
Automating Access Control Logics in Simple
Type Theory with LEO-II ∗

Christoph Benzmüller

Abstract Garg and Abadi recently proved that prominent access control logics can
be translated in a sound and complete way into modal logic S4. We have previously
outlined how normal multimodal logics, including monomodal logics K and S4, can
be embedded in simple type theory and we have demonstrated that the higher-order
theorem prover LEO-II can automate reasoning in and about them. In this paper we
combine these results and describe a sound (and complete) embedding of different
access control logics in simple type theory. Employing this framework we show that
the off the shelf theorem prover LEO-II can be applied to automate reasoning in and
about prominent access control logics.

1 Introduction

The provision of effective and reliable control mechanisms for accessing resources
is an important issue in many areas. In computer systems, for example, it is impor-
tant to effectively control the access to personalized or security critical files.

A prominent and successful approach to implement access control relies on logic
based ideas and tools. Abadi’s article [2] provides a brief overview on the frame-
works and systems that have been developed under this approach. Garg and Abadi
recently showed that several prominent access control logics can be translated into
modal logic S4 [18]. They proved that this translation is sound and complete.

We have previously shown [10] how multimodal logics can be elegantly embed-
ded in simple type theory (STT) [15, 5]. We have also demonstrated that proof prob-
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lems in and about multimodal logics can be effectively automated with the higher-
order theorem prover LEO-II [12].

In this paper we combine the above results and show that different access control
logics can be embedded in STT , which has a well understood syntax and semantics
[22, 4, 3, 9].

The expressiveness of STT furthermore enables the encoding of the entire trans-
lation from access control logic input syntax to STT in STT itself, thus making it
as transparent as possible. Our embedding furthermore demonstrates that prominent
access control logics as well as prominent multimodal logics can be considered and
treated as natural fragments of STT .

Using our embedding, reasoning in and about access control logic can be au-
tomated in the higher-order theorem prover LEO-II. Since LEO-II generates proof
objects, the entire translation and reasoning process is in principle accessible for
independent proof checking.

This paper is structured as follows: Section 2 reviews background knowledge
and Section 3 outlines the translation of access control logics into modal logic S4
as proposed by Garg and Abadi [18]. Section 4 restricts the general embedding
of multimodal logics into STT [10] to an embedding of monomodal logics K and
S4 into STT and proves its soundness. These results are combined in Section 5 in
order to obtain a sound (and complete) embedding of access control logics into
STT . Moreover, we present some first empirical evaluation of the approach with the
higher-order automated theorem prover LEO-II. Section 6 concludes the paper.

2 Preliminaries

We assume familiarity with the syntax and semantics and of multimodal logics and
simple type theory and only briefly review the most important notions.

The multimodal logic language ML is defined by

s, t ::= p|¬s|s∨ t|2r s

where p denotes atomic primitives and r denotes accessibility relations (distinct
from p). Other logical connectives can be defined from the chosen ones in the usual
way.

A Kripke frame for ML is a pair 〈W,(Rr)r∈I:={1,...,n}〉, where W is a non-empty set
(called possible worlds), and the Rr are binary relations on W (called accessibility
relations). A Kripke model for ML is a triple 〈W,(Rr)r∈I , |=〉, where 〈W,(Rr)r∈I〉 is
a Kripke frame, and |= is a satisfaction relation between nodes of W and formulas
of ML satisfying: w |= ¬s if and only if w 6|= s, w |= s∨ t if and only if w |= s or
w |= t, w |= 2r s if and only if for all u with Rr(w,u) holds u |= s. The satisfaction
relation |= is uniquely determined by its value on the atomic primitives p. A formula
s is valid in a Kripke model 〈W,(Rr)r∈I , |=〉, if w |= s for all w ∈W . s is valid in a
Kripke frame 〈W,(Rr)r∈I〉 if it is valid in 〈W,(Rr)r∈I , |=〉 for all possible |=. If s is
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valid for all possible Kripke frames 〈W,(Rr)r∈I〉, then s is called valid and we write
|=K s. s is called S4-valid (we write |=S4 s) if it is valid in all reflexive, transitive
Kripke frames 〈W,(Rr)r∈I〉, that is, Kripke frames with only reflexive and transitive
relations Rr.

