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Abstract For relational databases, controlled query evaluation is an effective infer-

ence control mechanism preserving confidentiality regarding a previously declared

confidentiality policy. Implementations of controlled query evaluation usually lack

efficiency due to costly theorem prover calls. Suitably constrained controlled query

evaluation can be implemented efficiently, but is not flexible enough from the per-

spective of database users and security administrators. In this paper, we propose an

optimized framework for controlled query evaluation in relational databases, being

efficiently implementable on the one hand and relaxing the constraints of previous

approaches on the other hand.

1 Introduction

Protection of sensible information is an important issue in modern database applica-

tions. The information to be protected has to be suitably declared by the “owner” of

the information or a security administrator. In this context, it is important to differ-

entiate between data, which is always explicitly represented in a database instance,

and information, which can also be obtained by applying semantics to the data. E. g.,

the information that Smith has an account balance of $ 15,000 can be an explicit part

of the instance of a bank database, or it can be inferred, e. g., by combining the facts

“Smith has the account 12345” and “The account 12345 has a balance of $ 15,000”.

Consequently, it may not be sufficient to protect only data but possibly also un-

wanted information flows have to be avoided. Thus, mechanisms only regulating

the access to data may not be adequate to enforce desired protection goals.

Among other approaches, controlled query evaluation (CQE) [4] is an effective

method for protecting sensible information as declared by a confidentiality policy
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(hereafter called “policy” for short). This method checks whether the true answer

to a query together with the a priori knowledge of the user enables the user to infer

any information being protected by the policy and, if necessary, modifies the answer

to the query, either by lying (i. e., returning the negated answer), or by refusal (i. e.,

returning no answer), or by a combination of both.

CQE is a highly flexible approach that guarantees preservation of confidentiality

for logic-oriented information systems. Considering relational databases, CQE is

also applicable in theory, but the underlying first-order logic of relational databases

is undecidable in general. For employing CQE in practical applications it is there-

fore necessary to restrict the first-order logic used for expressing database queries

and policies to a decidable fragment. Nevertheless, real database systems employ-

ing CQE would lack efficiency, because they had to rely on theorem prover calls

which are known to be costly in general. These theorem prover calls result from the

need of computing the inferences a database user can draw by means of his a pri-

ori knowledge about the database system and the answers to his queries. Avoiding

theorem prover calls at all requires to substantially restrict the expressiveness of the

query language and the policy language.

In this paper, we propose a framework that principally accepts every first-order

logic sentence as a query (as long as decidability is guaranteed) but (as far as possi-

ble) eliminates costly theorem prover calls. More specifically, in Sect. 2, we briefly

address approaches for the inference problem in relational databases in general and

CQE in particular; in Sect. 3, we identify situations that allow for static inference

control without theorem prover calls and propose flexible policy and query lan-

guages; in Sect. 4, we present SQL implementations of our static inference control;

in Sect. 5, we develop an approach for an optimization framework based on the re-

sults of Sect. 3; in Sect. 6, we conclude and point out directions for future research.

2 Inference Control in Relational Databases

Security in relational databases in general and confidentiality in particular has been

investigated from various perspectives. Early approaches, e. g. [16, 18, 22], focus on

access control, which operates on the actual data and attaches access or classification

information directly to this data.

Discretionary access control (DAC), whose general concept is described in pop-

ular textbooks on computer security, mainly suffers from the responsibility of the

“data owner” or the security administrator to correctly assign access rights. Infor-

mation disclosure by inferences cannot be controlled by DAC in general.

Mandatory access control (MAC) employs system-wide policies on classified

data according to a security model; see, e. g., [20]. Among other approaches, mul-

tilevel secure databases, polyinstantiation, and various extensions have been pro-

posed to enforce MAC; see, e. g., [13, 17, 18, 19]. MAC is principally able to pre-

vent unwanted information flows caused by sequences of read and write operations.

