
NGBPA
Next Generation BotNet Protocol Analysis

Felix S. Leder and Peter Martini

Abstract The command & control (c&c) protocols of botnets are moving away from
plaintext IRC communicationt towards encrypted and obfuscated protocols. In gen-
eral, these protocols are proprietary. Therefore, standard network monitoring tools
are not able to extract the commands from the collected traffic. However, if we want
to monitor these new botnets, we need to know how their protocol decryption works.
In this paper we present a novel approach in malware analysis for locating the en-
cryption and decryption functions in botnet programs. This information can be used
to extract these functions for c&c protocols.
We illustrate the applicability of our approach by a sample from the Kraken botnet.
Using our approach, we were able to identify the encryption routine within minutes.
We then extracted the c&c protocol encryption and decryption. Both are presented
in this paper.

1 Introduction

Botnets have been a major, growing threat in the Internet in the last years. Today,
botnets are the source of more than 90% of all SPAM mails. They collect email
addresses, passwords and sometimes even banking information. In addition, botnets
have the ability to coordinate and conduct distributed denial of service attacks.

While the core functionality and behavior of malware is quite stable, obfusca-
tion and polymorphic techniques[21] are used to circumvent signature detection. As

Felix S. Leder
University of Bonn, Institute of Computer Science IV, Roemerstr. 164, 53117 Bonn, Germany, e-
mail: leder@cs.uni-bonn.de

Peter Martini
University of Bonn, Institute of Computer Science IV, Roemerstr. 164, 53117 Bonn, Germany,
e-mail: martini@cs.uni-bonn.de

1



2 Felix S. Leder and Peter Martini

a consequence, only behavioral analysis can be used to classify a given malware
specimen.

The state-of-the-art method of classifying botnets is to run the bot in a monitored
environment and analyze the behavior. The network traffic is a very reliable way to
classify specimen to specific families. For commonly used protocols like IRC and
HTTP, there is a wide range of automated analysis and monitoring tools[20, 23].
These tools are very reliable for known protocols but fail for encrypted traffic.

Most botnets are sticking to traditional IRC communication [22] but more and
more botnets are moving towards “stealthier” and robust communication. This in-
cludes P2P protocols as well as obfuscated and encrypted protocols[10, 12]. In order
to extract information from collected network data, the encryption and decryption
has to be known and added to the monitoring tools.

The botnet software itself contains those encryption and decryption routines for
the bot’s communication with the control nodes. The recovery of encryption and
decryption functionality from executables usually requires a lot of manual work and
analysis. In this paper, we present an approach that automates the localization of
possible en- and decryption functions. This enables analysts to extract the function-
ality and create decryption add-ons for monitoring tools.

While traditional tools only scrutinize data leaving the malware, we correlate
this information with details from inside the malware. For that, we determine the
creation functions of I/O buffers, which are often close to the encryption functions
or even include the functionality. A similar approach is used for input buffers and
decryption routines.

Using our approach, we were able to find the encryption and decryption functions
inside a Kraken botnet sample within minutes. We illustrate the applicability of our
approach based on the Kraken sample. In addition, we release a C re-implementation
of the encryption and decryption code extracted from the sample. This code can be
used to monitor Kraken traffic.

The rest of the paper is structured as follows: Section 2 provides an overview
of related work. Section 3 describes our approach in more detail. Section 4 shows
the applicability of our approach based on this Kraken botnet sample and describes
the extracted encryption and decryption routines. Implications of publishing our
approach are discussed in section 5. Section 6 concludes and gives an overview of
future work.

2 Related Work

Malware may be analyzed in two different ways: Static analysis and dynamic anal-
ysis.

Static analysis is performed on the binary without executing it. This is typically
conducted by disassembling the binary and extracting information about data and
control flow. This approach is usually faster than dynamic analysis [5]. Christodor-
escu et al. [8] have presented malware analysis techniques based on static analysis.



NGBPA Next Generation BotNet Protocol Analysis 3

A major drawback of static analysis is that the code analyzed may be different from
the code executed. This is caused by packers [4, 18], encryptors, polymorphism[21],
or obfuscation techniques[16].