Classical higher-order logic or simple type theory STT [5, 15] is a formalism built
on top of the simply typed λ -calculus. The set T of simple types is usually freely
generated from a set of basic types {o, ι} (where o denotes the type of Booleans)
using the function type constructor →.

The simple type theory language STT is defined by (α,β ,o ∈T ):

s, t ::=
pα |Xα |(λXα sβ )α→β |(sα→β tα)β |(¬o→o so)o|(so∨o→o→o to)o|(Π(α→o)→o sα→o)o

pα denotes typed constants and Xα typed variables (distinct from pα ) . Complex
typed terms are constructed via abstraction and application. Our logical connectives
of choice are ¬o→o, ∨o→o→o and Π(α→o)→o (for each type α). From these connec-
tives, other logical connectives, such as ⇒,∧,⊥, and >, can be defined in the usual
way. We often use binder notation ∀Xα s and ∃Xα t for (Π(α→o)→o(λXα so)) and
¬(Π(α→o)→o(λXα ¬to)). We denote substitution of a term sα for a variable Xα in a
term tβ by [s/X ]t. Since we consider α-conversion implicitly, we assume the bound
variables of B avoid variable capture. Two common relations on terms are given by
β -reduction and η-reduction. A β -redex (λX s)t β -reduces to [t/X ]s. An η-redex
(λX sX) where variable X is not free in s, η-reduces to s. We write s=β t to mean s
can be converted to t by a series of β -reductions and expansions. Similarly, s=βη t
means s can be converted to t using both β and η .

Semantics of STT is well understood and thoroughly documented in the literature
[9, 3, 4, 22]; our summary below is adapted from Andrews [6].

A frame is a collection {Dα}α∈T of nonempty domains (sets) Dα , such that
Do = {T,F} (where T represents truth and F represents falsehood). The Dα→β

are collections of functions mapping Dα into Dβ . The members of Dι are called
individuals. An interpretation is a tuple 〈{Dα}α∈T , I〉 where function I maps each
typed constant cα to an appropriate element of Dα , which is called the denotation
of cα (the denotations of ¬, ∨ and Π are always chosen as intended). A variable
assignment φ maps variables Xα to elements in Dα . An interpretation 〈{Dα}α∈T , I〉
is a Henkin model (general model) if and only if there is a binary function V such
that Vφ sα ∈ Dα for each variable assignment φ and term sα ∈ L, and the following
conditions are satisfied for all φ and all s, t ∈ L: (a) Vφ Xα = φXα , (b) Vφ pα = I pα ,
(c) Vφ (sα→β tα) = (Vφ sα→β )(Vφ tα ), and (d) Vφ (λXα sβ ) is that function from Dα

into Dβ whose value for each argument z ∈ Dα is V[z/Xα ],φ sβ , where [z/Xα ],φ is
that variable assignment such that ([z/Xα ],φ)Xα = z and ([z/Xα ],φ)Yβ = φYβ if
Yβ 6= Xα .2

2 Since I¬, I∨, and IΠ are always chosen as intended, we have Vφ (¬s) = T iff Vφ s = F , Vφ (s∨
t) = T iff Vφ s = T or Vφ t = T , and Vφ (∀Xα so) = Vφ (Π α (λXα so)) = T iff for all z ∈ Dα we
have V[z/Xα ],φ so = T . Moreover, we have Vφ s = Vφ t whenever s=βη t.
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If an interpretation 〈{Dα}α∈T , I〉 is a Henkin model, the function Vφ is uniquely
determined. An interpretation 〈{Dα}α∈T , I〉 is a standard model if and only if for
all α and β , Dα→β is the set of all functions from Dα into Dβ . Each standard model
is also a Henkin model.

