
Towards a Theory of White-Box Security

Amir Herzberg and Haya Shulman and Amitabh Saxena and Bruno Crispo

Abstract Program hardening for secure execution in remote untrusted environment
is an important yet elusive goal of security, with numerous attempts and efforts of
the research community to produce secure solutions. Obfuscation is the prevailing
practical technique employed to tackle this issue. Unfortunately, no provably secure
obfuscation techniques currently exist. Moreover, Barak et. al., showed that not all
programs can be obfuscated. Theoretical research exhibits provably secure albeit
inefficient constructions, e.g. using tools from encrypted domain.

We present a rigorous approach to software execution in remote environment
based on a new white box primitive, the White Box Remote Program Execution
(WBRPE), whose security specifications include confidentiality and integrity of
both the local and the remote hosts. WBRPE can be used for many applications,
e.g. grid computing, digital rights management, mobile agents.

We then present a construction of a specific program such that if there exists a
secure WBRPE for that program, then there is a secure WBRPE for any program,
reducing its security to the underlying WBRPE primitive. The security of WBRPE
construction is established by reduction among two white box primitives and it in-
troduces new techniques of programs manipulation.

Amir Herzberg
Bar Ilan, Ramat-Gan, 52900, Israel, e-mail: amir.herzberg@gmail.com

Haya Shulman
Bar Ilan, Ramat-Gan, 52900, Israel, e-mail: haya.shulman@gmail.com

Amitabh Saxena
International University in Germany, Bruchsal 76646, Germany, e-mail: sax-
ena.amitabh@gmail.com

Bruno Crispo
University of Trento, Italy, e-mail: crispo@disi.unitn.it

1



2 Amir Herzberg and Haya Shulman and Amitabh Saxena and Bruno Crispo

1 Introduction

Ensuring secure execution of programs in remote untrusted environment is of high
theoretical and practical importance and is required for a wide range of applica-
tions, e.g., digital rights management (DRM), grid computing, private information
retrieval, mobile agents, network gaming, Voice over IP (VoIP). In remote program
execution a program leaves the site of the originator and is transferred to the remote
host for execution, defining a white-box security model. In particular, the originator
loses all control over its software, which is completely exposed to the executing en-
vironment, and the entity controlling the execution environment obtains full access
to the program, and can observe and manipulate the execution, code and data. This
is in contrast to traditional cryptography, which assumes a trusted platform, i.e., a
black-box, on which secrets, e.g., secret keys, can be stored. In black-box security
all the computations are performed on a trusted platform, and the secret keys never
leave its boundaries. More importantly, attackers obtain a black-box access to the
cryptographic implementation and can only observe an input/output behaviour, but
cannot access the code or data, or observe the execution inside the platform.

In hardware based approach, an additional hardware that constitutes a secure
trusted platform, is supplied, e.g., a smartcard or a trusted third party in [1], on
which the secret data can be stored and the computations involving it performed.
Hardware based approach produces solutions in black box security model, in which
an attacker cannot access and observe the internals of the hardware, e.g. secret keys
inside it, and can only control the input/output behaviour of the system.

Although applications that employ hardware benefit from high security promises,
there are disadvantages, such as high cost, vulnerability to side channel attacks,
unreliability and inflexibility of the hardware. In addition the security completely
depends on the trust relationship with the additional hardware, thus making it inap-
plicable to many useful scenarios. Furthermore, in practice hardware alone is often
not enough, since even hardware based solutions rely on software to accomplish
the overall security. Therefore in order to enable a variety of practical applications
secure software white-box techniques should be provided.

In addition to practical importance, understanding the level of security that can be
attained by employing software only techniques is intriguing on its own, especially
due to prevailing belief that it is difficult to provide a reasonable level of security by
employing software only approach, let alone a level of security comparable to the
one in black box security. In this work, we present a new basic candidate white-box
security building block, the White-Box Remote Program Execution (WBRPE) for
remote program execution in hostile environment, along with definitions and game-
based security specifications. We present a construction based on WBRPE scheme,
and establish its security by reduction.

it is important to identify weakest possible primitives for white-box security, e.g.,
by failed cryptanalysis, which could serve as basic building blocks for provably
secure protocols and schemes. More specifically, the security of the scheme would
be reduced to the security of the building block that underlies the construction. This



Towards a Theory of White-Box Security 3

is similar in nature to traditional cryptography where few basic, simple building
blocks are employed in constructions of cryptographic schemes and primitives.

