On the IPP Properties of Reed-Solomon Codes
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Abstract Codes with traceability properties are used in schemes where the iden-
tification of users that illegally redistribute content is required. For any code with
traceability properties, the Identifiable Parent Property (c-IPP) seems to be less res-
trictive than the Traceability (c-TA) property. In this paper, we show that for Reed-
Solomon codes both properties are in many cases equivalent. More precisely, we
show that for an [n, k,d] Reed-Solomon code, defined over a field that contains the
n —d roots of unity, both properties are equivalent. This answers a question posted
by Silverberg et al. in [10, 11], for a large family of Reed-Solomon codes.

1 Introduction

The concept of traitor tracing was coined in [5] as a method to discourage piracy.
Traitor tracing schemes are useful in scenarios where the distributed content may
only be accessible to authorized users, like decrypting broadcast messages, software
installation and distribution of multimedia content.

This paper discusses the characteristics of the identifiable parent property (IPP)
of Reed-Solomon codes used in traitor tracing and fingerprinting schemes. However,
before we get into technical matters, we give an intuitive overview. By doing this
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at the beginning of the paper, we try to separate the concepts from where our work
emanates from the intrinsic mathematical development and also hopefully provide
the reader an extra motivation for going deep into our results.

The scenario we will deal with is the following one. A distributor D, that sells
digital content, wishes to discourage illegal redistribution of its products. To this
end, he embeds a unigue set of symbols to each copy of the content before it is
delivered. This makes each copy unique and therefore if a dishonest user illegally
redistributes his copy, he can be unambiguously identified by simply extracting the
set of symbols.

A weakness to this scheme can be spotted by noting that a coalition of two or
more dishonest users can get together and by comparing their copies they perform a
collusion attack. This attack consists in detecting the positions in which their copies
differ and with this knowledge, they create a new copy that in every detected posi-
tion contains a symbol of one of the members of the coalition. This new copy is a
pirate copy that tries to disguise the identity of the guilty users and is the one they
redistribute.

More precisely, the distributor assigns a codeword from a g-ary fingerprinting
code to each user. To embed the codeword into each users object, the object is first
divided into blocks. The distributor then picks a set of these blocks at random. This
set of blocks is kept secret and will be the same for all users. Then using a water-
marking algorithm a mark of the fingerprint codeword is embedded in each block.
Note that a given user will have one of the g versions of the block. The colluding
traitors compare their copies, detect the blocks where their copies differ and with
this information at hand, they construct a pirate copy where each block belongs to
the corresponding block of one of the traitors. Since each mark is embedded using
a different random sequence, and these sequences are unknown to the traitors, they
cannot create a version of the block that they do not have.

With the above scenario in mind, it is clear that the distributor D, has to embed
sets of symbols that are secure against collusion attacks. One way to obtain such
sets is by using codes with the Identifiable Parent Property (c-1PP).

1.1 Previous work

Codes with the IPP were introduced in [8]. Informally, and using the traitor tracing
scenario described above, a code has the c-IPP property if given a pirate copy, all
coalitions of at most c traitors that can generate this pirate copy have a non-empty
intersection.

The IPP has received considerable attention in the recent years, having been stu-
died by several authors [3, 4, 13,9, 14, 1, 2, 7].

A stronger property is the Traceability (c-TA) property. In this case given a pirate
copy, one of the traitors involved in its creation is the closest one in terms of the
Hamming metric.
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In [12], sufficient conditions for a linear error correcting code to be a c-TA code
are given. Efficient algorithms for the identification of traitors in schemes using c-
TA codes are discussed in [10, 11].

In [10, 11] it is stated that tracing for TA codes is an O(N) process, with N the
number of users, whereas for IPP codes tracing is more expensive since it is an
0((1;/ )) process. Since the TA property is stronger than the IPP, and tracing is far
more expensive for the IPP, it seems natural to expect that by relaxing the TA requi-
rements one could still have a code that, even though in no longer ¢-TA, still posses-
ses IPP. However in [11] some examples using truncated Reed-Solomon codes lead
toward the opposite, that is, if a Reed-Solomon code does not have the TA property
then it does not have the IPP one either.

1.2 Our contribution

In this paper we answer a question posted by Silverberg et al. in [10, 11]. The
results we present hopefully give way to a total understanding of the IPP property
in Reed-Solomon codes.

In [12, Lemma 1.3] authors prove that a c-TA code is a c-IPP code. However as
seen before, the TA property is stronger than IPP, taking this into account Silverberg
et al. in [10, 11] asked the following question:

Question 11 [11]: It is the case that all ¢-IPP Reed-Solomon codes are ¢-TA
codes?