We say that formula A∈ L is valid in a model 〈{Dα}α∈T , I〉 if an only if Vφ A = T
for every variable assignment φ . A model for a set of formulas H is a model in which
each formula of H is valid.

A formula A is Henkin-valid (standard-valid) if and only if A is valid in ev-
ery Henkin (standard) model. Clearly each formula which is Henkin-valid is also
standard-valid, but the converse of this statement is false. We write |=ST T A if A is
Henkin-valid and we write Γ |=ST T A if A is valid in all Henkin models in which all
formulas of Γ are valid.

3 Translating Access Control Logic to Modal Logic

The access control logic ICL studied by Garg and Abadi [18] is defined by

s ::= p |s1 ∧ s2 |s1 ∨ s2 |s1 ⊃ s2 |⊥|>|A says s

p denotes atomic propositions, ∧ , ∨ , ⊃ , ⊥ and > denote the standard logi-
cal connectives, and A denotes principals, which are atomic and distinct from the
atomic propositions p. Expressions of the form A says s, intuitively mean that A
asserts (or supports) s. ICL inherits all inference rules of intuitionistic propo-
sitional logic. The logical connective says satisfies the following axioms:

` s ⊃ (A says s) (unit)
` (A says (s ⊃ t) ⊃ (A says s) ⊃ (A says t) (cuc)
` (A says A says s) ⊃ (A says s) (idem)

Example 1 (from [18]). We consider a file-access scenario with an administrating
principal admin, a user Bob, one file file1, and the following policy:

1. If admin says that file1 should be deleted, then this must be the case.
2. admin trusts Bob to decide whether file1 should be deleted.
3. Bob wants to delete file1.

This policy can be encoded in ICL as follows:

(admin says deletefile1) ⊃ deletefile1 (1.1)
admin says ((Bob says deletefile1) ⊃ deletefile1) (1.2)
Bob says deletefile1 (1.3)

The question whether file1 should be deleted in this situation corresponds to
proving deletefile (1.4), which follows from (1.1)-(1.3), (unit), and (cuc).

Garg and Abadi [18] propose the following mapping d.e of ICL formulas into
modal logic S4 formulas (similar to Gödels translation from intuitionistic logic to
S4 [19] and by providing a mapping for the additional connective says ).
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dpe = 2p

ds∧ te = dse∧dte
ds∨ te = dse∨dte
ds ⊃ te = 2 (dse ⊃ dte)

d>e = >
d⊥e = ⊥

dA says se = 2(A∨dse)

Logic ICL=⇒ extends ICL by a speaks-for operator (represented by =⇒ ) which
satisfies the following axioms:

` A =⇒ A (refl)
` (A =⇒ B) ⊃ (B =⇒ C) ⊃ (A =⇒ C) (trans)
` (A =⇒ B) ⊃ (A says s) ⊃ (B says s) (speaking-for)
` (B says (A =⇒ B)) ⊃ (A =⇒ B) (handoff)

The use of the new =⇒ operator is illustrated by the following modification of
Example 1.

Example 2 (from [18]). Bob delegates his authority to delete file1 to Alice (see
(2.3)), who now wants to delete file1.

(admin says deletefile1) ⊃ deletefile1 (2.1)
admin says ((Bob says deletefile1) ⊃ deletefile1) (2.2)
Bob says Alice =⇒ Bob (2.3)
Alice says deletefile1 (2.4)

Using these facts and (handoff) and (speaking-for) one can prove deletefile
(2.5)

The translation of ICL=⇒ into S4 extends the translation from ICL to S4 by

dA =⇒ Be = 2(A ⊃ B)

Logic ICLB differs from ICL by allowing that principals may contain Boolean
connectives (a denotes atomic principals distinct from atomic propositions):

A,B ::= a |A ∧ B |A ∨ B |A ⊃ B |⊥|>

ICLB satisfies the following additional axioms:

` (⊥ says s) ⊃ s (trust)
If A ≡> then ` A says⊥ (untrust)
` ((A ⊃ B) says s) ⊃ (A says s) ⊃ (B says s) (cuc’)

Abadi and Garg show that the speaks-for operator from ICL=⇒ is definable in
ICLB. The use of ICLB is illustrated by the following modification of Example 1.