Dynamic analysis tools monitor the malware while it is running. Classical ex-
amples of dynamic analysis tools are debuggers. A series of dynamic analysis tools
that monitor typical actions, like e.g. file, registry and network access, exist [9, 11].
Some are based on API hooking and monitor malware from inside the system [24].
Others emulate a whole PC and monitor the malware behavior from outside [5, 6].
Automated botnet monitoring systems, like e.g. [20, 23], often rely on this kind of
systems for extracting the c&c information.

These tools are designed for the mass-analysis of malware and obtain valuable
information from malware using standard protocols. They fail for proprietary, en-
coded, and encrypted data if the decryption algorithms are not known. Typically,
they only monitor the data leaving the malware, details from inside the malware are
not taken into account.

Different debuggers are available [1, 15, 25], for scripting and flexible monitoring
of Windows API calls. They can be used for locating the encryption and encoding
functions of malware but require a lot of additional manual work. However, they are
not able to automatically determine the data origin and correlations to I/O.

The approach closest to ours is the automated reverse engineering framework
PaiMei [3]. It traces program execution and collects information at different trace
points. PaiMei is a generic framework. Data is collected about every function inside
the application. It is left to the analyst to extract the necessary relations out of the
lot of information collected.

3 Methodology

We have observed that the encryption and decryption functions are often close to the
creation points of the buffers they use. From a software developer point of view, this
is an intuitive behavior since the buffers are allocated only when they are needed.

In general, the encryption of data the last operation performed on the data, before
it leaves the executable. The buffer passed to I/O interfaces is the one containing the
result of the encryption process. The same holds for the decryption as displayed
in figure 1. In order to receive (encrypted) data from an input interface, a buffer
has to be created. The buffer is then passed to the input interface. It may pass an
arbitrary number of management functions (c.f. section 3.2). The buffer is filled
with encrypted data behind the input interface. After returning the buffer, it must be
decrypted before data can be used.

We are monitoring the I/O interfaces, like e.g. send() or recv(). The buffer ad-
dresses detected at I/O interfaces allow us to automatically determine the buffer
creation function inside the malware. As this creation point is close to the encryp-
tion or decryption function, it can be used as a starting point for deeper analysis and
extraction of the cryption functions.



4 Felix S. Leder and Peter Martini

Fig. 1 Schematic flow of
buffer creation and usage dur-
ing the process of receiving
encrypted data and decrypting
the data. After the buffer is
created, it is passed to the
input routine. This returns the
buffer filled with encrypted
data. As a third step, the buffer
is decrypted.

Monitoring Point

Decryption Func.

1. Create Buffer

2. Receive Input

3. Decrypt BufferInput Mgmt.

Input
d� d� … d��� d�

3.1 Assumptions

Our approach is based on some assumptions about the structure of the program.
Of course, malware developers may adapt their programs to avoid meeting these
assumptions. Implications are discussed in section 5.

We focus on the Windows operating system and x86 architectures because more
than 95% of malware in-the-wild is developed for that platform[22].

Our most important assumption is that malware is using the standard I/O inter-
faces of the operating system (OS). This assumptions allows us to place monitoring
points on these I/O interfaces. Malware authors, like authors of any other software,
rely on the I/O functionality provided by the OS in order to be more independent
from the system architecture. Malware with custom crafted file or network drivers
would lack flexibility.

Additionally, we assume that buffers are created at the time they are needed. This
reflects the intuitive behavior to allocate the buffer in the scope when it is required.
It may be discarded after leaving their scope.

The encryption process is the last operation performed on the data before leaving
the malware. Vice versa, the decryption process is the first operation performed on
incoming data. We assume that the encryption functionality places its result in the
output buffer and that this buffer is passed to the output interface. The same holds
for the input buffer and decryption functionality.

A scenario, in which the encryption uses another buffer, which is later on copied
into the output buffer, is not critical. In this case, the copy operation can be deter-
mined using other means, like e.g. copy signatures or using memory breakpoints.
This allows for an iterative application of our approach.