Security of protocols is established by reduction to the basic building blocks. The
motivation is that the cryptanalysis proven standard should be simple and basic, so
that it is easy to test its security and the security of the overall construction that
uses it. We propose the WBRPE as a candidate white-box security building block,
which could be employed to develop and analyse well-defined white-box security
constructions. Existing practical primitives are proprietary, and their security relies
on vague assumptions.

The WBRPE, in Figure 1, is comprised of two phases, the generation phase, run
by offline trusted third party, and the protocol execution phase, between the local
and the remote hosts. The trusted party generates the parameters of the scheme, i.e.
the keys which are sent to local host, and the OVM, which is transfered to the re-
mote host. The OVM emulates a trusted platform, and executes the input programs
supplied by the local host in a secure manner. The local host uses the keys to harden
programs which it sends to remote host for execution. The OVM receives the hard-
ened program, and possibly an input of the remote host. It has the corresponding
keys to unharden and execute the program, and then harden the result of the compu-
tation. The remote host returns the hardened result to the local host. We require that
the local host learns only the result of the computation, while the remote host learns
nothing at all.

1.1 Existing Works

Obfuscation is a candidate building block for white box security, which received
substantial attention from theoreticians and practitioners. An obfuscator O is an ef-
ficient compiler that transforms a program P into a hardened program O(P), which
pertains the functionality of the original program but is equivalent to black-box ac-
cess to P, i.e. should be hard to analyse and to reverse engineer.

Obfuscation is the prevailing practical approach to software hardening, and was
also investigated by theoreticians. However in both theory and practice, obfuscation
exhibited insufficient results. The impossibility result by [2] states that there does
not exist a general obfuscator for any program. Although there are some positive
results, e.g. [6], these are restricted and do not suffice for practical applications. In
addition, experts in practical obfuscation, e.g. [10], cannot say whether obfuscators
can protect even simple programs, e.g. to hide intermediate state of programs.
White-Box Cryptography (a special case of obfuscation) aims at protecting se-
cret data embedded inside software implementations of cryptographic algorithms,
by integrating a secret key in the cryptographic algorithms, thus preventing from
attacker, which controls the execution environment, and may be a legitimate user,
from extracting the keys for use on a different platform.

A number of cryptographic implementations have appeared for symmetric key
ciphers such as [15] and [11], that have claimed to be secure in a white-box model.



4 Amir Herzberg and Haya Shulman and Amitabh Saxena and Bruno Crispo

More specifically, the white box AES in [9], and the white-box DES in [8]. So far,
proposed white box cryptography solutions were subsequently broken [4, 13, 16].
The WBRPE scheme that we present can be seen as an extension of white-box cryp-
tography.
Mobile Code Cryptography It is possible to employ theoretical tools from two
party computation protocols, to produce provably secure white-box security schemes.
The central approaches used to tackle two party computation scenario are secure
function evaluation, computing with encrypted data, and encrypted function. One
of the earliest techniques for two party computation, due to [17], is via encrypted
circuit construction and evaluation. A solution to mobile code, for computing all
polynomial time functions efficiently, based on encrypted circuit evaluation, is pre-
sented in [5] using tools from two-party computation. However, their solution only
provides for privacy of one of the inputs, but not both. As a result if the input of
one participant is a program, it may expose the input of the other participant, e.g.
if the program is computing an identity function. In [14] they construct a practical
implementation of two party-secure function evaluation, thus showing a practical
feasibility of encrypted circuits evaluation approach.

1.2 White Box Remote Program Execution (WBRPE)

In this work, we propose the White Box Remote Program Execution (WBRPE)
scheme, as a candidate white-box security building block. WBRPE can be employed
to facilitate a variety of applications, see Section 1.4.