Example 3 (from [18]). admin is trusted on deletefile1 and its consequences
(3.1). (3.2) says that admin further delegates this authority to Bob.

(admin says⊥) ⊃ deletefile1 (3.1)
admin says ((Bob ⊃ admin) says deletefile1) (3.2)
Bob says deletefile1 (3.3)
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Using these facts and the available axioms one can again prove deletefile (3.4).

The translation of ICLB into S4 is the same as the translation from ICL to S4. How-
ever, the mapping dA says se= 2(A∨dse) now guarantees that Boolean principal
expressions A are mapped one-to-one to Boolean expressions in S4.

Garg and Abadi prove their translations sound and complete:

Theorem 1 (Soundness and Completeness). ` s in ICL (resp. ICL⇒ and ICLB) if
and only if ` dse in S4.

Proof. See Theorem 1 (resp. Theorem 2 and Theorem 3) og Garg and Abadi [18].

4 Embedding Modal Logic in Simple Type Theory

Embeddings of modal logics into higher-order logic have not yet been widely stud-
ied, although multimodal logic can be regarded as a natural fragment of STT . Gallin
[16] appears to mention the idea first. He presents an embedding of modal logic into
a 2-sorted type theory. This idea is picked up by Gamut [17] and a related embed-
ding has recently been studied by Hardt and Smolka [20]. Carpenter [14] proposes
to use lifted connectives, an idea that is also underlying the embeddings presented
by Merz [24], Brown [13], Harrison [21, Chap. 20], and Kaminski and Smolka [23].

In our previous work [10] we pick up and extend the embedding of multimodal
logics into STT as studied by Brown [13]. The starting point is a characterization of
multimodal logic formulas as particular λ -terms in STT . A distinctive characteristic
of the encoding is that the definiens of the 2R operator λ -abstracts over the accessi-
bility relation R. As we have shown this supports the formulation of meta properties
of encoded multimodal logics such as the correspondence between certain axioms
and properties of the accessibility relation R. And some of these meta properties can
be efficiently automated within our higher-order theorem prover LEO-II.

The general idea of this encoding is very simple: Choose base type ι and let this
type denote the set of all possible worlds. Certain formulas of type ι → o then corre-
spond to multimodal logic expressions, whereas the modal operators ¬ , ∨ , and 2r
itself become λ -terms of type (ι → o)→ (ι → o), (ι → o)→ (ι → o)→ (ι → o),
and (ι → ι → o)→ (ι → o)→ (ι → o) respectively.

The mapping b.c translates formulas of multimodal logic ML into terms of type
ι → o in STT:

bpc = pι→o

brc = rι→ι→o

b¬ sc = λXι ¬(bscX)
bs ∨ tc = λXι (bscX)∨ (btcX)
b2r sc = λXι ∀Yι (brcX Y )⇒ (bscY )

|p| = pι→o

|r| = rι→ι→o

|¬| = λAι→o λXι ¬(AX)
|∨| = λAι→o λBι→o λXι (AX)∨ (BX)
|2 | = λRι→ι→o λAι→o

λXι ∀Yι (RX Y )⇒ (AY )
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The expressiveness of STT (in particular the use of λ -abstraction and βη-conversion)
allows us to replace mapping b.c by mapping |.| which works locally and is not re-
cursive.3

It is easy to check that this local mapping works as intended. For example,

|2r p∨2r q)| := |∨|(|2 | |r| |p|)(|2 | |r| |q|)=βηb2r p∨2r q)c

Further local definitions for other multimodal logic operators can be introduced
this way. For example, |⊃|= λAι→o λBι→o λXι (AX)⇒ (BX), |⊥|= λAι→o ⊥,
|>|= λAι→o >, and |∧|= λAι→o λBι→o λXι (AX)∧ (BX).

