Non-Repudiation Analysis with LYSA *

Mayla Bruso and Agostino Cortesi

Abstract This work introduces a formal analysis of the non-repudiation property
for security protocols. Protocols are modelled in the process calculus LYSA, using
an extended syntax with annotations. Non-repudiation is verified using a Control
Flow Analysis, following the same approach of M. Buchholtz and H. Gao for au-
thentication and freshness analyses.

The result is an analysis that can statically check the protocols to predict if they are
secure during their execution and which can be fully automated.

1 Introduction

With the growth of Internet applications like e-shopping or e-voting, non-repudiation
is becoming increasingly important, as a protocol property. Our aim is to provide
a protocol analysis which checks this property to avoid that a protocol is used in
malicious way. Among the existing techniques that perform the analysis of non-
repudiation protocols, we may cite:

e The CSP (Communicating Sequential Processes) approach [12], [13]: it is an ab-
stract language designed specifically for the description of communication pat-
terns of concurrent system components that interact through message passing.

e The game approach [10]: it considers the execution of the protocol as a game,
where each entity is a player; the protocols are designed finding a strategy, which
has to defend an honest entity against all the possible strategies of malicious
parties.

* Work partially supported by PRIN 07 MUR Project 200793N42R SOFT.

Mayla Bruso
Computer Science Department, Ca’ Foscari University, Italy, e-mail: mabruso@dsi.unive.it

Agostino Cortesi
Computer Science Department, Ca’ Foscari University, Italy, e-mail: acortesi @dsi.unive.it



2 Mayla Bruso and Agostino Cortesi

e The Zhou-Gollmann approach [16]: it uses SVO Logic, a modal logic that is
composed by inference rules and axioms which are used to express beliefs that
can be analysed by a judge to decide if the service provided the property.

e The inductive approach [1]: it uses an inductive model, a set of all the possi-
ble histories of the network that the protocol execution may produce; a history,
called trace, is a list of network events, that can indicate the communication of a
message or the annotation of information for future use.

We follow a different approach, the same as M. Buchholtz [5] and H. Gao [8],
who show how some security properties can be analysed using the LYSA [2] process
calculus with annotations and a Control Flow Analysis (CFA) to detect flaws in the
protocols. The main idea is to extend LYSA with specific annotations, i.e. tags that
identify part of the message for which the property has to hold and that uniquely
assign principal and session identifiers to encryptions and decryptions.

It is interesting to notice that the non-repudiation analysis that we propose easily
fits into the CFA framework [11], yielding a suite of analyses that can be combined
in various ways, with no major implementation overload.

The main differences between our proposal and the previously cited alternative
approaches are the following: our analysis can check many protocols and can model
scenarios with infinitely many principals while other approaches often are developed
to analyse only a particular protocol and can model scenarios with finite principals.

The structure of the paper is the following: Section 2 is a quick overview of
LYSA; Section 3 presents the CFA framework; Section 4 shows the new non-
repudiation analysis, and its application to the protocols; Section 5 concludes.

2 LySaA

LYSA [2] is a process calculus in the 7-calculus tradition that models security pro-
tocols on a global network. It incorporates pattern matching into the language con-
structs where values can become bound to variables. In LYSA all the communica-
tions take place directly on a global network and this corresponds to the scenario in
which security protocols often operate, where channels are not considered.

2.1 Syntax and Semantics

An expression E € Expr may represent a name, a variable or an encryption. The
set Expr contains two disjointed subsets, Name ranged over by n, which contains
identifiers, nonces, keys, etc., and Var ranged over by x, which contains variables.
The remaining expressions are symmetric and asymmetric encryptions of k-tuples
of other expressions, defined as {E,...,E}g, and {| Ei,...,E |}E, respectively,
where E( represents a symmetric or asymmetric key.