In Remote Program Execution, programs are sent by a local host (a.k.a. the orig-
inator) for execution on a remote host, and possibly use some data available to the
remote host. The local and the remote hosts may be with conflicting interests, there-
fore the security issues need to be dealt with. In particular, these include confiden-
tiality and integrity of input programs supplied by the local host and confidentiality
of inputs provided by the remote host. The WBRPE should satisfy confidentiality
and integrity, employing software only techniques without assuming secure hard-
ware, i.e. trusted third party or smartcards. The WBRPE scheme is composed of
three efficient procedures, generation, hardening and unhardening, see Figure 1:

• The generation procedure produces a hardening key hk, and a program, which
we call the obfuscated virtual machine (OVM).

• The hardening key hk is used by the hardening procedure to harden, e.g. encrypt
and/ or authenticate, the input programs.

• The obfuscated virtual machine OVM receives a hardened input program along
with input from the remote host. It decodes the hardened program, e.g. decrypts
and/ or validates it, and returns the encoded result, e.g., encrypted and/or authen-
ticated, of the program applied to the inputs.

• The unhardening procedure unhardens, e.g. decrypts and validates the result re-
ceived from the remote host.



Towards a Theory of White-Box Security 5

Hhk

a,t,l

Hhk(P)

OVM(Hhk(P),a,t,l)

G(1k)

Local Host

Remote Host

OVM

Trusted Third Party

P

y

uk

hk

OVM

Decode P

Encode y

y=Pt,l(a)

U

Fig. 1 WBRPE scheme.

1.3 White Box RPE for ALL Programs

The negative result by Barak et al. [2], shows that an obfuscator for all programs
does not exist, however this result does not imply that there cannot be alternative
hardening schemes which would work for any program. In particular, is there a
WBRPE for all programs? To address this question we present a specific program,
denoted UP (for universal program), with parameter K (key). Given a WBRPE
scheme that works for the family of universal programs {UPK}, we present a ’Uni-
versal’ WBRPE scheme that works for any program, i.e. provides the security spec-
ifications of WBRPE for any input program.

1.4 Applications of WBRPE

Following are some potential applications of WBRPE:

• Mobile agent, that traverses the Web, searching and purchasing goods on behalf
of its owner. The agent may include secret data, e.g., secret signing/decryption
keys, credit card number, and therefore needs to be protected from a possibly
hostile execution platform or from other agents, which e.g., may try to learn the
secret information of the agent, or modify its execution.



6 Amir Herzberg and Haya Shulman and Amitabh Saxena and Bruno Crispo

• In grid computing a large number of users (nodes) donate their idle CPU cycles
to perform computation on behalf of the local host. WBRPE can ensure that the
confidentiality and integrity of the program and input data are not violated.

• In P2P systems, e.g., for VoIP systems (such as Skype), the client code contains
secrets (e.g., cryptographic keys and proprietary protocols) that, if leaked to the
remote host, would e.g., allow users to make free calls.

• Protection of intellectual property, e.g, music and programs.
• Typically applications based on the setting of online database, e.g. the model of

Private Information Retrieval in [7], involve two parties, a server which holds
the database and a client who wishes to query the database. The privacy and the
integrity of both the local and the remote hosts should be provided. WBRPE can
be applied directly to map the security requirements of applications based on
online databases. In WBRPE scheme, the client is the local host and the server is
the remote host. The input supplied by the client is a query, and the remote input
of the server is a database, and the client wishes to compute the result of its query
on the database. The privacy and the integrity of both inputs of the client and the
server are preserved, since the server cannot observe the queries submitted by
the client, further since the database is queried inside the OVM the server cannot
observe the process of the computation.

2 White-Box RPE Definitions

A WBRPE scheme W is comprised of three efficient algorithms, (G,H,U) for gen-
eration, hardening and unhardening, respectively. The generation procedure G gen-
erates the obfuscated virtual machine OVM and the hardening key hk. The hardening
procedure applied on some input program, computes the hardened program, e.g. en-
cryption and/ or authentication of the original program, and produces two outputs,
the hardened program and a one time unhardening key. The remote host passes the
hardened program, along with the remote input a to the OVM for execution. The
OVM has the required keys, and can therefore extract and evaluate the program P on
remote input a, and returns the (hardened) output P(a). The local host, upon receipt
the hardened output, applies the unhardening procedure with the unhardening key,
to obtain the final result of the computation.