A notion of validity for the λ -terms (of type ι → o) which we obtain via def-
inition expansion is still missing: We want Aι→o to be valid if and only if for all
possible worlds wι we have (Aι→o wι), that is, w ∈ A. This notion of validity is
again introduced as a local definition:

|Mval| := λAι→o ∀Wι AW

Garg and Abadi’s translation of access control into modal logic as presented in
Section 3 is monomodal and does not require different 2r -operators. Thus, for the
purpose of this paper we restrict the outlined general embedding of multimodal
logics into STT to an embedding of monomodal logic into STT . Hence, for the
remainder of the paper we assume that ML provides exactly one 2r -operator, that
is, a single relation constant r.

We next study soundness of this embedding. Our soundness proof below employs
the following mapping of Kripke frames into Henkin models.

Definition 1 (Henkin model MK for Kripke Model K). Given a Kripke model
K = 〈W,(Rr), |=〉. Henkin model MK = 〈{Dα}α∈T , I〉 for K is defined as follows:
We choose the set of individuals Dι as the set of worlds W and we choose the Dα→β

as the set of all functions from Dα to Dβ . Let p1, . . . , pm for m ≥ 1 be the atomic
primitives occuring in modal language ML. Remember that 2r is the only box oper-
ator of ML. Note that |p j|= p j

ι→o and |r|= rι→ι→o. Thus, for 1 ≤ i ≤ m we choose
I p j

ι→o ∈Dι→o such that (I p j
ι→o)(w) = T for all w∈Dι with w |= p j in Kripke model

K and (I p j
ι→o)(w) = F otherwise. Similarly, we choose Irι→ι→o ∈Dι→ι→o such that

(Irι→ι→o)(w,w′) = T if Rr(w,w′) in Kripke model K and (Irι→ι→o)(w,w′) = F oth-
erwise. Clearly, if Rr is reflexive and transitive then, by construction, Irι→ι→o is so
as well. It is easy to check that MK = 〈{Dα}α∈T , I〉 is a Henkin model. In fact it is
a standard model since the function spaces are full.

3 Note that the encoding of the modal operators 2r is chosen to explicitly depend on an accessi-
bility relation r of type ι → ι → o given as first argument to it. Hence, we basically introduce a
generic framework for modeling multimodal logics. This idea is due to Brown and it is this aspect
where the encoding differs from the LTL encoding of Harrison. The latter chooses the interpreted
type num of numerals and then uses the predefined relation ≤ over numerals as fixed accessibility
relation in the definitions of 2 and 3. By making the dependency of 2r and 3r on the accessibil-
ity relation r explicit, we cannot only formalize but also automatically prove some meta properties
of multimodal logics as we have previously demonstrated [10].
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Lemma 1. Let MK = 〈{Dα}α∈T , I〉 be a Henkin model for Kripke model K =
〈W,(Ri)i∈I , |=〉. For all q ∈ L, w ∈ W and variable assignments φ the following
are equivalent: (i) w |= q, (ii) V[w/Zι ],φ (bqcZ) = T , and (iii) V[w/Zι ],φ (|q|Z) = T .

Proof. We prove (i) if and only if (ii) by induction on the structure of q. Let q = p
for some atomic primitive p∈ L. By construction of MK , we have V[w/Zι ],φ (bpcZ) =
V[w/Zι ],φ (pι→o Z) = (I pι→o)(w) = T if and only if w |= p. Let p = ¬s. We have
w |= ¬s if and only w 6|= s. By induction we get V[w/Zι ],φ (bscZ) = F and hence
V[w/Zι ],φ ¬(bscZ) =βη V[w/Zι ],φ (b¬scZ) = T . Case p = (s∨ t) is similar. Let q =
2r s. We have w |= 2r s if and only if for all u with Rr(w,u) we have u |=
s. By induction, for all u with Rr(w,u) we have V[u/Vι ],φ (bscV ) = T . Hence,
V[u/Vι ],[w/Zι ],φ ((brcZV ) ⇒ (bscV )) = T and V[w/Zι ],φ (∀Yι ((brcZY ) ⇒ (bscY )))
=βηV[w/Zι ],φ (b2r scZ) = T .