Several authors propose entire frameworks, design processes, or comprehensive re-
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quirements analyses for secure database systems, e. g., [2, 12]. A comprehensive

overview of the inference problem in databases, the area of data mining, and Web-

based applications can be found in the work of Farkas/Jajodia [15]. Further work on

prevention of harmful inferences in databases has been published by Brodsky et al.

[11] and Dawson et al. [14].

The first ideas of protecting information in databases according to security poli-

cies by giving lied answers or by refusing to answer at all arise from the work

of Bonatti/Kraus/Subrahmanian [10] and Sicherman/de Jonge/van de Riet [21],

respectively. These ideas are combined by Biskup/Bonatti to CQE, elaborated at

first for logical databases [4, 6, 7] and extended for relational databases in [5].

Biskup/Embley/Lochner [8] propose a static form of CQE.

Beginning with some formal concepts, we now roughly sketch CQE in relational

databases. A relation schema describes the structure of a relation in a relational

database and is denoted by hR;U ;Σi where R is the relation symbol, U is a finite

set of attributes, and Σ is a finite set of local semantic constraints. We assume Σ to

be a minimal cover (see [1]) of functional dependencies. An instance r of a relation

schema is considered as the “contents” of the relation; from a (first-order-)logic-

oriented perspective (see [1]), it is a finite Herbrand interpretation of the schema

satisfying Σ and considering R as a predicate. With µ = R(c1; : : : ;cn) we denote a

tuple; each ci is element of an infinite set of constants Const and n = jU j. Finally,

j=M denotes the satisfaction relation between an interpretation and a formula, so if µ

is element of r, we write r j=M µ . IfA ;B �U are attribute sets, r is said to satisfy

the functional dependency (fd) A !B if any two tuples of r agreeing on the A

values also agree on theB values. An attribute setK is a key of RS if Σ j=K !U
andK is minimal with this property. RS is in object normal form (ONF) if it has a

unique key and for each fd A !B, logically implied by Σ and with B 6� A , A

corresponds to this key or a superset of it [3].

Database queries are expressed in a suitable fragment of the relational calculus,

meaning that each query must have a prenex normal form with prefix either 8� or

9�; so, quantifiers may not be mixed. This condition guarantees that we do not leave

the Bernays-Schönfinkel class of decidable first-order formulas [5]. Moreover, we

concentrate on closed queries, i. e., we may not use free variables. The ordinary

evaluation of a query Φ in an instance r is defined by eval�(Φ)(r) := if r j=M

Φ then Φ else :Φ . Controlled query evaluation (CQE) deviates from this

ordinary evaluation if any of the previously declared potential secrets is going to be

disclosed by the database user. A potential secret Ψ is a sentence from the policy

language. If r 6j=M Ψ , the user may learn that Ψ is false in r; if, however, r j=M Ψ ,

the user may not learn that Ψ is actually true. The (finite) set pot sec, consisting

of potential secrets, denotes a confidentiality policy being known to the user. The a

priori user knowledge log0 is assumed to comprise Σ and possibly further sentences

being true in r. It is required that log0 6j=Ψ for each Ψ 2 pot sec and r j=M log0 for

the database instance r.

CQE for known potential secrets enforced by (improved) refusal is defined by

cqe(Q; log0)(r;pot sec) := h(ans1; log1);(ans2; log2); : : :i for a query sequence Q =
hΦ1;Φ2; : : :i. It uses a censor function to determine the returned answer ansi (with



4 Joachim Biskup, Jan-Hendrik Lochner, and Sebastian Sonntag

mum denoting a refusal) and the current user knowledge logi for each query, and

preserves confidentiality in the sense of the following Def. 1 (see [6, 7]).

censor(pot sec; log;Φ) := (1)