Non-Repudiation Analysis with LySA 3

LYSA also allows to construct processes P € Proc, which use the expressions
explained above. Processes can have the following form:

e (Ey,...,Ey).P: the process sends a k-tuple of values onto the global network; if
the message reaches its destination, the process continues as P.

e (Ei,...,Ejixji1,...,x;).P: the process read a message and, if E1, . .., E; are iden-
tical to the values expected, the remaining k — j values are bound to the variables
Xjt1,---,Xk, and the process continues as P.

o decryptE as {Eq,...,Ej;Xxjq1,...,%}E, in P: the process denotes the symmetric
decryption and, if the encryption key is identical to Ey, then the process decrypts
the k-tuple; if £y, ..., E; are identical to the values expected, the remaining k — j
values are bound to the variables x;41,...,x, and the process continues as P.

o decryptE as {|Ei,...,Ej;Xj;1,...,X|} E, in P: the process denotes the asymmet-
ric decryption and it works like symmetric decryption except that Ey and the key
used to encrypt have to be a key pair m™ and m™.

e (Vv n)P: the process generates a new name n and it continues in P.

e (v+m)P: the process generates a new key pair, m™ / m~, and it continues in P.

e P; | P, the process denotes two processes running in parallel.

e !P: the process acts as an arbitrary number of processes P composed in parallel.

e 0: the process is the inactive or nil process that does nothing.

A binder introduces new names or variables which have scope in the rest of the
process. Restriction, input and decryption constructs are binders of names, key pairs,
and variables, which have scope in the subprocess P. Names and variables are called
free whenever they are not bound by any binder; the functions fn(P) and fv(P)

collect all the free names and variables in the process P, respectively. The bound

variables are defined by the function bv(P) Ll var(P) \ fv(P). All these functions

are also defined on the terms.

Example 1. Let us see how to encode in LYSA the protocol defined by Cederquist,
Corin and Dashti in [6].

A—B: {M}](,EOOM fOI‘EOOM:SigA(B,TTP,H,ﬂK.,A‘}TTP)

B—A: EORy for EORy; = sigg(EOOu)
A—B: K
B—A: EORK fOI‘EORK:SigB(AJ‘I,K)

where H = h({M}k) and h is a hash function. The encoding is the following:

let X C Sin (ViieX AK;)(V:E TTP)(

liex|jex (v SKij)(v Hij) (v Myj)
({Mij}sk,; {|1;; TTP,Hij, {|SKij, Li[ }[ }).; xEORM ).
decrypthORM,-j as {|{‘Ij,TTP7I‘I[j7 {‘SK,I7II|}|}‘} in
(SK;j).(;xEORK;;).decrypt xEORK;; as {|I;,H;;,SK;j; } in 0

|[€X|jgx !(;xEnMsgij,xEOOMij).
decrypt xEOOM;; as {|I;,TTP;xH;;,xTTP|} in
({IxEOOM;;|}).(:xSKij).
decrypt xEnMsg;j as {xMsgij}xsk;; in ({|;,xH;;,xSK;;|}).0)



4 Mayla Bruso and Agostino Cortesi

LYSA provides a reduction semantics that describes the evolution of a process step-
by-step, using a reduction relation between two processes, written P — P'. If the
reduction relation holds then P can evolve in P’ using the rules depicted in Table 1.

The structural congruence between two processes, written P = P/, means that P
is equal to P" except for syntactic aspects, but this does not interfere with the way
they evolve. We refer to [2] [4] for a detailed description of the semantics. Notice
that a substitution P[n| — ny] substitutes all the free occurrences of n; in P for n;.
Finally, we define values V € Val, which are used in the reduction as expressions
without variables x € Var:

Vi=n | m+ | m- | {Vl7"'7vk}V() | {|V1,...,Vk|}vo (1)

A reference monitor is used to force additional requirements at each step before
allowing it to be executed. A substitution function is used in the reduction rules,
written P[V /x], to substitute a variable x for a value V in the process P.