We leave it to the reader to prove (ii) if and only if (iii).

We now prove soundness of the embedding of normal monomodal logics K and
S4 into STT . In the case of S4 we add axioms that correspond to modal logic axioms
T (reflexivity) and 4 (transitivity).4 Here we call these axiom R and T.

Theorem 2 (Soundness of the Embedding of K and S4 into STT). Let s ∈ ML be
a monomodal logic proposition.

1. If |=ST T |Mval s| then |=K s.
2. If {R,T} |=ST T |Mval s| then |=S4 s, where R and T are shorthands for ∀Xι→o
|Mval2r X⊃X | and ∀Xι→o |Mval2r X⊃2r 2r X | respectively.

Proof. (1) The proof is by contraposition. For this, assume 6|=K s, that is, there
is a Kripke model K = 〈W,(Rr), |=〉 with w 6|= s for some w ∈ W . By Lemma 1,
for arbitrary φ we have V[w/Wι ],φ (|s|W ) = F in Henkin model MK for K. Thus,
Vφ (∀Wι (|s|W ) = Vφ |Mvals|= F . Hence, 6|=ST T |Mvals|.

(2) The proof is by contraposition. From 6|=S4 s we get by Lemma 1 that |Mvals|
is not valid in Henkin model MK = 〈{Dα}α∈T , I〉 for Kripke model K = 〈W,(Rr)〉.
Rr in K is reflexive and transitive, hence, the relation (Ir) ∈ Dι→ι→o is so as well.
We leave it to the reader to verify that axioms R and T are valid in MK . Hence,
{R,T} 6|=ST T |Mvals|.

Reasoning problems in modal logics K and S4 can thus be considered as rea-
soning problems in STT . Hence, any off the shelf theorem prover that is sound for
STT , such as our LEO-II, can be applied to them. For example, |=ST T |Mval2r >|,
|=ST T |Mval2r a⊃2r a|, and |=ST T |Mval3r(a⊃b)∨(2r a⊃2r b)| are automat-
ically proved by LEO-II in 0.024 seconds, 0.026 seconds, and 0.035 seconds re-
spectively. All experiments with LEO-II reported in this paper were conducted with
LEO-II version v0.98 5 on a notebook computer with a Intel Pentium 1.60GHz pro-
cessor with 1GB memory running Linux.

4 Note that T = (2r s⊃s) and 4 = (2r s⊃2r 2r s) are actually axiom schemata in modal logic. As
we show here, their counterparts in STT actually become proper axioms.
5 LEO-II is available from http://www.ags.uni-sb.de/∼leo/.
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More impressive example problems illustrating LEO-II’s performance for rea-
soning in and about multimodal logic can be found in our previous work [10].
Amongst these problems is also the equivalence between axioms 2r s⊃s and
2r s⊃2r 2r s and the reflexivity and transitivity properties of the accessibility re-
lation r:

Example 4. |=ST T (R∧ T) ⇔ (reflr ∧ transr) where R and T are the abbre-
viations as introduced in Theorem 2 and refl and trans abbreviations for
λRι→ι→o ∀Xι RX X and λRι→ι→o ∀Xι ∀Yι ∀Zι RX Y ∧RY Z ⇒ RX Z. LEO-II can
solve this modal logic meta-level problem in 2.329 seconds.

5 Embedding Access Control Logic in Simple Type Theory

We combine the results from Sections 3 and 4 and obtain the following mapping ‖.‖
from access control logic ICL into STT:

‖p‖ = |2r p|= λXι ∀Yι rι→ι→o X Y ⇒ pι→o Y

‖A‖ = |A|= aι→o (distinct from the pι→o)

‖∧‖ = λS λT |S∧T |= λSι→o λTι→o λXι SX ∧T X

‖∨‖ = λS λT |S∨T |= λSι→o λTι→o λXι SX ∨T X

‖ ⊃ ‖ = λS λT |2r (S⊃T )|
= λSι→o λTι→o λXι ∀Yι rι→ι→o X Y ⇒ (SY ⇒ T Y )