(exists Ψ)(Ψ 2 pot sec and (log[fΦg j=Ψ or log[f:Φg j=Ψ))

ansi := if logi�1 j= eval�(Φi)(r) then eval�(Φi)(r)

else if censor(pot sec; logi�1;Φi) then mum else eval�(Φi)(r)

logi := if censor(pot sec; logi�1;Φi) then logi�1

else logi�1[feval�(Φi)(r)g:

Definition 1 (Confidentiality preservation). A CQE is confidentiality preserving

for pot sec if for every finite prefix Q0 of a query sequence Q the following holds:

For every Ψ 2 pot sec, for every instance r1, and for every a priori knowledge log0

there exists an instance r2 with r2 j=M log0 and

(1) cqe(Q0; log0)(r1;pot sec) = cqe(Q0; log0)(r2;pot sec) and

(2) eval�(Ψ)(r2) = :Ψ .

A CQE is confidentiality preserving if it is confidentiality preserving for all possible

confidentiality policies.

The above CQE definition is highly flexible, since it works for queries and se-

crets expressed in any compact logic with a suitably defined “model-of” operator.

However, a general drawback of this approach is the (costly) computation of infer-

ences each time the censor is invoked. The censor decision (1) can be reduced to a

NEXPTIME complete satisfiability problem.

Biskup/Embley/Lochner [8] identify a parameter configuration allowing for sim-

pler inference computations in form of pattern matching. Their approach roughly

imposes the following restrictions to database schema, query language and pol-

icy language. The database schema has to be in ONF. The query language Lq

is restricted to existential-R-sentences, i. e., closed formulas of the positive exis-

tential calculus [1] without logical connectives. Each query has the form Φ �
(9X1) : : :(9Xm)R(v1; : : : ;vn) with vi = X j or vi 2 Const and each Xi occurring ex-

actly once in v1; : : : ;vn. The policy language Lps is also restricted to existential-R-

sentences; moreover, each potential secret Ψ must protect a fact of the schema,

i. e., the constants in Ψ must instantiate the unique key and at most one addi-

tional attribute. E. g., a schema with U = fA;B;Cg and Σ = fA ! BCg has the

fact schemas A, AB, and AC; thus, (9XB)(9XC)R(cA;XB;XC), (9XC)R(cA;cB;XC),
and (9XB)R(cA;XB;cC) are proper potential secrets (with XB;XC being variables and

cA;cB;cC;cD 2 Const). These restrictions lead to the following static censor that is

independent of the user log, which therefore needs not to be considered any longer.

censorstat(pot sec;Φ) := (exists Ψ)(Ψ 2 pot sec and Φ j=Ψ) (2)

We denote the CQE using censorstat by cqestat. In [8] it is proved that cqestat pre-

serves confidentiality in the sense of Def. 1.
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Biskup/Lochner [9] propose an algorithm with logarithmic runtime that can eas-

ily be adapted to cqestat. This algorithm performs a pattern matching between the

query Φ and each potential secret Ψ . If and only if Φ and (at least one) Ψ agree on

each constant in Ψ , Φ j=Ψ holds and mum is returned.

3 Optimizing Static Inference Control for Closed Queries

Unfortunately, we achieve the confidentiality preserving static inference control in-

troduced in Sect. 2 only at the expense of the expressiveness of the underlying lan-

guages. The objective of this section is to identify relaxations of the restrictions

while keeping up static inference control.

Inference control in relational databases in general and CQE in particular offer a

variety of parameters. We confine ourselves to the following: Policies are supposed

to consist only of potential secrets and to be known to database users. We believe

that functional dependencies are the most important and prevalent type of (local)

semantic constraints and therefore neglect other types of local semantic constraints,

and global semantic constraints (like inclusion dependencies) as well. Thus, the

relations of a database are independent of each other; so, for simplicity, we assume

a database to consist of exactly one relation schema. We consider a single database

user (besides the security administrator) and concentrate on the (improved) refusal

method for enforcing policies. We assume languages L max
q and L max

ps as “upper

bounds” for the query language and the policy language, respectively. Each element

of L max
q is a sentence of the form 9�ϕ with 9� being a sequence of existentially

quantified variables and ϕ being a quantifier-free first-order formula, i. e., a Boolean

combination of R-atoms. Each existentially quantified variable is supposed to occur

only once in ϕ . Elements of L max
ps may additionally contain free variables. Again,

each free variable is supposed to occur only once in a formula fromL max
ps .