Below, and as a result of expressing the IPP in an algebraic manner, we give an
affirmative answer to this question for a large family of Reed-Solomon codes. Sur-
prisingly enough, the answer is positive for codes defined over a field that contains
the n — d roots of unity. Note that our results imply that for this family of Reed-
Solomon codes, failing to be c-TA also involves failing to be c-1PP.

For a more precise statement of the Question 11 [11], see Section 2.1 below.

1.3 Organization of the paper

The paper is organized as follows. In Section 2, we provide the necessary back-
ground in coding theory, traceability and IPP. In Section 3 we start our discussion
by defining a set of polynomials that allow us to express the IPP algebraically. The
main result of the paper is presented in Section 4, and comes in the form of a theo-
rem giving the necessary and sufficient conditions for Reed-Solomon codes to be
c-IPP codes. A complete example to clarify our results is given in Section 5. We
draw our conclusions in Section 6.
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2 Definitions and previous results

We define a code as a set of n-tuples of elements from a set of scalars. The set of
scalars is called the code alphabet. An n-tuple in the code is called a word and the
elements of the code are called code words. If the code alphabet is a finite field IF,,
then a code C is a linear code if it forms a vectorial subspace. The dimension of the
code is defined as the dimension of the vectorial subspace.

Let a,b € IF] be two words, then the Hamming distance d(a,b) between a and
b is the number of positions where a and b differ. Let C be a code, the mini-
mum distance of C, d(C), is defined as the smallest distance between two different
codewords.

A linear code with length n, dimension k and minimum distance d is denoted as
a [n,k,d]-code, or simply as an (n,d) code.

A well known class of linear codes are Reed-Solomon codes, that can be defined
as follows:

Let IF, [x] be the ring of polynomials defined over IF,. Consider the set of poly-
nomials of degree less than k, IF,[x]; C IF,[x]. Let ¥ be a primitive element of IF,,
and A,...,A, € IF, — {0}.

Definition 1 We define a generalized Reed-Solomon, RS|n, k|, code as the vectorial
subspace of I, determined by the vectors of the form

v=(Af), . M f ()

where f € IF,[x|. Note thatn = q— 1.

2.1 Background and previous results on c-IPP traceability codes

Given a code C(n,d) defined over the finite field of ¢ elements, IF,, where n denotes
the code length and d the minimum distance of the code, the set of descendants
(false fingerprint) of any subset 7 = {t',...,t} CC, where t' = (i, ... ), denoted
desc(T), is defined as

desc(T) = {y = (V15---,yn) ETFly; € {tij\tj eT}1<i< n}

Definition 2 A code C is a c-traceability code (denoted c-TA), for ¢ > 0, if for all
subsets (coalitions) T C C of at most ¢ code words, if y € desc(T ), then there exists
ateT such that d(y,t) <d(y,w) forallwe C—T.

Definition 3 A code C(n,d), defined over IF,, is a c-identifiable parent property
code (denoted c-IPP), ¢ > 0, if for all y € IF; and all the coalitions T C C of at most
¢ code words, we have'y & Jy desc(T) or
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(1 T#o.

y€edesc(T)

In [12, Lemma 1.3] it is shown that that a ¢-TA code is a ¢-IPP code. In [5][6][12,
Theorem 4.4] it is proved that any C(n,d) code with d > n—n/c? is a c-TA code.
Moreover, if C(n,d) is a code defined over IF,, in [12, Lemma 1.6] authors show
that if |C| > ¢ > ¢ then C is not a c-IPP code.

Given a code C(n,d), authors in [11, Section IV], construct unordered sets from
the ordered sets that constitute the code as follows: to a codeword X = (x1,...,x,) €
C they associate the set X' = {(1,x1),...,(n,x,)}. Then they define TA set systems
(as opposed to TA codes) in the natural way, with the noteworthy difference that
a pirate unordered set (unordered fingerprint) consist of n elements such that each
element is a member of some coalition member’s set. In [11, Theorem 7], authors
prove that if C(n,d) is a Reed-Solomon code with minimum distance d < n—n/c?
then the set system corresponding to C is not a c-TA system. Note that this result
does not implies that d > n —n/c? is a necessary condition for RS codes to be c-TA.

Moreover in [11, Theorem 8] authors construct a family of truncated (n < g — 1)
RS[n, k], codes that fail to be ¢-IPP if ¢* > n/(n—d).

Then in [11, Question 11] the authors ask if it is always true that the c-IPP fails
if 2 >n/(n—d).