Given a Turing machine P ∈ TM, where TM is a set of all Turing machines, let
P(a) denote a value of the computation of P on a. We introduce a time parameter,
to hide the time that it takes each program to execute, and the length parameter to
hide the length of the result. Let Pt,l(a) = Pt(a)[1...l] denote an l bit value of the t
step computation of P on input a. The definition follows.

Definition 1 (WBRPE). A White Box RPE (WBRPE) scheme W for programs
family {Pk}k∈N consists of a tuple W = 〈G,H,U〉 of PPT algorithms s.t. for all
(hk,OV M) R← G(1k),a ∈ {0,1}∗,P ∈ TM, OV M ∈ PPT , t, l ∈ N and (c,uk) ←
Hhk(P), holds: Pt,l(a) = Uuk(OV M(c,a, t, l))



Towards a Theory of White-Box Security 7

2.1 Indistinguishability of the Local Inputs Specification

The first security specification we consider is to hide the contents of the input pro-
grams from the remote host. To ensure local inputs privacy we employ a variation of
the indistinguishability experiment for encryption schemes [12]. We specify the in-
distinguishability definition w.r.t. a PPT algorithm A = (A1,A2), denoting by HO the
hardening oracle which the algorithm A obtains access to, during the indistinguisha-
bility experiment. The experiment is described in detail in Figure 1, we now give an
informal definition. As its first step the experiment generates the keys and the ob-
fuscated virtual machine. Next it invokes the adversarial algorithm with an OVM in
an input, and provides it with an oracle access to the hardening functionality for its
hardening queries. Each application of the hardening procedure generates a hard-
ened program and a one time unhardening key. Eventually the adversary outputs
two programs of equal size. The experiment tosses a bit b and one of the programs
is subsequently hardened. During the second phase the adversary keeps an oracle
access to HO, obtains the hardened challenge program and has to distinguish. If the
adversary guesses correctly, the experiment returns 1, i.e., the adversary won, and
otherwise returns 0, the adversary lost.

In the sequel we introduce a flag ϕ ∈ {PK,SK}, and when ϕ = PK we refer to an
asymmetric WBRPE, while ϕ = SK denotes a symmetric WBRPE. When ϕ = PK
the adversary receives the public hardening key hk in an input and can harden the
programs by itself.

Definition 2 (Indistinguishability). Let W = (G,H,U) be a WBRPE scheme and
let A = (A1,A2) be a pair of PPT algorithms. For k ∈ N, r ∈ {0,1}∗ we define the
advantage of the adversary A in the WB-IND-CPA experiment as follows:

AdvWB-IND-CPA-ϕ

W,A (k) = 2∗Pr[ExpWB-IND-CPA-ϕ

W,A (k) = 1]−1

Where the probabilities are taken over G, H and A. The experiment ExpWB-IND-CPA-ϕ

W,A (k)
is defined in Experiment 1. A WBRPE scheme W is WB-IND-CPA-ϕ secure if the
advantage function AdvWB-IND-CPA-ϕ

W,A (·) is negligible over all PPT adversarial algo-
rithms A. In private key WBRPE there is a secret shared key hk between the OV M
and the local host. This hk key is employed by the local host to harden programs
and by the OV M to subsequently unharden them for execution. This implies that
there is a unique OV M for every local host. In public key WBRPE the hardening
key hk is public, which the attacking algorithm obtains in an input, and there is a
corresponding unhardening key embedded inside the OV M. Namely, everyone can
harden programs and send to OV M for execution, and only the OV M can unharden
the programs, which implies the asymmetry. The obvious advantage of the asym-
metric WBRPE is in its flexibility, i.e. new hosts can join the system without any
effort, e.g. a marketplace scenario where everyone can work with one central re-
mote host and the same OV M.



8 Amir Herzberg and Haya Shulman and Amitabh Saxena and Bruno Crispo

Experiment 1 The indistinguishability ExpWB-IND-CPA-ϕ

W,A (k) and unforgeability

ExpWB-UNF-ϕ

W,A (k) experiments. Where HO is a hardening oracle that the algorithm A obtains
access to during the course of the experiments.