For illustrating our investigations we hereafter refer to the following example.

Example 1. A (fictitious) group of banks maintains a common database for admin-

istrating information about the account holders. For each combination of bank and

account number the account holder and the balance of the account are stored in

the database. Let the schema of this database be given by hbank db;U ;Σi with

U = fbank; acc no;acc holder;balanceg and Σ = fbank;acc no ! acc holder;
balanceg. Obviously, bank db is in ONF with the key K = fbank;acc nog.

This yields the set of fact schemas fs(bank db) = ffbank;acc nog;fbank;acc no;
acc holderg;fbank; acc no;balancegg. Consider this instance of bank db:

bank db bank acc no acc holder balance

Bank of Springfield 123654 Smith $ 15,000

Gotham City Bank 213456 Jones $ 2,500

Metropolis Financial Group 321645 Parker $ 100

Gotham City Bank 312564 Smith $ 2,500

Bank of Springfield 213456 Green $ 15,000
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Suppose that the group of banks outsources the statistical evaluation of their ac-

counts to an external service provider. In doing so, certain information should be

kept secret, e.g., the association between an account number and the corresponding

account holder. Thus, a policy pot sec is defined and enforced by a CQE.

3.1 The Query Language

In [8], the query language Lq (� L max
q ) is introduced, which is restricted to

existential-R-sentences. With this language it is possible to ask for (full) tuples or

for subtuples (i. e., parts of tuples) only; thus we can express queries like

Φ1 � bank db(Gotham City Bank;213456;Jones;2500) and

Φ2 � (9Xacc)(9Xbal)bank db(Bank of Springfield;Xacc;Parker;Xbal).
Adding disjunction toLq may cause problems as shown by the following example.

Example 2. Consider the following policy, meaning that the user may not learn that

the Bank of Springfield maintains an account with the number 123654:

pot sec = f(9Xhold)(9Xbal)bank db(Bank of Springfield;123654;Xhold;Xbal)g.

The user with the a priori knowledge log0 = /0 now poses two queries using Lq

enhanced with disjunction:

Φ1 � (9Xhold)(9Xbal)bank db(Bank of Springfield;123654;Xhold;Xbal)_
(9Xbank)(9Xacc)(9Xbal)bank db(Xbank;Xacc;Scott;Xbal)

Φ2 � (9Xbank)(9Xacc)(9Xbal)bank db(Xbank;Xacc;Scott;Xbal)
The CQE with the censor (2) answers Φ1 as well as Φ2 correctly because neither of

them directly implies the potential secret. However, since Φ1 is true and Φ2 is false

in bank db, the combination of both answers implies the secret.

The sketched problem is inherent to disjunctive queries: If Φ1_ : : :_Φn is known

to be true in an instance r and the formulas Φ1; : : : ;Φn�1 are known to be false in r,

then Φn must be true in r. Consequently, enhancements ofLq must prevent disjunc-

tive structures in queries if static inference control is desired. We propose a query

language L cn
q by adding conjunction and negation such that disjunction cannot be

simulated. This is achieved by restricting negation to existential-R-sentences.

Definition 2 (Query language with conjunction and negation). The query lan-

guage L cn
q (� L max

q ) is inductively defined as follows: (1) If Φ 2 Lq then Φ 2
L cn

q ; (2) if Φ 2Lq then :Φ 2L cn
q ; (3) if Φ1;Φ2 2L

cn
q then Φ1^Φ2 2L

cn
q .