In this paper we give another partial positive answer of this question, showing
that there are other families of Reed-Solomon codes that fail to be ¢-IPP if ¢ >
n/(n—d). Obviously this does not close the problem, but we think that it gives
some hints that may hopefully be useful in finding the final response.

3 The IPP condition for Reed-Solomon codes

In this section we set the ground for the discussion of our main results. Informally,
we define a set of polynomials (denoted £;;(x)), that help us construct an algebraic
representation of the IPP. Using these polynomials, we set up a system of equations
for which the existence of a solution implies that the code is not c-IPP. In Section 4,
we will show how to solve this equation system for a large number of Reed-Solomon
codes.

Let 0 < ¢ < ¢, be two integer numbers. We say that a code C isnota (cy,c;)-IPP
code if there exist coalitions 7} of ¢; code words and 7> of ¢, codewords, such that

desc(Tq) ﬂdesc(Tz) #0and Ty ﬂ T, =0.

Obviously, from Definition 3 the code C is not c;-1PP.

Therefore, if a RS[n, k|, code fails to be (c1,c2)-IPP this means that there exist
two disjoint coalitions, with ¢; and ¢ distinct code words respectively, 77 =
{fox),- -, fe -1 (0} To = {g0(x),--- 8, -1(x)} (where fi(x),g;(x) € IFy[x]¢, but
with an abuse of notation they also represent vectors of the form
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fi= (M fi(r),- - Mfi(V)

), with 71 N7, = 0 and that can generate the same descendant (false fingerprint) y.
We can always assume that code word 0 is a code word of coalition 77, othe-
rwise consider coalitions Ty —fo = {fo —fy,....fc,_1 —fo} and 5 —fo = {go —
fo,...,8c,—1 —fo}. Then it is not difficult to verify that (77 —fo) N (7> —fy) =0
and they both can generate the fingerprint y — fy. Thus, in what follows, we will
assume that fy = 0.
We define polynomials

sij

hij(x) £ fi(x) B,,Hx o) ()

fori=0,...,ci—land j=0,...,c0— 1.

The polynomials /;;(x) will be a key tool in all the subsequent work. In a sense,
they allow us to have an algebraic representation of the IPP .

Note that the polynomials /;;(x) have at most n —d = k — 1 roots, thus s;; <
n—d, otherwise two distinct code words in the code would agree in more than n —d
coordinates, and this is not possible.

We will make an extensive use of the following result:

Lemma 4 If a RS[n,k|, code fails to be (c1,c2)-IPP, (Ty and T> can generate the
same descendant), then the set of roots of the set of polynomials {h;j(x)} is IF, —
{0}. Therefore, ¥;;sij > n, x" — 1|1 hij(x) and cica(n—d) > n.

Proof. The proof is straight forward from the definition of the polynomials ;;(x)
and the definition of the (c;,c2)-IPP.
O
In the previous reasoning we have seen that we always can take fy(x) = 0, there-
fore

S()]
gj(x) = fo(x) —hoj(x ——Bo,Hx Ock j=0,...,c0—1
Since fi(x) = X4=d ffxk for i =1,...,c; — 1 then we can write down the fo-

llowing equation system(with an abuse of notation, because we are assuming that
sij =n—d for all i, j, that in fact is the worst case situation):

7 = ﬁi;H(—a,ij) _BOjH<_a]?j)

) . @)
= =By (Za;i]) + Boj (Za;?])
7 =Bij— B

wherei=1,...,ci—land j=0,...,c0 — 1.

Note that if this equation system has a solution then the associated Reed-Solomon
is not (cy,cy)-IPP.
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When finding a solution for (2), we observe that the equation system has (¢; —
1)cp(n—d 4+ 1) equations, and (¢; — 1)(n—d + 1) + cjca + n, degrees of freedom.
However, there is an important restriction due to Lemma 4, that is, the values of the
o’ (i=0,...,c;—1and j=0,...,co — 1) must take distinct n values in IF,, and
this reduces the chance to find a solution. Note that if we assume that the values of
o’ are arbitrarily assigned then we only have (c; — 1)(n—d + 1) + cic; degrees of
freedom.

Below, in Section 4, we will show how a solution can be found for a large family
of Reed-Solomon codes.

Before concluding this section, we review some trivial results on non IPP condi-
tions.

Lemma 5 Here we consider [n,k,d| Reed-Solomon codes and assume that the code
length n is fixed.

1. For a fixed value d, if the code is not (cy,c2) — IPP then it is not (¢, c5)-IPP, for
any pair of values ¢ > ¢1,ch > cs.

2. If the code is not (c1,c) — IPP for some value of d, then it is not (ci,c,)-IPP for
any value d’' < d.

4 Main result on IPP Reed-Solomon codes

In this section we discuss the main result in this paper that gives an answer to the
question posed in [11] ([Question 11]) asking whether if it is always true that c-IPP
property fails if ¢> > n/(n —d).