Table 1 Semantics of LYSA calculus

(Com) Ny Vot
<V1,,“,Vk)AP\(VI’,,“,V;;xH] AAAAA x0)-P = PP Vi1 /X115 Vi ]
(Dec) ALoVi=V/
decrypt {Vi,...Vetvy @8 {V/,Viixjp1sems xk}v(/) N P— g PVip1 /X1 Vi3]
N vi=v.
ADec L -
( ) decrypt {|Vi,...Vi|},,+ @S {|V],.... VIt ety I PPVt [ Vi /3]
. I vi=v!
ASi =1 -
(ASig)  Fecrypt Vi Ve b S ViV kot s 0 PPVt 51 Ve 2]
P—yP P—yP
(New) (vn)P—g(vn)P (ANew) (vEm)P— g (vEm)P'
P, — P — p/ P 1 —=p!!
(Par) 10 (Congr) P=P' NP —4P" NP'=P"

Pi[Py— 5P|, Py P"

2.2 Meta Level Calculus

The meta level describes different scenarios in which many principals execute a pro-
tocol at the same time, simply running several copies of the processes. The syntax of
the meta level is identical to the syntax seen so far, except that each name and each
variable are renamed using indexes. Four new processes are introduced to model
these scenarios, which use a countable indexing set S to include a set of variables
X and i, as shorthand for iy,...,i; (a sequence of indexes); the processes are the
following:

e |ics MP: the process describes the parallel composition of instances of the process
MP where the index i is an element in the set S.

e let X C S in MP: the process declares a set identifier X which has some values of
the index set S in the process MP; the set X can be infinite.



Non-Repudiation Analysis with LySA 5

o (Vg ng)MP, (V ;o5 my;)MP: the processes describe the restriction of all the
names n; and all the key pairs m% and m— respectively; a is a prefix of the index
that can be empty.

In this syntax, the process let X C S in MP is a binder of X, while the process |;cs
MP is a binder of i and the indexed restrictions are binders of names and key pairs.

An instantiation relation, written MP — » P, is introduced to describe that a pro-
cess P is an instance of a meta level process MP, as depicted in Table 2.

Table 2 Instantiation relation MP — 4 P

MP[X—S']— 4P ool )
(et ferxcs in MP— P IS Cfin S

MP[i—ai]— 7 P)..MPli—ai]— 4 P

[IPar L= -

( ) lictay aryMP— s P[P
MP-

—sP

(IINew) Vie(agoag) ") MP— 5 (V naag) - (V i P

\ MP— ;P
(HANeW/(vﬁeW _____ ) M MP= 5 (VE gy ) (Y g )P

MP— ;P

(AOU) 7B M MP— o (ME; . MEQ P
(Ilnp) - ot - .

(MEy,...MEj;mx i 1,...;0%) . MP— 5 (MEy,...MEjsmx;1,....,mx;).P
(IDec) g MP— ;P i

ecrypt ME as {MEjy,...MEj;mx; <-»»1Wk}MEO n MP— 4
decrypt ME as {ME],...,ME,-;anjJr],.”,mxk}MEO in P

MP— ;P
TADec o -
( ) decrypt ME as {|ME,,...MEmxj 1 ,...;mx|}mE, 10 MP—

decrypt ME as {| ME,,....MEj;mxj.y,...,mx |}ME0 in P
___ MPosP MP— 4P
ANew) " tymmp— (viP (AANeW) tvsip— . Vi
—7 1— 75 2278
(Rep)  77p—71p (IPar) MPMP,— P[P,
(Nil) 0—,0

3 Control Flow Analysis

In this section we introduce our Control Flow Analysis (CFA) as an extension of
[11]. The aim of the CFA is to collect information about the behavior of a process
and to store them in some data structures <, called analysis components. To be
finite, static analysis is forced to compute approximations rather than exact answers.
Therefore the analysis can give false positives but it has to preserve soundness.

We will use Flow Logic settings [11][3] for the specifications and the proofs. It is
a formalism for specifying static analysis and it focuses on the relationship between
an analysis estimate and the process to be analysed, formally </ F P.

CFA abstracts the executions and represents only some aspects of the behavior of
a process which can also be infinite. We will prove the correctness of the analysis by
showing that the analysis components <7 are such that the property they represent
also holds when the process evolves.



6 Mayla Bruso and Agostino Cortesi

Formally:
o EPANP—P = o FP 2

The Flow Logic specifications use the verbose format “.<7 = P iff a logic formula
Z holds” or the succinct format “ = P : A’ iff a logic formula .Z holds”, i.e. they
record information about a process globally or locally, respectively.

