Steganalysis of Hydan

Jorge Blasco, Julio C. Hernandez-Castro, Juan M.E. Tapiadimro Ribagorda
and Miguel A. Orellana-Quiros

Abstract Hydanis a steganographic tool which can be used to hide any kinak-of i
formation inside executable files. In this work, we presengfficient distinguisher
for it: We have developed a system that is able to detect ¢éxbleLfiles with embed-
ded information througllydan Our system uses statistical analysis of instruction
set distribution to distinguish between files with no hiddeformation and files
that have been modified witHydan We have tested our algorithm against a mix
of cleanand stego-executable files. The proposed distinguishdrésta tell apart
these files with a O ratio of false positives and negatives tretecting all files with
hidden information throughklydan

1 Introduction

Steganography is the art and science that tries to hide teeage of messages [4].
The objectives of steganography are not the same that tfiasgptography, which
main aim is to conceal the message contents by performifegelift transformations
so only authorized persons can read it. At first, one may tthiak cryptography is
enough to ensure the security of the communications betiveeparties, but there
are scenarios where the knowledge of the existence of a coination between
two parties may be critical. These scenarios all have sangeih common with
that described by Simmons and knowntlas Prisoners problerfiL2]. In this, two
prisoners (Alice and Bob) want to plot an escape plan. As #reynot in the same
cell they must communicate through a warden (Willie). If N&ilever suspects that
Alice and Bob are planning to escape or are engaging in aryy ddirsecret com-

Jorge Blasce Julio C. Hernandez-CastraJuan M.E. TapiadorArturo Ribagorda
Carlos Il University of Madrid, Av. de la Universidad 30, 2Bl Leganés, e-mail:
jbalis@inf.uc3m.es, jcesar@inf.uc3m.es, jestevez@if.es, arturo@inf.uc3m.es

Miguel A. Orellana-Quiros
Ministry of Economy, Cl. Alcala,5, 28071 Madrid e-mail: ngel.orellana@meh.es

2 Jorge Blasco-Alis et al.

munication he will put them into isolation cells. In this segio, Alice and Bob can
not simply use cryptography because Willie will recognirergpted messages and
infer they are communicating secretly, so he will stop tliarmel. Alice and Bob
should hide their messages into seemingly innocuous oné&jjlse will not no-
tice the covert communication. Additionally, Willie cantzeve in different ways:

If Willie just checks the messages and forwards them to itgprent, then Willie

is apassive wardenOn the other hand, if Willie has high suspicions of Alice and
Bob planning an escape, but he does not have a proof, it ishp@skat he will
modify slightly the message contents trying to perturb aigglén information. In
this case, Willie is aractive wardenBoth possible scenarios must be considered
when designing stego-systems, so the quality of a stegeraysan be measured (in
addittion to other properties) by means of the difficulty &dett its content and the
possibility that hidden information is not lost even if thego-object suffers some
modifications.

The first documented use of steganography [5] was madedigaratus who
wanted to warn the Greeks about a Persian invasion leade@ixes Demaratus
sent a message written on a wooden table covered by wax, sald pass all the
guard controls and arrive to Sparta.

Since those days, steganography has developed as a seiedaeany different
approaches have been used to cover contents of any kindrf@yd Steganography
[4]is one of the most used techniques. Covering conteradnimhges can be done in
many different ways. Most simple techniques hide inforaratin the least signifi-
cant bits (LSB) of each pixel. Other techniques use imagepcession algorithms.
For example, the JPEG image compression algorithm is baseldeoparameters
of the discrete cosine transform (DCT). Using differentgmaeters in the DCT cal-
culation allows hiding information in the image file. Anotheidely used cover
are digital audio files. Audio steganography also incluéesiques such as LSB
(similar to image LSB steganography).

Changing the last significant bit on each audio sample presisiight modifica-
tions on audio files that can not generally be distinguishetlmans, specially if
the redundancy ratio is high. Audio steganography can bieimeed also in com-
pressed audio files like MP3s. Some tools like MP3Stego [&4A]hkide information
during theinner loop step, by modifying the DCT values. Much more stegano-
graphic techniques can be found in the literature such dsrankl channels [12],
SMS [11], TCP/IP [6] and games [3].

All security requirements for cryptographic systems angailg (or should be)
applied to steganographic systems. This means that thatyesfia steganographic
algorithm should not rely itself on the secrecy of the altjon, which should be
public, but on the knowledge of the key. In steganograptshduld not be possi-
ble to distinguish a&leanobject from a stego-object if the key is unknown. In this
work, we prove that it is possible to distinguisklaanexecutable file from a stego-
object created througHydanwithout the possession of the key. The remainder of
this document is structured as follows. Section 2 introdymrevious work done in
executable files steganography. Section 3 describes thest#Edydanand how
it works. Section 4 shows the steganalysis performetipdanand the resulting

Steganalysis of Hydan 3

distinguisher. This section also performs a discussionossiple ways to overcome
the steganalysis presented. Section 6 presents the gatwrelusions and possible
lines of future work.