‖>‖ = |>|= λSι→o >
‖⊥‖ = |⊥|= λSι→o ⊥

‖says‖ = λA λS |2r (A∨S)|
= λAι→o λSι→o λXι ∀Yι rι→ι→o X Y ⇒ (AY ∨SY )

It is easy to verify that this mapping works as intended. For example:

‖admin says⊥‖ := ‖says‖‖admin‖‖⊥‖
=βη λXι ∀Yι rι→ι→o X Y ⇒ (adminι→o Y ∨⊥)
=βη |2r (admin ∨ ⊥)|=βηb2r (admin ∨ ⊥)c
= bdadmin says⊥ec

We extend this mapping to logic ICL⇒ by adding a clause for the speaks-for
connective =⇒ :

‖ =⇒ ‖= λA λB |2r (A⊃B)|= λAι→o λBι→o λXι ∀Yι rι→ι→o X Y ⇒ (AY ⇒BY )

For the translation of ICLB we simply allow that the ICL connectives can be
applied to principals. Our mapping ‖.‖ needs not to be modified and is applicable
as is.



10 Christoph Benzmüller

Table 1 Performance of LEO-II when applied to problems in access control logic ICL

Name Problem LEO (s)
unit {R,T} |=ST T ‖ICLval s ⊃ (A says s)‖ 0.031
cuc {R,T} |=ST T ‖ICLval (A says (s ⊃ t)) ⊃ (A says s) ⊃ (A says t)‖ 0.083
idem {R,T} |=ST T ‖ICLval (A says A says s) ⊃ (A says s)‖ 0.037
Ex1 {R,T,‖ICLval (1.1)‖, . . . ,‖ICLval (1.3)‖} |=ST T ‖ICLval (1.4)‖ 3.494
unitK |=ST T ‖ICLval s ⊃ (A says s)‖ –
cucK |=ST T ‖ICLval (A says (s ⊃ t)) ⊃ (A says s) ⊃ (A says t)‖ –
idemK |=ST T ‖ICLval (A says A says s) ⊃ (A says s)‖ –
Ex1K {‖ICLval (1.1)‖, . . . ,‖ICLval (1.3)‖} |=ST T ‖ICLval (1.4)‖ –

The notion of validity for the terms we obtain after translations is chosen identical
to before

‖ICLval‖= λAι→o |MvalA|= λAι→o ∀Wι AW

Theorem 3 (Soundness of the Embeddings of ICL, ICL⇒, and ICLB in STT). Let
s ∈ ICL (resp. s ∈ ICL⇒, s ∈ ICLB) and let R and T be as before. If {R,T} |=ST T

‖ICLvals‖ then ` s in access control logic ICL (resp. ICL⇒, ICLB).

Proof. If {R,T} |=ST T ‖ICLvals‖ then |=S4 s by Theorem 2 since ‖ICLvals‖=
|Mvals|. This implies that ` dse for the sound and complete Hilbert System for S4
studied by Garg and Abadi [18].6 By Theorem 1 we conclude that ` s in access
control logic ICL (resp. ICL⇒, ICLB).

Completeness of our embeddings of ICL, ICL⇒, and ICLB into STT can be shown
by similar means [8]. This also implies soundness and completeness for the entailed
embedding of intuitionistic logic into STT .

We can thus safely exploit our framework to map problems formulated in control
logics ICL, ICL⇒, or ICLB to problems in STT and we can apply the off the shelf
higher-order theorem prover LEO-II (which itself cooperates with the first-order
theorem prover E [25]) to solve them. Times are given in seconds.

Table 1 shows that LEO-II can effectively prove that the axioms unit, cuc and
idem hold as expected in our embedding of ICL in STT . This provides additional
evidence for the correctness of our approach. Example 1 can also be quickly solved
by LEO-II. Problems unitK , cucK , idemK , and Ex1K modify their counterparts by
omitting the axioms R and T. Thus, they essentially test whether these problems can
already be proven via a mapping to modal logic K instead of S4. LEO-II answers
this questions positively for the cases of cucK , and Ex1K .