An answer to a query from L cn
q gives the user an “all or nothing” information:

If each conjunct is true in the database instance, then the whole query is true; oth-

erwise, the whole query is false. To provide a more differentiated answer in case

the query is false, we suggest to consider a query Φ � Φ1 ^ : : :^Φn from L cn
q as

a sequence hΦ1; : : : ;Φni of queries from Lq. Thus, the answer to Φ is a sequence

hans1; : : : ;ansni. The resulting censor for queries fromL cn
q is denoted by censorcn

stat.

Theorem 1. The CQE induced by censorcn
stat, hereafter called cqecn

stat, preserves con-

fidentiality in the sense of Def. 1.
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3.2 The Policy Language

3.2.1 Revising the definition of fact schemas

According to Sect. 2, the security administrator must restrict to facts when declar-

ing a policy. Recall fs(bank db) from Example 1: For protecting the association

between an account number and the account holder, also the corresponding bank

has to be protected.

In the following, we present an alternative definition of fact schemas leading

to a greater flexibility in declaring policies while still guaranteeing confidentiality

when these policies are enforced. This definition is driven by two ideas: It suffices

to include a subset of the key into a fact schema; each single attribute suits as fact

schema—whether or not it is a key attribute.

Definition 3 (Alternative fact schemas). Let hR;U ;Σi be a relation schema in

ONF. The left-hand side of an fd σ 2 Σ is denoted by lhs(σ). The alternative set of

fact schemas of RS is then defined by

fsalt(RS) = fA jA 2U g[fA jexists σ 2 Σ :A � lhs(σ)g[

fA B jexists σ 2 Σ such that A � lhs(σ) and B 2U nlhs(σ)g:

Theorem 2. When exchanging the fact schema definition fs(RS) by fsalt(RS) from

Def. 3, cqestat still preserves confidentiality in the sense of Def. 1.

Reconsidering Example 1, we get the following set of alternative fact schemas:

fsalt(bank db) = fs(bank db)[ffbankg; facc nog; facc holderg;fbalanceg;
fbank;acc holderg;fbank;balanceg;facc no; acc holderg;facc no;balancegg.

It is now possible to protect the association between an account number and the

account holder without protecting the bank.

In general, for a relation schema in ONF with n attributes and a key of size

k, the original facts definition yields n� k+ 1 different fact schemas, whereas the

alternative definition yields 2k(n� k+1)�1 different facts schemas.

3.2.2 Introducing disjunction

Like the query language Lq, also the policy language Lps(� L
max

ps ) in [8] is re-

stricted to existential-R-sentences. Adding negation or conjunction to Lps possibly

enables the user to disclose secrets as illustrated by the following examples (which

are based on Example 1). We thus propose a policy language by adding disjunction.

Example 3. Regarding negation, we consider the following policy and query:

pot sec = f:(9Xbal)bank db(Bank of Springfield;213456;Jones;Xbal)g
Φ � (9Xbal)bank db(Bank of Springfield;213456;Green;Xbal)

Obviously, Φ is answered correctly by cqestat. However, by employing the a priori

knowledge Σ , the user knows that each instantiation of (bank;acc no) is unique.

The correct answer to Φ thereby implies the potential secret.
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Example 4. Regarding conjunction, we consider the following policy and queries:

pot sec = f (9Xah)(9Xbal)bank db(Bank of Springfield;123654;Xah;Xbal)^
(9Xah)(9Xbal)bank db(Gotham City Bank;312564;Xah;Xbal)g

Φ1 � (9Xah)(9Xbal)bank db(Bank of Springfield;123654;Xah;Xbal)
Φ2 � (9Xah)(9Xbal)bank db(Gotham City Bank;312564;Xah;Xbal)

Obviously, cqestat answers both Φ1 and Φ2 correctly. However, combining both an-

swers implies the potential secret.