The analysis components record canonical values from the set |Val| ranged
over by U to represent values generated by the same restriction. The component
K € Z(|Val|*) collects the tuples of canonical values corresponding to the val-
ues communicated in the global network while p : |Var| — (| Val]) records the
canonical values corresponding to the values that variables may become bound. A
predicate p, k F P says that p and k are valid analysis results describing the behav-
ior of P. To analyse the expressions it is used the form p = E : ¥ to describe a set of
canonical values © € &?(|Val|) that the expression E may evaluate.

The analysis of terms and processes is described in Table 3. The rules (AN),
(ANp) and (ANm) say that names may evaluate to themselves iff the canonical
names are in . The rule (AVar) says that variables may evaluate to the values
described by p for the corresponding canonical variable. The rules (AEnc) and
(AAEnc) use the analysis predicate recursively to evaluate all the subexpressions
in the encryption and they require ¥ to contain all the encrypted values that can be
formed combining the values that subexpressions may evaluate to. The rule (AOut)
says that the expressions are evaluated and it is required that all the combinations of
the values found by this evaluation are recorded in k. The rule (Alnp) says that
the first j expressions in the input construct are evaluated to be the sets ¥ for
i=1,...,j; if the pattern match with the values in x is successful, the remaining
values of the k-tuple is recorded in p as possible binding of the variables and the
continuation process is analysed. The rule (ASDec), (AADec) and (AASig) eval-
uate the expression E into the set ¥ and the first j expressions in the decryption
constructs are evaluated to be the sets ¥ for i = 1,..., j; if the pattern match with
the values in K is successful, the remaining values of the k-tuple is recorded in p as
possible binding of the variables and the continuation process is analysed. Notice
that the original syntax [5] [8] uses only the rule (AADec) to define both asymmetric
decryption and signature while we introduce here two rules imposing an order in the
choice of the keys to make our analysis more efficient. The rule (ANew), (AANew),
(APar) and (ARep) require that the subprocesses are analysed. The rule (ANil) deals
with the trivial case.

Whenever the requirements hold, the continuation process is analysed.

The analysis is also defined for the meta level as an extension of the analysis seen
so far and it takes the form

p.xEr M 3)

where I' : SetIDU & (Index fin) — & (Indexyin) is a mapping from set identifiers to
finite sets of indexes.

The meta level analysis is defined in Table 4 for the new constructs. The rule
(MLet) updates I" with the mapping X +— S, where S’ is required to be finite and it
has the same canonical names as the set S. The rule (MIPar) expresses that the anal-



Non-Repudiation Analysis with LySA 7

ysis holds for all the processes where the index i is substituted by all the elements
in I'(S). The rules (MINew) and (MIANew) ignore the restriction operators.

Table 3 Analysis of terms and processes

(AN)  pEn:viff |[n] v (ANp) pEmt:9iff [mt] e®

(ANm) pEm :0iff m™ ] e® (Avar) pEx:0iff p(lx]) C O

(AEnc) p E {E],...,Ek}EO : ﬂiﬂ:/\f—;op EE 0 /\VU(),...,Uk : /\f-{:()Ui e Y =
{Ul,...,Uk}UOEﬁ

(AAEn) p E{|E1,... E[Yg, : O iff N gp E Ei: 9 AYU,..., Ui : Ny Ui € 0
:>{|U|,...,Uk‘}U0€19

aouy p,xk(Er,... E).Piff A pEE 9 AVU,...,Up: N U € 0
= ((Uy,...,Ux) e KAp,KEP)

Alp) P, KE (Erye o Ejixjety . %) Piff A pEE: % AY(UY,... .Uy €x: N_ Ui €9
= (AL Uiep(la) np.xFP)

(ASDec) p, Kk decrypt E as {Ey,...,EjiXji1,...,X%}E, in Piff p iZE:ﬂAA{ZOp EE : %A
VUL, Uiy € O AN_gUi € O = (N Ui € p([xi]) Ap, K E P)

(AADec) p,KbdecryptEas{\El,...,Ej;x_,-H,...,xk\}Eo in Piff p ):EZ‘@/\/\{:OP EE;: A
V{|Ui,...,Ukl}uy € O : VU € O : Y (mt ,m™) : (Up,U}) = (m™ ], Im™|)A
{leiEﬁi#(/\?:_;HUiGP(LX:'J)/\P,KEP>