Tables 2 and 3 extend this experiment to the other access control logics, axioms
and examples presented in Section 3.

In a separate technical report [8] we present the concrete encoding or our em-
bedding together with the problems unit, cuc, idem, and Ex1 in the new TPTP THF
syntax [11], which is also the input syntax of LEO-II.

6 See Theorem 8 of Garg and Abadi [18] which is only given in the full version of the paper
available from http://www.cs.cmu.edu/∼dg/publications.html.
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Table 2 Performance of LEO-II when applied to problems in access control logic ICL⇒

Name Problem LEO (s)
refl {R,T} |=ST T ‖ICLval A =⇒ A‖ 0.052
trans {R,T} |=ST T ‖ICLval (A =⇒ B) ⊃ (B =⇒ C) ⊃ (A =⇒ C)‖ 0.105
sp.-for {R,T} |=ST T ‖ICLval (A =⇒ B) ⊃ (A says s) ⊃ (B says s)‖ 0.062
handoff {R,T} |=ST T ‖ICLval (B says (A =⇒ B)) ⊃ (A =⇒ B)‖ 0.036
Ex2 {R,T,‖ICLval (2.1)‖, . . . ,‖ICLval (2.4)‖} |=ST T ‖ICLval (2.5)‖ 0.698
reflK |=ST T ‖ICLval A =⇒ A‖ 0.031
transK |=ST T ‖ICLval (A =⇒ B) ⊃ (B =⇒ C) ⊃ (A =⇒ C)‖ –
sp.-forK |=ST T ‖ICLval (A =⇒ B) ⊃ (A says s) ⊃ (B says s)‖ –
handoffK |=ST T ‖ICLval (B says (A =⇒ B)) ⊃ (A =⇒ B)‖ –
Ex2K {‖ICLval (2.1)‖, . . . ,‖ICLval (2.4)‖} |=ST T ‖ICLval (2.5)‖ –

Table 3 Performance of LEO-II when applied to problems in access control logic ICLB

Name Problem LEO (s)
trust {R,T} |=ST T ‖ICLval (⊥ says s) ⊃ s‖ 0.049
untrust {R,T,‖ICLval A ≡>‖} |=ST T ‖ICLval A says⊥‖ 0.053
cuc’ {R,T} |=ST T ‖ICLval ((A ⊃ B) says s) ⊃ (A says s) ⊃ (B says s)‖ 0.131
Ex3 {R,T,‖ICLval (3.1)‖, . . . ,‖ICLval (3.3)‖} |=ST T ‖ICLval (3.4)‖ 0.076
trustK |=ST T ‖ICLval (⊥ says s) ⊃ s‖ –
untrustK {‖ICLval A ≡>‖} |=ST T ‖ICLval A says⊥‖ 0.041
cuc’K |=ST T ‖ICLval ((A ⊃ B) says s) ⊃ (A says s) ⊃ (B says s)‖ –
Ex3K {‖ICLval (3.1)‖, . . . ,‖ICLval (3.3)‖} |=ST T ‖ICLval (3.4)‖ –

6 Conclusion and Future Work

We have outlined a framework for the automation of reasoning in and about differ-
ent access control logics in simple type theory. Using our framework off the shelf
higher-order theorem provers and proof assistants can be applied for the purpose.
Our embedding of access control logics in simple type theory and a selection of
example problems have been encoded in the new TPTP THF syntax and our higher-
order theorem prover LEO-II has been applied to them yielding promising initial
results. Our problem encodings have been submitted to the higher-order TPTP li-
brary [1] under development in the EU project THFTPTP and are available there
for comparison and competition with other TPTP compliant theorem provers such
as TPS [7].

Recent experiments have shown that the scalability of our approach for reason-
ing within access control logics still poses a challenge to LEO-II. However, more
promising is the application of LEO-II to meta-properties of access control logics
analogous to Example 4 and its use for the exploration of new access control logics.
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