu@gACML) Version 2. Standard,
OASIS. February 2005.
8. Leech, M., et al. SOCKS Protocol VersionBEC1928 March 1996.
9. Lemos, R. Tor hack proposed to catch criminals. Secuwiys, March 2007. [Online].
Available: http://www.securityfocus.com/news/11447
10. Lemos, R. Embassy leaks highlight pitfalls of Tor. SggEpcus, September 2007. [Online].
Available: http://www.securityfocus.com/news/11486
11. Mcfarlane, N.Rapid Application Development with MozillRrentice Hall PTR., 2004.
12. Moore, H. D. et al. The Metasploit Project. [Online]. Aahle: http://www.metasploit.com/
13. Murdoch, S. J. and Danezis, G. Low-cost traffic analysi®o IEEE Symposium on Security
and Privacy) pp. 183-195, 2005.
14. Privoxy - Home Page [Online]. Available: http://wwwimxy.org/
15. Reed, M. G., Syverson, P. F., and Goldschlag, D. M. Anaugrconnections and onion
routing. IEEE Journal on Selected Areas in Communicatjdr{4):482—-494, 1998.
16. Sloman, M. Policy Driven Management for Distributed t8yss Journal of Network and
Systems Managemenol. 2, part 4. Plenum Press. 1994.
17. Perry M. and Squires S. Torbutton. [Online]. Availathittps://www.torproject.org/torbutton/
18. Sun Microsystems SunXACML. [Online]. Available: htsunxacml.sourceforge.net
19. Wright, M. K., Adler, M., Levine, B. N., Shields, C. PassiLogging Attacks Against Anony-
mous Communications Systenf8CM Transactions on Information and System Security (TIS-
SEC) Vol. 11, No. 2, Article 7, 1-33, Pub. date: May 2008.
20. Yavatkar, R., Pendarakis, D. and Guerin, R. A Framewarkblicy-based Admission Control
RFC 2753. The Internet Society. January, 2000.