(AASig) p,KFEdecrypt E as {|E1,...,Ej;xjq1,...,.%]|}E, in Piff p ):E:19/\/\{:0p EE; : %A
V{|Ui,...,Ukl}uy € O : VU € O : V(mt ,m™) : (U, U}) = ([m™ ], Im™])A
{leiGﬁii(/\f:jHUiEP(LX:'J)AP,K?P>

(ANew) p,KE (vn)Piffp,kEP (AANew)p,KE (VvEm)Piff p,x EP

(APar) p,KEP|Piffp,kEP AP, KEP, (ARep) p,KE!Piff p,kE P
(ANil)  p,k EOiff true

Table 4 The meta level analysis p, kK Fr M: meta level constructs

MLet) p,kFrleteXCSinM iffp,x ':F[XHS’] M where S’ Qf,-,, F(S) and LS,J = LF(S)J
(MIPar)  p,KFEr|iesM iff Aaer(s)p: K Fr M[i— d]

(MINew) p,KFr (Vigsng)M iff o,k Fr M

(MIANew)p, K Fr (Vjesmzp)M  iff p,x Fr M

3.1 The attacker

The attacker is unique and runs its protocol P, following the Dolev-Yao formula
9,’?,3,; [7] shown in Table 5, which explains its powers. We write Py | P to show
that an arbitrary attacker controls the whole network while principals exchange mes-
sages using the protocol. A protocol process Py, has type whenever it is close, all its



8 Mayla Bruso and Agostino Cortesi

free names are in .47, all the arities of the sent or received messages are in .27 and
all the arities of the encrypted or decrypted messages are in g, . These three sets
are finite, like .#; and 2, used to collect all the names and all the variables respec-
tively in the process Pyy. The attacker uses a new name, 714 ¢ ., and a new variable,
Ze ¢ ¢, which do not overlap the names and the variables used by the legitimate
principals. It is again considered a process with finitely many canonical names and
variables. A formula .Z}); of the type (A}, %, Zgn.), which is capable of char-
acterizing the potential effect of all the attackers P, of the type (A}, %, @gnc), is
defined as the conjunction of the components in Table 5.

Table 5 The attacker’s capabilities

(1) The attacker may learn by eavesdropping
Mecog VV1 - Vi) € KN Vi €p(za)
(2) The attacker may learn by decrypting messages with keys already known
/\kEMEm. V{Vh cee aVk}Vo S p(Z.) : VO € p(Z.) = /\?:1 Vl S p(Z.)
Moot 1 Voo Vel b €(2a) i € paa) = AL Vi€ pGa)
Niectpne VI V1o Vi b € p(ze) im™ € plza) = Nizy Vi € p(24)
(3) The attacker may construct new encryptions using the keys known
Pty WVos-- Vit Neo Vi € p(z0) = {V1,-. ., Vidy, € P(z)
Aty V" Vis o Vi im® € p(za) ANCI Vi€ p(ze) = {I Vi Vi [fe €P(20)
Nkt VM~ Vis Vi im™ € p(za) ANL Vi €p(ze) = (| Vi Vi Y- €P(20)
(4) The attacker may actively forge new communications
Necatc Vs Vit N Vi€ p(ze) = Vi, Vi) €6
(5) The attacker initially has some knowledge
{ne.mE} U € pla)

4 Non-Repudiation Analysis

Non-repudiation guarantees that the principals exchanging messages cannot falsely
deny having sent or received the messages. This is done using evidences [9] that
allow to decide unquestionably in favor of the fair principal whenever there is a
dispute. In particular, non-repudiation of origin provides the recipient with proof of
origin while non-repudiation of receipt provides the originator with proof of receipt.
Evidences [15] should have verifiable origin, integrity and validity.