3.2 Buffer lifecycle

Buffers are used to transfer data in and out of the executable. Of course, there are
different lifecycles for input and output operations. However, they show a similarity,
which we exploit for finding the buffer origin.



NGBPA Next Generation BotNet Protocol Analysis 5

Figure 1 shows the typical lifecycle of a buffer used for encrypted input. The
buffer is created as part of the encryption initiation. It is then given to the input in-
terface of the operating system. It may pass arbitrary management functions, which
may perform error handling or add context information, like e.g. the socket descrip-
tor. After the buffer has been filled with encoded data outside of the executable, it is
returned. The buffer is then decrypted for extraction and usage of the original data.

Figure 2 displays the typical lifecycle of output buffers. In a first step, the buffer is
created. It may be filled with the original, unencrypted data as an optional step. The
buffer is then encrypted and the encryption result is passed to the output interface.
Similar to the lifecycle of input data, it may pass arbitrary management functions
for similar reasons.

Fig. 2 Lifecycle of output
buffers for encrypted data.
After the buffer is created,
it may be filled with unen-
crypted data chunks. The data
is then encrypted and sent out
to the output interface. It may
pass management functions,
before. When its scope ends,
the buffer may be discarded.

Encoding Funct.

Monitoring Point

1. Create Buffer

2. Fill Buffer

3. Encode Buffer

4. Send OutOutp. Mgmt.

Output

d� d� … d��� d�

Both lifecycles have in common that the buffer creation is preceding the I/O
operations. We have observed that the buffer creation function is often close to the
encryption functionality or may even include this functionality. In these cases, we
can locate the cryption routines from the buffer creation point.

3.3 Monitoring points

We are monitoring different I/O interfaces to gather information about buffer cre-
ation points and the context in which a buffer is used. The context includes informa-
tion about data endpoints, like networking peers or files. The buffer creation func-
tions and the context in which the buffer is used can automatically be determined
when monitoring three different types of interfaces:

• Heap memory management functions
• I/O initialization
• I/O operations

Heap operations are monitored in order to detect the allocation of new buffers.
The address and size of each allocated memory block is stored together with the



6 Felix S. Leder and Peter Martini

function that initiated the allocation. This mapping is used to determine the creation
point for heap buffers monitored in I/O operations.

The I/O initialization functions, like connect() or OpenFile(), are monitored to
collect context information. The initialization functions provide information about
the data endpoint, like filenames or IP addresses. Later, the collected information
may be mapped to specific buffers. This eases the extraction of the desired functions
for specific endpoints.

Monitoring points on the actual I/O interfaces, like send() or ReadFile(), are used
to determine the actual buffer origin. Thus, they are essential for locating the cryp-
tion functions.

3.4 Determining the buffer origin

The primary goal of our approach is to find the creation point of buffers holding
encrypted data. As we have observed, the creation point is often close to the encryp-
tion function for output buffers and respectively close to the decryption function for
input buffers.

For this purpose, monitoring points are placed on relevant I/O interfaces. If a
buffer is passed to a monitored I/O interface, three steps are performed:

1. Extraction of the buffer address
2. Mapping to type of memory
3. Mapping to function based on memory region

First, the buffer address is extracted from the call to the I/O interface. The location
of the address depends on the calling convention of the interface but can be found
at fixed positions. It is located either in registers or at fixed offsets on the call stack.

Based on the buffer address, a mapping to its memory region has to be performed
because different methods have to be used for the mapping to a creation function.
The choice of the method dependends on the memory region, which may be heap
memory, stack memory, or global memory.

Figure 3 illustrates the mapping for buffers located on the stack. Each function
on the stack has a dedicated stack frame. A stack frame is used for the return ad-
dress, for call parameters as well as for local variables. Once the address of a stack
buffer is known, the stack frame containing that address may be determined. The
buffer is a local variable of the function that created this stackframe. The address of
this function is the buffer creation point. In addition, the function address may be
determined from the stackframe.