Definition 4 (Disjunctive policy language). The policy languageL d
ps (�L

max
ps ) is

inductively defined as follows: (1) If Ψ 2 Lps then Ψ 2 L d
ps; (2) if Ψ1;Ψ2 2 L

d
ps

then Ψ1_Ψ2 2L
d

ps.

Theorem 3. The CQE emerging from cqestat by substitutingLps withL d
ps, hereafter

denoted with cqed
stat, preserves confidentiality in the sense of Def. 1.

3.2.3 Introducing free variables

So far, elements of the policy language refer to tuples, subtuples, or disjunctions of

(sub-)tuples. For practical purposes, this restriction might be unsatisfactory. Recon-

sider the schema from Example 1 and suppose a large instance of bank db. If the

Bank of Springfield wants to keep the connections between account numbers and

account holders confidential, the security administrator has to add formulas of the

form (9Xbal)bank db(Bank of Springfield;N;H; Xbal) to the policy for every single

constant combination of account number N and account holder H actually occurring

in bank db. This is tedious and compromises the confidentiality: If the user knows

that each actually occurring instantiation of a set of attributes is protected, he can

simply determine these secrets from the policy (which is supposed to be public).

Protecting every constant combination of N and H (whether occurring in bank db

or not) requires to introduce free variables, since the underlying universe is sup-

posed to be infinite. More specifically, we denote the policy language emerging

from Lps by introducing free variables with L
f

ps. An element from L
f

ps is de-

noted by Ψ(V) with V = (X1; : : : ;Xl) being the vector of free variables occurring

in Ψ(V). A potential secret with free variables Ψ(V) 2L f
ps is expanded to the (in-

finite) set ex(Ψ(V)) �Lps by substituting the free variables V with every possible

constant combination. An element from ex(Ψ(V)) is denoted by Ψ(c) with c be-

ing a vector of constants. The expansion of a policy pot sec � L f
ps is defined by

ex(pot sec) =
S

Ψ(V)2pot sec ex(Ψ(V)) �Lps. We now adapt the definition of the

static censor (2) and the definition of confidentiality preservation toL
f

ps:

censor
f
stat(pot sec;Φ) := (exists Ψ(c))(Ψ(c) 2 ex(pot sec) and Φ j=Ψ(c))

Definition 5 (Confidentiality preservation forL
f

ps). This definition emerges from

Def. 1 by replacing each Ψ with Ψ(c) and Ψ 2 pot sec with Ψ(c) 2 ex(pot sec).
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Theorem 4. The CQE induced by censor
f
stat, hereafter called cqe

f
stat, preserves con-

fidentiality in the sense of Def. 5.

Unfortunately, censor
f
stat has no straightforward algorithmic interpretation, since

it has to check the elements of an infinite policy. We therefore propose an alternative

censor, censor
f ;alt
stat , which is defined in an algorithmic way and prove it equivalent

to censor
f
stat. In the following, χ[Ai] denotes the instantiation of attribute Ai in the

existential-R-sentence χ , e. g., if Ψ(X f ) � (9Xb)R(a;Xb;X f ), then Ψ(X f )[A1] = a,

Ψ(X f )[A2] = Xb, and Ψ(X f )[A3] = X f .

censor
f ;alt
stat (pot sec;Φ) := (exists Ψ(V))(Ψ(V) 2 pot sec and for all A 2U :

if Ψ(V)[A] 2 Const; then Φ [A] =Ψ(V)[A] and (3)

if Ψ(V)[A] is a free variable, then Φ [A] 2 Const) (4)

Lemma 1. Let Φ 2 Lq be a query and Ψ(V) 2 L f
ps a potential secret with free

variables. Then, there exists a vector of constants c with Ψ(c)2 ex(Ψ(V)) such that

Φ j=Ψ(c) if and only if for all attributes A 2U (3) and (4) hold.

Theorem 5. The CQE induced by censor
f ;alt
stat , hereafter called cqe

f ;alt
stat , preserves

confidentiality in the sense of Def. 5.