The syntax of the process calculus LYSA has to be extended to guarantee, given
a protocol, the non-repudiation property, i.e. authentication (only the sender of the
message can create it), integrity and freshness. This is done using electronic signa-
tures and unique identifiers for users and sessions. To this aim, we introduce two
sets, used in the body of the messages to collect information that will be useful to
perform the analysis: ID, where id € ID is a unique identifier for a principal, and
NR, where nr € NR says that non-repudiation property is required for that part of



Non-Repudiation Analysis with LySA 9

the message nr. To include these sets in our analysis, a redefinition of the syntax is
required, and this is done by applying a function called ¢ to the processes of the
protocol analysed, that acts recursively on the subprocesses and redefines subterms
using another function, called .% (see Table 6). In the new syntax ids are attached
whenever an asymmetric key appears and a session identifier u is attached to each
encryption and decryption; parallel composition and replication are modified to as-
sign different ids to different processes. The rule !P = P |!P has to be removed be-

Table 6 Functions .% and ¥

FExXID—¢
- F(njid)=n - F(x,id) =x
- F(mtid) = [m")y - F(mid)=[m i
- F{Er,... Ex}gy,id) = {F (Er,id),. .., F (Ex,id)} 2 (£, id)
-F{|E1, ... .Ex |}y, id) ={| Z(Er,id),..., F (Ey,id) \}%Emd)
4 :PxID— &
-9 ((Er,....Ex).2,id) = (F(E\,id),..., F (Eid)).9(Pid)
—%((El,...,Ej;xjﬂ,....,xk).P,id) = (f/\(E],id),...,,?(Ej,id);xjﬂ.,...,xk).g(P,id)
-9 (decrypt E as {E1,...,Ej;Xjt1, ..., Xk }E, in Pid) =
decrypt F (E,id) as {F (Ev,id), ..., F (E},id);Xji1, .-, Xk} 7 (Ey iay I Y (P,id)
-9 (decrypt E as {| Ey,...,EjiXji1, ..., % | Vg, in Pid) =
decrypt F (E,id) as {| Z (E1,id), ..., F (Ej,id);Xjt1,. .., Xk |},l‘l7'(50‘id) in¥9(P,id)

~G((vn)P.id) = (v n)F(P,id) -G((vEm)P,id) = (v £ [m])¥ (P.id)
-4(P|Q,id) =% (P,id) | 4(Q,id") -9 (\Pid) = ['Plia
-%(0,id) =0

cause the structural equivalence does not hold in this case. The replication process
evolves in ¥ (P,id) | 4 (!P,id"), where id’ is a unique user identifier by the replication
rule. Finally, we have to add the following annotations to the signatures:

e [from id] is associated to encryption and it means that the recipient expects a
message from id.

e [check NR] is associated to decryption and it means that for all the elements of the
set NR, non-repudiation property must be guaranteed. It is interesting to notice
that the elements in the set NR can specify a part of the message, not necessarily
the whole message, according to the definition of non-repudiation.

The syntax of asymmetric encryption becomes {|€i,...,&/}g [from id] while the
syntax of asymmetric decryption becomes decrypt € as {[€1,...,€j;Xj+1,- -, Xk| }g,
[check NR] in 2.

Notice that the annotation [from id] and the label u have a different role in the
analysis. The first says that the principal who encrypted the message must be the
same specified in the label associated to the private key used, while the second
expresses that the message has to belong to a precise session.

To guarantee the dynamic property, the values have to be redefined into NVal:

NV .= n\[m+],-d|[m7]id| {NV],...,NVk}NVO|{|NV1,.. . ,NVk‘}}lVVO[fI'OIn ld} (4)



10 Mayla Bruso and Agostino Cortesi

The reference monitor semantics P — gy P’ defines RM as

RM(id,id',u,u, {NVi,...,NVy},NR)
= (id=id' N\u=u' A\¥nr € NR:nr € {NVy,...,NV,.})

where {NV],...,NV,} is a set of redefined values for non-repudiation analysis. The
main difference between the standard and the redefined semantics is expressed by
the rule used to verify a signature, which ensures that the non-repudiation property
holds for the elements specified by the annotations:

decrypt (Vv NVilbe ) (from id’] as {|NV{,....NV/sxjy 1,5/}

[check NR] in 2 — gy PINVi1 /1. .NVi/xi]

AL NVi=NV! A\RM (id id' juid {NV;1,....NV,},NR)

o
[mt iy

Definition 1 (Dynamic Non-Repudiation). A process & ensures dynamic non-
repudiation property if for all the executions & —* P’ —py P” then id = id’'
and u=u' and Vnr € NR: nr € {NV},...,NV;} when &' — gy P" is derived using
(ASig) on the asymmetric decryption construct.