ExpWB-IND-CPA-ϕ

W,A (k)
〈hk,OV M〉 ← G(1k)
(P0,P1,s)← AHOhk(·,ϕ)

1 (1k,OV M,hk)
b ∈ {0,1}k

(cb,ukb)← Hhk(Pb)
b′← AHOhk(·,ϕ)

2 (cb,s)
if ((b = b′)∧ (|P0|= |P1|)) {return 1}
return 0

ExpWB-UNF-ϕ

W,A (k)
〈hk,OV M〉 ← G(1k)
(P,s)← AHOhk(·,ϕ)

1 (1k,OV M)
(c,uk)← Hhk(P)
(ω, t)← AHOhk(·,ϕ)

2 (c,s)
y←Uuk(ω)
if (y =⊥) {return 0}
if (∀a ∈ {0,1}∗,y 6= Pt,|y|(a)) {

return 1
}
return 0

HOhk(P,ϕ)
if (ϕ = PK) {return (hk)}
return (Hhk(P))

2.2 Unforgeability Specification

In some scenarios, e.g. shopping mobile agent, a remote host may try to change the
result of the programs sent by the originator, e.g. such that instead of looking for the
best offer the agent purchases the most expensive item. Our goal is to circumvent
adversarial attempts to forge the result output by the scheme. This is captured by the
unforgeability specification, based on unforgeability experiment which we present
below. The unforgeability experiment applies the generation procedure and obtains
hardening key hk, and OV M. It then invokes the adversary with oracle access to
hardening functionality, and with the OV M as input. Eventually, the adversary out-
puts the forgery, i.e. the hardened result of the computation, denoted ω , an input
program P, and the unhardening key uk. The experiment applies the unhardening
procedure U on ω , P and t, and obtains the result of the computation y. If y is valid,
then the experiment checks if it is a forgery for any t and a, and if yes, returns 1, i.e.
the adversary successfully generated a forgery, otherwise returns 0, the adversary
failed.

In the asymmetric WBRPE everyone can harden programs for execution. After
recovering the result by applying the unhardening procedure, we cannot know what
input program was hardened to generate the result, and the forgery in this case means
that the output is not a result of the computation of the input program on any remote
input. Since the adversary has the public hardening key hk, it can harden programs
by itself. The trivial solution to this issue is to supply the program to the local host as
part of the unhardening key uk. Local host would then compare the program returned
to the program supplied as part of uk. However in case of a security specification
which requires to keep the input program secret from other remote recipients in this
solution we expose the input program, and thus cannot achieve programs privacy
from remote recipients. Therefore in asymmetric WBRPE a forgery is a generation



Towards a Theory of White-Box Security 9

of a valid result ω such that there does not exist a program P, which could result in
y←Uuk(ω) on any remote input a, i.e. ∀a y 6= Pt,|y|(a).

In the symmetric WBRPE, the adversary obtains an oracle access to the harden-
ing procedure. If the adversary did not query the hardening oracle on the program
for which the result was generated, then the adversary wins the experiment. The ex-
periment keeps a vector Q[..], with queried programs and the respective unhardening
keys output along with the hardening upon each query. In this type of forgery, the
legitimate party never queried the hardening oracle with a program for which the re-
sult was generated. Instead, the adversary replaces the authentic hardened program
with some other program (replay or a forgery).

Definition 3 (Unforgeability). Let W = (G,H,U) be a WBRPE scheme and let A be
a PPT algorithm. For k ∈N, ϕ ∈ {PK,SK} we define the advantage of the adversary
A in the unforgeability experiment as follows:

AdvWB-UNF-ϕ

W,A (k) = Pr[ExpWB-UNF-ϕ

W,A (k) = 1]

Where ExpWB-UNF-ϕ

W,A (k) and the hardening oracle are defined in Experiment 1. A

WBRPE scheme W is WB-UNF-ϕ secure, if the advantage AdvWB-UNF-ϕ

W,A (·) is a
negligible function for all PPT adversarial algorithms A.

3 Universal WBRPE

In this section we show that if there exists a WBRPE scheme that satisfies the se-
curity specifications for a specific family of universal programs, UP then there ex-
ists a Universal WBRPE scheme that satisfies the security specifications for every
program. More specifically, we present the construction of the Universal WBRPE
scheme given a WBRPE scheme for a specific universal program UP in Figure 2.