In Theorem 6 below, we show that in fact is true that c-IPP property fails if
¢ > n/(n—d), for all Reed-Solomon codes defined over a field that contains the
n —d roots of unity.

Intuitively, our strategy is as follows. From Lemma 4 and the subsequent rea-
soning, it is clear that, if for a given code the equation system (2) has a solution
then the code is not (¢, c¢z)-IPP. Since (2) has more equations (although may of the
equations might be redundant) than degrees of freedom it is necessary to invert this
situation. We accomplish this by finding a suitable set of polynomials A;;(x).

Theorem 6 Let RS[n, k|, be a Reed-Solomon code. Consider two integer numbers
c1 < ey Ifciep <nf(n—d) the code is (¢, c)-IPP. Moreover, if n —d divides g — 1,
then the code is (c1,¢2)-IPP if and only if cico < n/(n—d).

Proof. The sufficient part it is already known, but we prove again it for comple-
teness. If we consider a coalition 77 of at most ¢; code words that can produce a
descendant (false fingerprint) y, we can ensure that one of the c¢; code words in
the coalition agrees with y in at least n/c; > (n —d)c; of the coordinates. But any
member v of any coalition 7, of at most ¢, code words, with 7, N7} = @, can only
agree with y in at most (n —d)c; coordinates, otherwise v shall coincide in more
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than n — d coordinates with a code word in 77, and this is not possible because of
the definition of minimum distance of a code. Thus the code words in coalition 7>
can generate at most (n — d)cjcp < n coordinates of y, that is, they can not generate
the descendant y.

For the necessary condition, in virtue of Lemma 5 we can assume that cjcp, =
[/ (n—d)].

If n —d divides g — 1, we have that the (n — d)-roots of the unity belong to IF,.
Let s = (¢ —1)/(n—d), then we can express the (n — d)-roots of the unity as or*¥,
where o is a primitive element of IF,.

We define the polynomial

n—d

éH xnd

now we can express the polynomials /;;(x) as

n—d
/’l,’j(x)éﬁijp(atcz+jx) B alC2+j n—d) H( ks icy— j)
=1

>~

— ﬁija(ic2+j)(n*d)xn7d _ ﬁij;

fori=0,...,c1—1,j=0,...co — 1, where cjc; > s. Clearly the o s take
as value all the elements in IF, — {0} for i =0,...,¢c; —1, j=0,...co—1 and
k=1,...,n—d.

Now, the equation system (2) can be re-expressed as

i = _ﬁij + ﬁ()j (3)
n—d _ o icrpt+j)(n—d) __ oAU
f d Bij (ic2+j)(n—d) Bo, j(n—d)

ks—ico—j»

To solve this system we first will take £~ = 0 (in other words, we take the f;(x)
polynomials as constant). We have that

fn d _ =0

Bz] — ﬁojaficz(nfd) “4)
and by taking fBy; = 1, it follows that

oy = 1 )

fio _ 7a—icz(n—d)+1

It is clear that (5) solves the equation system (2), and the theorem is proved.
However, before we finish the proof perhaps some observations are in order.

First note that if f0 0 for some i, then we would have more than a single zero
polynomial, however since we are assuming that ¢jc; = [n/(n—d)] this can not
happen.

Also, note that the equation system (2) is simplified since the coefficients of
degree s # 0,n —d of h;j(x) and of g;(x) = hg;(x) are 0, and so the equations are
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of the form “f7 equals 07, for all j, and therefore are satisfied trivially by simply
taking f¥ = 0.
Finally, observe that if o/("~4) = —1 = o"/2 then 2¢2 > [n/(n—d)], thus ¢; < 1,
and ¢y = [n/(n—d)]. But this directly implies that the code is not (c;,c)-IPP.
O

S Example

In this section we present an example of the above results.

We take a Reed-Solomon code over IFj3 (q=13). We denote the elements of IF3
as {0,1,2,3,4,5,6,7,8,9,10,11,12}. Since we wish to prove thatif d < n— % then
the code is not ¢-IPP then we take the code with parameters [n = 12,k = 4,d = 9]
and ¢ = 2. Note that n — d divides g — 1 (IFy3 contains the n —d = 3 roots of unity).

With the above reasoning in mind, we need to find polynomials fy(x), fi(x),
go(x), g1 (x) such that when grouped into two disjoint coalitions the corresponding
code words can generate the same descendant (false fingerprint). In other words, we
wish to find (disjoint) Coalition 1 {fp(x) = 0, fi(x)} and Coalition 2 {go(x),g1(x)}
such that their corresponding code words {fy,f; } and {go, g1} can generate the same
exact descendant (false fingerprint).