Heap buffers contain no information about the function that created them. In
order to determine their creation function, we use monitoring points on heap man-
agement functions, like RtlAllocateHeap(). This way, we can create a mapping from
the function using the heap management to the allocated memory space. If the ad-
dress of the I/O buffer points to the heap, the list of mappings is examined for the



NGBPA Next Generation BotNet Protocol Analysis 7

Fig. 3 A stack buffer passed
to an I/O interface may be
mapped to its creation func-
tion. The mapping is achieved
by comparing the buffer ad-
dress to the boundaries of
different stack frames.

Stackframe
H- K

Stackframe
E- G

Stackframe
A- D

Buffer
@F

I/O call

space containing the buffer. As the heap memory is non-overlapping, the creation
function can be determined and is unambiguous.

A creation function for global memory cannot be determined because it is created
at program start. As it is constantly occupying memory and more difficult to manage,
it is hardly ever used for I/O buffers.

4 Application - Extracting Kraken Encryption

We illustrate the applicability of our approach using a Kraken botnet sample: We
were able to identify the encryption and decryption function within minutes. Based
on this, we were able to recover the full cryption process for the proprietary Kraken
command & control (c&c) protocol.

The Kraken Botnet is said to be the largest botnet in the world [19]. Estimations
of the botnet size range from 185.000 to 600.000 zombie hosts worldwide.

Its main purpose is to spread SPAM mail. Single infected hosts have been ob-
served transmitting as much as 500.000 junk mails. Besides that, it harvests the
windows address book and local files for email addresses and can install additional
malware.

The bots contain a list of dynamic DNS hostnames for contacting the botnet mas-
ter [17]. They subsequently try to contact each hostname via UDP until a response
is received. After a successful handshake, the bots use a proprietary, encrypted c&c
protocol for data exchange.

For our evaluation, we have analyzed a Kraken sample from early 2008. It uses
the Kraken protocol version 311. For manual verification of the results, we unpacked
the sample[7].

For use in our NGBPA implementation, we have used the original, packed sample
and placed monitoring points on networking functions like sendto() and recvfrom().
After having started the sample, we observed connection attempts to different SMTP
servers for 20 seconds, which we intentionally dropped. 20 seconds later, the first
encrypted buffer sent via UDP to port 447 was captured. This buffer - which was
passed to sendto() - was located on the stack. The buffer was contained in the stack
frame of function sub 1A832C. Not answering those requests, we could see similar



8 Felix S. Leder and Peter Martini

requests to different hosts every 10 seconds. The buffer origin stayed the same for
all of these.

.text:001A83CA mov dword ptr [esp+80h+buf], eax

.text:001A83CE lea eax, [esp+80h+buf] ; key1

.text:001A83D2 mov [esp+80h+var_2C], edx ; key2

.text:001A83D6 mov [esp+80h+var_28], ebx ; seed

.text:001A83DA mov [esp+80h+var_24], 1 ; cmd 1

.text:001A83DF mov [esp+80h+var_23], bl ; subcmd

.text:001A83E3 mov [esp+80h+version], 137h ; vers.

.text:001A83EA mov [esp+80h+var_20], ebx ; size

.text:001A83EE mov [esp+80h+var_1C], ebx ; chksum

.text:001A83F2 call encryptHeader <----------

.text:001A83F7 call create_new_udp_sock

...

.text:001A8422 lea eax, [esp+90h+buf]

.text:001A8426 push eax ; buf

...

.text:001A842B call ds:sendto <-------------

Fig. 4 Kraken encryption origin

A closer look at the creation function revealed the code block shown in figure 41.
The excerpt shows, how different fields in the buffer are filled with keys, some seed,
commands, protocol version, size, and a checksum. Looking at the two functions
following this block, reveals suspicious mathematical operations in the first function
(001A83F2) while the second (001A83F7) creates a UDP socket.

Having a candidate for the encryption, we loaded the binary in a debugger and
placed a breakpoint on that function. Running the candidate functions shows that the
buffer is modified. The result was the data sent out via UDP, afterwards. A manual
investigation and a dissection from C. Pierce [17] verified this function to contain
the encryption.