Definition 1 says that an extended process & ensures non-repudiation property if
there is no violation in any of its execution.

4.1 Static Property

A component ¥ C Z(NR) will collect all the labels nr such that the non-repudiation
property for the element nr is possibly violated. The oc operator is introduced to
ignore the extension of the syntax. The non-repudiation property has to be checked
whenever a signature is verified, therefore the rule (ASig) becomes the following:

p, i,y Edecrypt € as {| £1,...,€;5x11,..., X |}g(;[checkNR] in &

iffple: O AN_ P F&: %AV NVI,...,NV, |}y, [from [id]] oc ©

VYNV o Oy : Vm™,m™,id,id" : (NVo,NV{) = ([[m™ |]iars [lm™ ))iar)

AN NV; o % = (N4 NVi € p([xi]) Ap. Kk, W E P AVnr € NR:

(id #id' Vu#u'Vnr ¢ {NVjyi1,...,NV,}) = |nr] € y).
To prove the correctness of our analysis we must prove that it respects the extended
operational semantics of LYSA, i.e. if p, k, W F & then the triple (p, k, ¥) is a valid
estimate for all the states passed through in a computation of &?. Furthermore, we
prove that when ¥ is empty, then the reference monitor is useless.

Theorem 1 (Correctness of the non-repudiation analysis). If p,x, v F & and
v = 0 then & ensures static non-repudiation.

The proof of this theorem, as well as the proof of the next ones, can be found in [4].



Non-Repudiation Analysis with LySA 11

4.2 The attacker

In the setup of & | Z,, the attacker process 4, has to be annotated with the ex-
tended syntax. We will use a unique label u, to indicate the session and a unique
label id, to indicate the encryption place used by the attacker. The Dolev-Yao con-
dition has to be redefined to be used for the non-repudiation analysis.

The main enhancement with the usual LYSA attacker can be seen in rule (3.):
whenever the attacker is able to generate an encrypted message with a known key,
the receiver checks the id of the sender, and, in case the latter does not correspond
to the intended one, the component ¥ becomes non empty, as a signal of a non-
repudiation violation:

Aseatne VImJias NV, ,NVic 2 [m™Jia € p(ze) AN NV € plza)

= {|NV17...,NVk|}'[‘,;l,]I_d. € p(ze) AV decrypt {|NV],... ,NVk’\}'[‘,:l,]id. [from id'] as

{Inv/,... ,NVJ{’;xHh...,xk|}‘[‘,:+]id” [check NR] in &2 :

Vnr € NR ((id' #ide Vu" £ ue Vnr ¢ {NV], ... ,NV[}) = |nr] € y)

Theorem 2 (Correctness of Dolev-Yao Condition). If (p,x,y) satisfies Fgy
of type (Nf, %, Dgne) then p,k,y & Q for all attackers Q of extended type
({Zo}a%u{ni};dKadEnc)'

The theorem says that the redefined Dolev-Yao condition holds.

Theorem 3. If & guarantees static non-repudiation then & guarantees dynamic
non-repudiation.

Example 2. Protocol 1. The encoding with annotations of the protocol by Ced-
erquist, Corin, and Dashti introduced in Example 1 becomes:

let X C Sin (Vj:iEX [AK,‘][i)(Vﬁ: TTP)(
liexljex (v SKij) (v Hij) (v Mij) ({Mij} sk, {[EOOm} . [from L;]).