First of all, we define the A;; polynomials.

hoo = fo—go = Boo(x— a®)(x — 03°) (x — a2°)
hor = fo— &1 :ﬁm(x—a?l)(x—agl)(x—a?l) (6)
hio = fi—go = Bro(x— o) (x — ") (x— 3°)
hi = fi—g1=Bulx—a)(x—og")(x—og")
where the oclij take all of the non-zero values of IF;3.
Taking into account that fy(x) = 0, we have that:
go=—hoo = —Poolx— a?o)(x_ aSO)(x— ago)
g1=—hor = —PBor(x—o")(x—og")(x— 03"
fl = h10+g0 = ﬁlO(x_ a]lO)(x_ azlo)(x_ OC310) (7)
— Boo(x — &) (x — 05°) (x — &)
fi=hit+g =pulr—og")(x—o)(x—og')
— Bor(x— o) (x— 03") (x — ")

and since f1(x) = 2+ flx+ f7x> + fix (because k — 1 = n—d = 3), it follows
that the system to be solved is
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1(): _ﬁloalo%lo 10—|—ﬁ000£1 06300500

fll — Blo(aloazl0+a|10ag Jraz ) ,B()(OCOOOKOOJrOCOOOCOOJrOZOO(XOO)
§= —Bio(ef + 0”4 03° )+Boo( o + 0g° + ")

7 = Bio—Poo

) :_Blla”(lel 11+ﬁ01a aOlaOI

= Bu(allodt+allol 1+a“ ) Bor (o' o + o' od + o' e
%=—ﬁn< ‘+a2”+a3”)+ﬁm( ]+a£"+a>

1 :Bll—ﬁm

®)

Next, we define the A;j(x) polynomials as

hij(x) = Byalict = dyn=d _ g, ©)

withi = {0,1}, j ={0,1} the integer value ¢ = 2 and @ = 2 a primitive element
of IF;3, so

hij(x) = B2 0Dt — gy (10)
Now by plugging (10) in (7), the equation system (8) becomes:

L L= ﬁ10+ﬁ00}
(i=1,7=0) 17 =2Bio— Boo (D
o fY = —Bu+Po
(i=1j=1) £ :29&1_23[301} (12)

We take for instance (11) (taking (12) leads to the same result). As seen in (4),
we have that:

=0
now taking oo = 1 and using (5), yields
0o
C . 00 =
(i=1,j=0) Bro — 12 (13)
o =-12+1=2
Therefore,
fo(x) =0
filx) =2 (1
Using these values in (12):
. . 2 = —Bi +Poi }
=1,j=1 15
(l J ) 0:29ﬁ11—23ﬁ01 (15)

solving, we have that
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Bor=1 and Py =12 (16)
Which yields
hoo(x)=x3—1 :x3—|—12
ot (x) = 2383 — 1 =8+ 12
6,3 3 an
ho(x) =12-2°0 — 12 =x" +1
hyp(x) = 12-2°0% —12 = 8x3 + 1
Finally, using (7) we have
— 3
go(x) = 12x° 4+ 1 (18)

g1(x) =53 +1

We have arrived at Coalition 1: fy(x) = 0, f1(x) = 2 and Coalition 2: go(x) =
126 + 1,81 (x) = 5x3 + 1.
Encoding these polynomials, we have that for Coalition 1:

fo = (0,0,0,0,0,0,0,0,0,0,0,0)
f1 = (272,25272a2a272727272)2)

and for Coalition 2:

g0 = (0,6,0,2,6,6,9,9,0,2,9,2)
g1 = (6,2,6,9,2,2,0,0,6,9,0,9)

It is clear that both coalitions can create the same descendant (false fingerprint):

(0,2,0,2,2,2,0,0,0,2,0,2)

6 Conclusions

In this paper we have discussed the IPP in Reed-Solomon codes. The goal of our
work was to answer a question by Silverberg et al. in [10, 11] inquiring whether all
c-IPP Reed-Solomon codes are also c-TA codes. By expressing the IPP algebraically
through the definition of a suitable set of polynomials, we have shown that for a large
family of Reed-Solomon codes this is in fact true. That is, all [n, k,d] Reed-Solomon
codes defined over a field that contains the n — d roots of unity are IPP codes if and
only if they are also TA codes.

It is surprising that from our results it seems that the IPP characteristics of a
Reed-Solomon code lie solely in the field over which the code is defined. To devise
the exact extension of this dependence will be a subject of further research.
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