3.1 The Universal Program UP

Let Π = (GAE ,AE,V D) be a scheme, that performs encryption and authentication,
see [3], and decryption and validation of inputs. The universal program UPK (in
Figure 2) is a Turing machine, that is created and instantiated with a secret key K,
by the hardening procedure H. When invoked by the obfuscated virtual machine
OV M, the universal program UPK reads a′ off the input tape, and parses it to obtain
(a, t, l,cP), i.e. the remote input, the number of steps of program’s execution, the
length of the output and the encrypted program. UP decrypts and validates cP using
the key K. The UP then runs P on a for t steps and truncates the output y′ to l
bits. Finally, UP writes y′ = 〈y,P, t,K〉 on the output tape and halts. The parameters
(P, t,K) are output to allow the unhardening procedure U ′ to verify that the result of



10 Amir Herzberg and Haya Shulman and Amitabh Saxena and Bruno Crispo

Algorithm 2 The Universal WBRPE scheme W ′ = (G′,H ′,U ′), where createOVM and createUP
are macros, each generating a string that encodes a program (OVM’ and UP respectively).

U ′uk′ (ω)
y←Uuk′ (ω)
return y

H ′hk(P)
K←GAE(1k)
cP← AEK(P)
UPK ← createUP(K)
(cUP,uk)← Hhk(UPK)
c← 〈cUP,cP〉
uk′← 〈uk,K,P〉
return (c,uk′)

G′(1k)
(hk,OV M)←G(1k)
OV M′← createOV M(OV M,k)
return 〈hk,OV M′〉

createOV M′(OVM)
return [read (c,a,t,l)

(cUP,cP)← c
a’← (a,t,l,cP)
t’=p(t)+3
l’=l+|P|+|t|+|K|
return OVM(cUP,a’,t’,l’)]

createUP(K)
return [read a’

(a,t,l,cP)← a’
P← VDK(cP)
y← Pt,l(a)
return y]

the computation is authentic. The output y′ of UP is encoded, i.e. encrypted and/ or
authenticated, by the OV M (the encoded value returned by the OV M is denoted ω).

The macro createUP, in Figure 2, given a secret key K, generates and returns
the Turing machine UPK , represented as a string. The secret key K, is instantiated
during the generation and is concatenated to the constant parts of the string.

3.2 The Generation Procedure

The generation procedure G′ of the Universal WBRPE scheme W ′ applies G of the
specific WBRPE W and obtains the the hardening key hk, and the OV M. It applies
the createOV M′ function on the OV M of the specific WBRPE scheme to generate the
OV M′ of the Universal WBRPE scheme W ′ and returns the tuple 〈hk,OV M′〉. See
Figure 2. The createOV M′ function generates the OV M′ Turing machine encoded in
a string. The OV M′ reads (c,a, t, l) of the input tape and generates an input for the
OV M Turing machine. The OV M decodes cUP and runs the universal program on
input a′, for t ′ steps and writes an l′ bit output on its output tape, where t ′ comprised
of the number of steps performed by UP, the number of steps the input program P
is executed and of the number of steps it takes the virtual machine to execute P, i.e.
bounded by some polynomial p(·) in t. The output length l′ is the length of UP’s
output, which is the tuple 〈y,P, t,K〉.



Towards a Theory of White-Box Security 11

3.3 The Hardening Procedure

The input to the hardening procedure H ′ of the Universal WBRPE scheme W ′ is a
program P supplied by the local host. The universal hardening procedure first ap-
plies the generation procedure of the authenticated encryption scheme, e.g. in [3],
obtains the secret key K and then encrypts the input program P using K, which re-
sults in cP. Next, it generates the universal program, given the secret key K, and
hardens it using H to obtain the pair cUP and uk, subsequently returning the ordered
pairs 〈cUP,cP〉 and 〈uk,K〉. Details in Figure 2.
We employ authenticated encryption in order to prevent forgery of the input pro-
grams, and to ensure that the input program P of the Universal WBRPE was not
modified on transit, and replaced with some other input program P′.