[AK; ]y, -
(;xEORM;;).decrypt xEORM;; as {\{|E00M\};’Ki,]li [from Ii]\}[“/;fmj

[check {|[EOOu|}] in (SKi)).
(;xEORK;;).decrypt xEORK;; as {|I;, H;;, SKij; }
|ieX|j€X !(;XEnMSgi_i’XEOOMU)' Wi
decrypt xEOOM;; as {|1j,TTP;XH:‘_/',XTTP‘}[XKHG [check xH;;] in
({\xEOOM,-j\}EZjK_,]L [from I;]).(;xSK;;).
1
decrypt xEnMsg,-j as {)CMSg,'j}XS[(,.j in <{|1,'7)CHZ']',XSK,‘_]'|}>.O)

ujj

[Ak,*]lf [check H;j, SK;;] in O

where EOOy = 1;, TTP,Hj;, {|s1<,-,»,1,~|}?;/”ﬂm [from 0]

Protocol 2 (Zhou-Gollmann [14]):

A—B:  fvko,B,L,C,NRO
B—A: fNRR,A,L,NRR
A—TTP: fep,B,L,K,subK

B —TTP: fcon,A,B,L,K,conK
A< TTP: feon,A,B,L K, conK

The result of the analysis of Protocol 1 shows that a possible flaw may arise. In fact,
it does not use labels to identify the session, and this is why our analysis says that



12 Mayla Bruso and Agostino Cortesi

this protocol does not guarantee non-repudiation property. However the protocol is
correct, because of an implicit additional assumption on the uniqueness of the keys,
which prevents from replay attacks. On the other side, Protocol 2 passes the analysis
and this guarantees that it is secure with respect to non-repudiation.

5 Conclusions and Future Works

This paper extends the work by M. Buchholtz and H. Gao who defined a suite of
analyses for security protocols, namely authentication, confidentiality, freshness,
simple and complex type flaws. The annotations we introduce allow to express non-
repudiation also for part of the message: this allow to tune the analysis focussing
on relevant components. It results that the CFA framework developed for the pro-
cess calculus LYSA can be extended to security properties by identifying suitable
annotations, thus re-using most of the theoretical work.

References

1. Bella, G., Paulson, L.C.: Mechanical proofs about a non-repudiation protocol. In: TPHOLO1,
volume 2152 of LNCS, pp. 91-104. Springer (2001)

2. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation of security
protocols. In: Journal of Computer Security, pp. 347-390 (2005)

3. Braghin, C., Cortesi, A., Focardi, R.: Information flow security in boundary ambients. Inf.
Comput. 206(2-4), 460-489 (2008)

4. Bruso, M., Cortesi, A.: Non-repudiation analysis wusing LYSA with anno-
tations, CS Tech. Report, Univ. Ca’ Foscari. Tech. rep. (2008). URL
http://www.unive.it/nqcontent.cfm?a_id=5144#rapporti08

5. Buchholtz, M., Lyngby, K.: Automated analysis of security in networking systems. ph. d.
thesis proposal. available from http://www.imm.dtu.dk/ mib/thesis. Tech. rep. (2004)

6. Cederquist, Corin, Dashti: On the quest for impartiality: Design and analysis of a fair non-
repudiation protocol. In: ICIS, LNCS (2005)

7. Dolev, D., Yao, A.C.: On the security of public key protocols. Tech. rep., Stanford, CA (1981)

8. Gao, H.: Analysis Of Protocols By Annotations. Ph. D. Thesis, Informatics and Mathematical
Modelling, Technical University of Denmark (2008)

9. Gollmann, D.: Computer security. John Wiley & Sons, Inc., New York, NY, USA (1999)

10. Kremer, S., Raskin, J.F.: A game-based verification of non-repudiation and fair exchange pro-
tocols. In: Journal of Computer Security, pp. 551-565. Springer-Verlag (2001)

11. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag New
York, LLC (1999)

12. Schneider, S.: Formal analysis of a non-repudiation protocol. In: 11th IEEE Computer Secu-
rity Foundations Workshop, p. 54 (1998)

13. Schneider, S., Holloway, R.: Security properties and csp. In: IEEE Symp. Security and Privacy,
pp. 174-187. IEEE Computer Society Press (1996)

14. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. IEEE Computer Society Press (1996)

15. Zhou, J., Gollmann, D.: Evidence and non-repudiation. J. Netw. Comput. Appl. 20(3), 267-
281 (1997). DOI http://dx.doi.org/10.1006/jnca.1997.0056

16. Zhou, J., Gollmann, D.: Towards verification of non-repudiation protocols. In: Proceedings of
International Refinement Workshop and Formal Methods Pacific. Springer-Verlag (1998)