Finally, we justify that L d
ps and L

f
ps are “compatible”. Consider the policy lan-

guage L
df

ps which is enhanced with disjunction and free variables. Following the

proof of Theorem 3, under the given assumptions, static CQE is equivalent on

pot sec = fΨ1; : : : ;Ψlg and pot sec0 = fΨ1 _ : : :_Ψlg with Ψi 2 Lps. The same

argumentation can be applied if Ψi 2L
f

ps. Thus, for each policy pot sec�L df
ps we

can break up each disjunctive secret into atomic secrets.

3.3 Limits of the Optimization

In Subsect. 3.1, we pointed out that using disjunction in queries can be harmful

regarding confidentiality preservation. In particular, disjunctive structures can be

interpreted as implicative structures, e. g., χ1_ χ2 � :χ1 =) χ2. If a purely static

CQE is desired, disjunctive structures must be avoided in queries at all.

Regarding facts, Def. 3 requires each policy element to protect either a single

attribute value or at least one key attribute value together with at most one non-key

attribute value. The combination of two or more non-key attribute values could be

disclosed with separate queries, each of which asking for one of the non-key at-

tribute values in combination with the key value. E. g., consider a key K and two

non-key attributes N1 and N2; if an element of the policy protects a value combi-

nation of K N1N2, then the user can first ask for the value combination K N1 and

later for the value combinationK N2. Considered separately, neither of the queries
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discloses a potential secret; however, exploiting the uniqueness property of the key

leads to the disclosure of the value combination ofK N1N2.

As demonstrated by Examples 3 and 4 in Subsect. 3.2, also the policy language

cannot be enhanced arbitrarily. Negative potential secrets possibly enable the user

to employ fds and conjunctive secrets can be disclosed “piece by piece”. Thus, only

disjunction can be added to the policy language without problems.

4 Implementing Static Inference Control in SQL

Implementations of static censors do not need external theorem provers but can

utilize the functionality of the database management system. We assume that the

potential secrets are encoded as tuples of a classification instance R ps by replacing

existentially quantified variables with the “new” symbol #. E. g., Ψ � (9X)R(a;X)
is represented in R ps by R(a;#). Let Φ 2Lq be a query, A 1; : : : ;A l the attributes

being instantiated by constants a 1; : : : ;a l in Φ , B 1; : : : ;B m the attributes being

instantiated by existentially quantified variables in Φ , and pot sec �Lps a policy.

Elementary considerations indicate that Φ j= Ψ (as needed for censorstat) holds

for some Ψ 2 pot sec if and only if the following SQL statement yields a number

greater than zero (adaptions for censorcn
stat and censord

stat are straightforward):

SELECT COUNT(*) FROM R_ps

WHERE (A_1 = ’a_1’ OR A_1 = ’#’) AND (A_2 = ’a_2’ OR A_2 = ’#’)

AND ... AND (A_l = ’a_l’ OR A_l = ’#’)

AND (B_1 = ’#’) AND (B_2 = ’#’) AND ... AND (B_m = ’#’)

Considering censor
f ;alt
stat , we encode free variables in R ps by a “new” symbol �.

E. g., Ψ � (9Xb)R(a;Xb;X f ) is represented in R ps by R(a;#;�). Let Φ be defined

as above, and pot sec �L f
ps a policy. Φ j=Ψ 0 holds for some Ψ 0 2 ex(pot sec) if

and only if the following SQL statement yields a number greater than zero:

SELECT COUNT(*) FROM R_ps

WHERE (A_1 = ’a_1’ OR A_1 = ’#’ OR A_1 = ’�’)

AND ... AND (A_l = ’a_l’ OR A_l = ’#’ OR A_1 = ’�’)

AND (B_1 = ’#’) AND (B_2 = ’#’) AND ... AND (B_m = ’#’)

5 Towards an Optimized Inference Control System

We can put together the results of Sect. 3, i. e., substituting Lq with L cn
q and Lps

withL
df

ps , exchanging fs(RS) by fsalt(RS), and sequencing conjunctions; the result-

ing CQE, denoted by cqe
opt
stat, preserves confidentiality in the sense of Def. 5.