Based on these results, we were able to reconstruct the decryption and encryption
functions used in the kraken botnet. A re-implementation in C can be found in the
appendix. The protocol is shown in figure 5. The first three fields are two keys and
a seed, which are used for encryption and decryption. The other fields are symmet-
rically encrypted before transmission. As the encryption is symmetric and keys are
included in each payload, it is encryption by obfuscation but not secure in any way.

Fig. 5 The Kraken protocol.
Shown is the protocol header
including the number of bits
for each field. Only the keys
and seed are unencrypted.

Key1 Key 2 Seed Cmd Sub. Vers Size Cksum Payl.
32 32 32 8 8 16 32 32 <size>

Encrypted

The two keys are derived from information about the host hardware. The deriva-
tion of the two keys together as well as of the checksum is described in more detail

1 The annotations and comments were added later



NGBPA Next Generation BotNet Protocol Analysis 9

in [17]. We found the creation of the seed in the encryption function. It is different
for each data packet. The seed is based on the processor tick count and computed
by adding the 32 high-bits to the 32 low-bits.

Figure 6 illustrates the data dependency used in encryption and decryption. De-
tails may be studied in our C re-implementation included in the appendix. As il-
lustrated in figure 5, all fields except for the keys and seed are encrypted together
with the c&c payload. The encryption algorithm can be applied in 8-byte-blocks or
bytewise. The kraken sample studied uses block-encryption. The data is split into
8-byte-blocks, which are divided into two subblocks. Each subblock is used to en-
crypt the other in combination with the seed and the two keys. If the data size is not
a multiple of 8 bytes, the last bytes are encrypted bytewise.

Fig. 6 The data dependencies
of the Kraken encryption.
Keys 3 and 4 are derived by
bitshift operations of keys 1
and 2. Each block is divided
into two subblocks. These are
encrypted using the seed, two
keys and the other subblock.

Key 1 Key 2 Key 1 Key 2

Key 3 Key 4

Subblock1 Subblock2

Seed

By spoofing UDP answers, we were able to locate the decryption function with
our approach, too. The buffer for the recvfrom() call was created in the same func-
tion as the send buffer. Figure 7 shows the excerpt related to data reception. The
decryption function is located right after the call to recvfrom

.text:001A8464 lea eax, [esp+90h+recvbuf]

.text:001A8468 push eax ; buf

...

.text:001A846D call ds:recvfrom <--------------

...

.text:001A8478 lea esi, [esp+80h+recvbuf]

.text:001A847C call decryptHeader <-------------

Fig. 7 Kraken decryption origin

The keys and seed for the decryption are contained in the c&c protocol data.
Thus, it is possible to decrypt all c&c traffic using the information transmitted over
the network. Monitoring applications can make use of this to create their own de-
cryption stub. A C re-implementation of the decryption is included in the appendix.

Identifying both encryption and decryption took us only a few minutes: Running
the kraken botnet sample, our NGBPA tool took 20 seconds before the first packet
was sent out, which immediately revealed the origin of the buffer. Around 5-10
minutes of manual investigation were needed afterwards to identify the encryption
and decryption functions.



10 Felix S. Leder and Peter Martini

This example illustrates both the applicability and performance of our approach.
The application of our approach to other malware samples, not mentioned here,
showed a similar efficiency.

5 Discussion

Publishing our approach may invalidate it because malware authors may design
new specimen specifically to not meet our assumptions. In this section, we discuss
implications.

We assume that malware is using the OS for I/O. Our approach fails for cus-
tom I/O drivers directly accessing the hardware. However, for the malware author
custom drivers increase development complexity and reduce flexibility.

Another assumption is that buffers are created at the time they are needed. Al-
location long before is a rather unintuitive development strategy and complicates
the design. The encryption can still be found using memory monitoring with break-
points or emulator extension.

Other possibilities to break our approach are the use of global buffers or im-
plementation of custom designed memory management functions. For malware au-
thors, this complicates the software design and therefore maintainability, increases
the risk for bugs, and may break modularity. This has an impact on the overall archi-
tecture and development efficiency. Since malware and especially botnet develop-
ment is becoming more and more professional with a standard “testing and revision
process” [12], it has to be efficient. It is questionable whether malware developers
would take this step.