3.4 The Unhardening Procedure

The unhardening procedure receives an ω and optional [P, t] in an input, and applies
the unhardening procedure U of the specific WBRPE scheme W on ω . Obtains the
tuple (y, P̃, t̃, K̃). It then checks if the P, t parameters were supplied, if not it simply
returns y, otherwise the validation of the input is also performed. U ′ verifies that the
pair (P, t) supplied by the adversarial algorithm and the pair (P̃, t̃) output from the
universal program UPK are identical, and that the secret key K from uk equals to
the secret key K̃ from the output of UP. This is critical in order to verify that the
result of the computation is authentic and not a forgery. If the result is authentic,
U is applied on the universal program UPK , t ′ and ω , such that UPK and t ′ are
generated from the input parameters supplied to U ′. These steps are performed in
order to validate the result ω , i.e. that it is an authentic computation the universal
program after a t ′ steps execution. The universal unhardening procedure returns y as
its output. See the details of the implementation in Algorithm 2.

Theorem 1. Let φ ∈ {WB-IND-CPA-ϕ,(WB-UNF-ϕ & WB-IND-CPA)} and let
Π = (GAE ,AE,V D) is an IND-CPA secure authenticated encryption scheme. If W =
(G,H,U) is a φ secure WBRPE scheme for the universal program UP, then W ′ =
Univ(W ) is a φ secure WBRPE scheme for every program.

We prove the theorem for each value of φ , in full version of the paper.

Acknowledgements We thank Yoram Ofek, Jasvir Nagra, and Christian S. Collberg for useful
discussions and helpful comments. This work was supported by funds from the European Com-
mission (contract N 021186-2 for the RE-TRUST project). Part of this research was supported by
the NATO Collaborative Linkage Grant n. 982332.



12 Amir Herzberg and Haya Shulman and Amitabh Saxena and Bruno Crispo

References

1. Algesheimer, J., Cachin, C., Camenisch, J., Karjoth, G.: Cryptographic security for mobile
code. In: SP ’01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, p. 2.
IEEE Computer Society, Washington, DC, USA (2001)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the
(im)possibility of obfuscating programs. In: CRYPTO ’01: Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology. Springer-Verlag, London,
UK (2001)

3. Bellare, C., Pointcheval, D., Rogaway, P.: Authenticated Encryption: Relations among notions
and analysis of the generic composition paradigm (2000)

4. Billet, Gilbert, Ech-Chatbi: Cryptanalysis of a white box AES implementation. In: SAC:
Annual International Workshop on Selected Areas in Cryptography. LNCS (2004)

5. Cachin, C., Camenisch, J., Kilian, J., Muller, J.: One-round secure computation and secure
autonomous mobile agents. In: Automata, Languages and Programming, pp. 512–523 (2000).
URL citeseer.ist.psu.edu/article/cachin00oneround.html

6. Canetti, R.: Towards Realizing Random Oracles: Hash Functions that Hide All Partial Infor-
mation. LECTURE NOTES IN COMPUTER SCIENCE pp. 455–469 (1997)

7. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. Journal of
the ACM 45(6), 965–982 (1998)

8. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A white-box DES implementation for
DRM applications. In: J. Feigenbaum (ed.) Digital Rights Management Workshop, Lecture
Notes in Computer Science, vol. 2696, pp. 1–15. Springer (2002)

9. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography and an AES
implementation. In: SAC ’02: Revised Papers from the 9th Annual International Workshop
on Selected Areas in Cryptography, pp. 250–270. Springer-Verlag, London, UK (2003)

10. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation-tools for soft-
ware protection. Software Engineering, IEEE Transactions on 28(8), 735–746 (2002)

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES–the Advanced Encryption Standard.
Springer (2002)

12. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge Uni-
versity Press New York, NY, USA (2004)

13. Goubin, L., Masereel, J., Quisquater, M.: Cryptanalysis of white box DES implementations.
Proceedings of the 14th Annual Workshop on Selected Areas in Cryptography (2007)

14. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party computation system.
In: Proceedings of the 13th USENIX Security Symposium, pp. 287–302 (2004)

15. United States. National Bureau of Standards: Data Encryption Standard, Federal Information
Processing Standards publication, vol. 46. U.S. National Bureau of Standards, pub-NBS:adr
(1977)

16. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of White-Box DES Imple-
mentations with Arbitrary External Encodings. Proceedings of the 14th Annual Workshop on
Selected Areas in Cryptography (2007)

17. Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE Symp. on Foundations of
Comp. Science, pp. 160–164. IEEE, Chicago (1982)