Especially for a database user, the query languageL cn
q is still unsatisfactory. To

improve the situation, we introduce an algorithm that principally accepts each query

Φ from L max
q but, if necessary, transforms Φ into a “stronger” query Φcn 2L

cn
q
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with Φcn j= Φ (but possibly Φ 6j= Φcn). Using this algorithm, we sketch an interac-

tive system, providing expressive policy and query languages on the one hand, and

(if possible) offering static inference control on the other hand. The idea to trans-

form a “harmful” query into a “harmless” query is related to the concept of query

modification, introduced by Stonebraker/Wong [22]. While query modification suit-

ably appends a conjunct to each query, our approach rearranges the given syntactic

structure of the query. Our algorithm expects a query Φ 2 L max
q , an a priori user

knowledge log0, an instance r, and a policy pot sec as input. It works as follows:

(1) Convert Φ into prenex disjunctive normal form ΦPDNF � (9X1) : : :(9Xl)
(
Wm

i=1 (
Vni

j=1 ϕ j)), where ϕ j denotes a (possibly negated) atomic formula.

(2) Rearrange ΦPDNF into ΦDNF �
Wm

i=1(
Vni

j=1(9X j1) : : :(9X jl )ϕ j), where X jk oc-

curs in ϕ j. This step is correct because of the assumption that each existentially

quantified variable occurs only once in the formula.

(3) Transform ΦDNF into Φcn :�
Vm

i=1(
Vni

j=1(9X j1) : : :(9X jl )ϕ j). Note that Φcn 6�

Φ . However, it can easily be verified that Φcn j= ΦDNF and thus Φcn j= Φ .

(4) Return cqecn
stat(hΦcni; log0)(r;pot sec).

An interactive inference control system now roughly proceeds in two phases. The

database instance r is assumed to be set up in advance. Initially, the system starts

in “static inference control mode” (SIC mode), which means that the static censors

are used when answering user queries (analogously, in “dynamic inference control

mode” (DIC mode), only the non-static censors are used).

Policy declaration phase: The security administrator declares pot sec= fΨ1; : : : ;

Ψmg with Ψi 2L
max

ps . If pot sec contains a Ψi =2L df
ps , a static inference control can-

not be performed later on. For every such Ψi, the security administrator can choose

between the following actions: a) withdraw Ψi; b) affirm Ψi; in this case, the system

completely switches to DIC mode.

Query phase (usually performed repeatedly): A user sends a query Φ 2L max
q to

the database. If the system is in DIC mode, Φ is answered. If the system is in SIC

mode and Φ =2L cn
q , the user can choose between the following actions: a) withdraw

Φ ; b) affirm Φ ; in this case, the system completely switches to DIC mode and Φ

is answered; c) accept the rewrite suggestion Φcn (according to the above sketched

algorithm); in this case, Φcn is answered instead of Φ .

6 Conclusion and Future Work

We investigated efficient inference control enforcing policies for closed queries in

relational databases by identifying situations in which it is possible to apply static

CQE and by presenting suitable SQL implementations. We proposed an interactive

inference control system, issuing database users and security administrators with

flexible languages for expressing queries and potential secrets. These languages

have been enhanced compared to the static CQE in [8] while it is still possible to

employ static censors guaranteeing feasible runtime.
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However, our approach is not meant to be an exhaustive optimization of CQE in

relational databases, but should be seen as a step in this direction. Further develop-

ment could deal with global semantic constraints (such as inclusion dependencies),

other types of local semantic constraints (such as multivalued dependencies), free

variables in the query language to express open queries, and alternative CQE en-

forcement methods (lying and combined method; see [4]).
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