While malware authors probably stick with regular software design for reasons
named before, our approach may be beneficial for a whole group of malware re-
searchers. We therefore decided to publish even though there is a risk of limiting the
lifespan of our approach this way.

6 Conclusions and Future Work

We were able to demonstrate the applicability of our approach. With a practical
implementation, we were able to identify the encryption and decryption routines
of the Kraken botnet within minutes. We were able to extract and re-implement
the encryption and decryption logic, which is included in the appendix and can be
integrated into botnet monitoring tools. We therefore conclude it to be a valuable
component in the malware analysis toolchain.

One example is not enough to show a general usability. For that reason, our ap-
proach has to be evaluated with a representative set of malware samples. A major
question in this context is how many samples from which sources are required to be
representative for the malware in-the-wild.



NGBPA Next Generation BotNet Protocol Analysis 11

In addition, an easy to configure interface to our implementation would be ben-
eficial to speed up analysis. This includes the selection of typical I/O interfaces.
Another future feature is the integration of additional buffer monitoring in case the
considered malware violates our current assumptions.

Appendix

C re-implementation of the Kraken protocol decryption function.
void decode(uint8_t* buffer, uint32_t buffer_size, uint32_t key1, uint32_t key2,

uint32_t seed, uint32_t blockwise_flag) {
int i;
uint32_t buffer_pos = 0;
uint32_t keys[] = {key1, key2, (key2 >> 0x13) | (key1 << 0x0d),

(key2 << 0x0d) | (key1 >> 0x13)};
if (blockwise_flag) {

while (buffer_size - buffer_pos >= 8) {
uint32_t* data1 = (uint32_t*) &buffer[buffer_pos];
uint32_t* data2 = (uint32_t*) &buffer[buffer_pos+4];
uint32_t round_key = seed + seed;

for (i=0; i<2; ++i) {

*data2 -= (*data1 << 4) + keys[2] ˆ (*data1 >> 5) + keys[3] \
ˆ (round_key + *data1);

*data1 -= (*data2 << 4) + keys[0] ˆ (*data2 >> 5) + keys[1] \
ˆ (round_key + *data2);

round_key -= seed;
}

buffer_pos += 8;
}

} /* the rest is decrypted bytewise */
buffer = &buffer[buffer_pos];
buffer_size -= buffer_pos;
for (i = 0; i < buffer_size; ++i) {

uint8_t seedbyte = (seed >> 8 * (3 - i%4) ) & 0xff;
buffer[i] ˆ= ((uint8_t*)keys)[i] + seedbyte;

}
}

C re-implementation of the Kraken protocol encryption function.
void encode(uint8_t* buffer, uint32_t buffer_size, uint32_t key1, uint32_t key2,

uint32_t seed, uint32_t blockwise_flag) {
int i;
uint32_t buffer_pos = 0;
uint32_t keys[] = {key1,key2,(key2 >> 0x13) | (key1 << 0x0d),

(key2 << 0x0d) | (key1 >> 0x13)};
if (blockwise_flag) {

while (buffer_size - buffer_pos >= 8) {
uint32_t* data1 = (uint32_t*) &buffer[buffer_pos];
uint32_t* data2 = (uint32_t*) &buffer[buffer_pos+4];
uint32_t round_key = 0;

for (i=0; i<2; ++i) {
round_key += seed;

*data1 += (*data2 << 4) + keys[0] ˆ (*data2 >> 5) + keys[1] \
ˆ (round_key + *data2);

*data2 += (*data1 << 4) + keys[2] ˆ (*data1 >> 5) + keys[3] \
ˆ (round_key + *data1);

}
buffer_pos += 8;

}
} /* the rest is encrypted bytewise */
buffer = &buffer[buffer_pos];
buffer_size -= buffer_pos;
for (i = 0; i < buffer_size; ++i) {

uint8_t seedbyte = (seed >> 8 * (3 - i%4) ) & 0xff;
buffer[i] ˆ= ((uint8_t*)keys)[i] + seedbyte;

}
}



12 Felix S. Leder and Peter Martini

References

1. P. Amini, PyDbg - A pure Python win32 debugging abstraction class,
http://pedram.redhive.com/PyDbg/, last visit (l.v.): Oct. 2008

2. P. Amini, Kraken Botnet Infiltration, Blog on DVLabs,
http://dvlabs.tippingpoint.com/blog/2008/04/28/kraken-botnet-infiltration, Apr. 2008

3. P. Amini, PaiMei - Reverse Engineering Automization,
http://pedram.redhive.com/research/reverse engineering automation/, l.v.: Oct. 2008

4. Archer and FEUERRADER, QuickUnpack, http://reversengineering.wordpress.com/2007/10/06/quick-
unpack-v20-final/, l.v.: Aug. 2008

5. U. Bayer and C. Kruegel and E. Kirda, TTAnalyze: A Tool for Analyzing Malware, In 15th
Annual Conference of the European Institute for Computer Antivirus Research (EICAR),
2006

6. F. Bellard, QEMU, a Fast and Portable Dynamic Translator, USENIX Annual Technical
Conference, 2005

7. N. Brulez, Unpacking Storm Worm, http://securitylabs.websense.com/content/Blogs/3127.aspx,
l.v.: Aug. 2008

8. M. Christodorescu et al., Semantics-aware malware detection, IEEE Symposium on Security
and Privacy, 2005

9. G. Combs, Wireshark - network protocol analyzer. http://www.wireshark.org, l.v.: Oct. 2008
10. D. Dittrich and S. Dietrich, Command and control structures in malware, Usenix magazine,

Vol. 32, No. 6, Dec. 2007
11. R. Russinovich and B. Cogswell, Windows Sysinterals, http://technet.microsoft.com/en-

us/sysinternals/default.aspx, l.v.: Oct. 2008
12. D. Fisher, Storm, Nugache lead dangerous new botnet barrage, Article,

http://searchsecurity.techtarget.com/news/article/0,289142,sid14 gci1286808,00.html,
l.v.: Oct. 2008

13. G. Hoglund and J. Butler, Rootkits, Addison Wesley, Dec. 2005
14. Holy Father, Hooking Windows APITechnics of Hooking API Functions on Windows, Code-

Breakers Journal, vol. 1, no. 2, 2004
15. Immunity Inc., Immunity Debugger, http://www.immunitysec.com/products-immdbg.shtml,

l.v.: Oct. 2008
16. C. Linn and S. Debray, Obfuscation of executable code to improve resistance to static disas-

sembly, Proceedings of the 10th ACM conference on Computer and communications security,
2003

17. C. Pierce, Owning Kraken Zombies, a Detailed Dissection, Blog on
DVLabs,http://dvlabs.tippingpoint.com/blog/2008/04/28/owning-kraken-zombies, l.v.:
Oct. 2008

18. P. Royal and M. Halpin and D. Dagon and R. Edmonds and W. Lee, PolyUnpack: Automat-
ing the Hidden-Code Extraction of Unpack-Executing Malware, ACSAC ’06: Proceedings of
the 22nd Annual Computer Security Applications Conference on Annual Computer Security
Applications Conference, 2006

19. P. Royal, On the Kraken and Bobax Botnets, Whitepaper, Damball, Apr. 2008
20. Shadowserver Foundation, ShadowServer Homepage, http://shadowserver.org, l.v.: Oct. 2008
21. P. Szor, The Art of Computer Virus Research and Defense, Addison-Wesley, Feb. 2005
22. Symantec Coorp. Symantec Internet Security Threat Report Volume XIII, Whitepaper, Apr.

2008
23. G. Wicherski, botsnoopd - Sniffing on Botnets, Blog, http://blog.oxff.net/2006/10/botsnoopd-

sniffing-on-botnets.html, l.v.:Oct. 2008
24. C. Willems and T. Holz and F. Freiling, Toward Automated Dynamic Malware Analysis Using

CWSandbox, Ieee Security & Privacy, 2007
25. O. Yuschuk, OllyDbg Debugger, http://www.ollydbg.de/, l.v.: Oct. 2008