2 Previous Work

Hydan[2] is the first documented tool and scheme that uses direglyutable files
as a cover. During years, other techniques have been usesktt hidden informa-
tion into source files, but for copyright protection purpesaly. These involve ac-
cess to source code, where programmers insert copyrighksraad integrity checks
right inside their code. Information inserted in this way ¢e used to prove the in-
tegrity and authorship of the program [13]. Outsldgdan other authors [1] have
later described different techniques to introduce infdramein executable files. Au-
thors describe four different techniquésstruction Selectiorreplaces some of the
instructions in the executable file for others with the saomecfionality. Register
Allocationencodes embedded information in changes on the regiseisysome
instructions.Instruction Schedulinghanges the order of non-dependant instruc-
tions. Finally,Code Layoutises the order of big blocks.

Authors have implemented all the proposed techniques inra advanced tool
calledStilo. A steganalysis aoBtilois proposed in the same paper based on a concept
namedCode Transformation Signatymhich is defined as the set of characteristics
that can be used to detect the presence of hidden informiatiostilo executable
files. Authors describe theode Transformation Signaturés Stilo and propose a
group of countermeasures to avoid them. Authors also mehiyalan but they do
not perform any steganalysis nor reveal the correspor@itg Transformation Sig-
naturesfor Hydan Apart from this work, no other techniques have been progose
to hide information on executable files. In this paper we deedhe main proper-
ties (itsCode Transformation Signatufethat can be used to detect executable-files
with hidden information throughlydan Based on those properties, a very efficient
distinguisher is proposed.

3 Hydan

Hydanis a steganographic tool which covers messages in exeeuths. It does
not change the functionality of the executable neither the of it. A detailed de-
scription on howHydanworks can be found on [2].

Hydanuses the “redundancy” on the instructions sets of execeifélbk to in-
troduce hidden information. Specificalllydanuses the concept dfinctionality-
equivalent instructionsA set offunctionality-equivalent instructioris a group of
instructions in which any instruction of the group can belaeed for other with-
out loss of functionality. For example, to add a certain amado a specific register

4 Jorge Blasco-Alis et al.

it is possible to usadd, rl, 8or , equivalently, ussub, rl, -8 In this case, the
add instruction could encode the bit value 0, and sl instruction may encode
the bit value 1. Depending on the size of fis@ctionality-equivalent instructions
sets it is possible to encode more than one bit with one iostnu A set of four
functionality-equivalent instructionsould allow codifying 2 bits (00, 01, 10 and
11). Generally, with a set af equivalent instructions it would be possible to encode
|log,(n)| bits. Table 1 describes tHenctionality-equivalent instructiongroups
and number of instructions in each of the groups forx@éset, which is the most
common and the one used blydan

Table1 Groups offunctionality-equivalent instructionssed inHydan

Group Inst. Group Inst. Group Inst.
toac8 5 toac32 5 rrcemp8 2
rrcemp32 2 toasxc8 7 toasxc32 6
addsub8 2 addsub8-2 2 addsub32-1 2
addsub32-2 2 addsub32-3 2 xorsub8 4
xorsub32 4 add8 2 add32 2
adc8 2 adc32 2 and8 2
cmp8 2 cmp32 2 mov8 2
mov32 2 or8 2 or32 2
sbb8 2 sbb32 2 sub8 2
sub32 2 xor8 2 xor32 2
and32 2

Embedding process ¢tydanis done in two steps. First step encrypts the mes-
sage to be hidden usin§ES or Blowfishwith the password given by the user.
In the second step, the encrypted message is embedded énex¢lsutable file.
Specifically,Hydanworks as follows: Once the message has been encryidied,
dansearches for possible places to introduce informationnTHgdangenerates a
random number seeded with the password entered by the isendmber is used
to select which of the selected places of the executable fildgused to hide the
information. With this mechanism, the password will be rexktb recover the data
and different passwords will lead to different placemeifithe embedded informa-
tion. Recovery process first extracts the encrypted meseamehe executable file.
Then, the message is decrypted using the provided password.

With Hydan itis possible to embed (on average) 1 bit of informationie) bits
of executable code. In fact, it is possible to embed differatios of information,
but El-Khalil proposed the specified one as the better taftleetween security and
capacity [2].

Hydanchanges perceptibly the content of the executable files midden in-
formation. Therefore, if these changes lead to a specifitasige, it is possible to
build a system that is able to distinguistHgdan executable file from any other
executable file. This signature may show in many differentsvaélext section dis-

Steganalysis of Hydan 5

cusses the possible methods to detddyydanmodified executable and proposes a
very efficient distinguisher to detectydancovert-channel.

4 Steganalysisof Hydan

Changes introduced yydaninto assembler code can modify different properties
of the original executable filddydandoes not change the size of the stego-object,
but it changes the code itself. If the original program isilabde it will be pos-
sible to check through integrity checks (CRCs [8], hash fioms [7], etc.) if the
executable file has been modified, but these are not proof bédded information.
Other properties such as execution time, flag activatiorcapgiright marks checks,
can prove that executable code has been modified, but witlenptoof of embedded
information.

Most compilers often produce similar sets of instructidraus, if a compiler has
to select between two instructions with the same functignilwill usually select
the same instruction. This property of most compilers adldwilding a profile of
cleanapplications based on the probability distribution of instions insideclean
programs. Changes made Hydanmay lead to another probability distribution of
instructions. If these changes can be profiled and genedilizwould be possible
to detect if an executable file has hidden information. Staelysis performed on
this paper is based on this approach.

We have built a distinguisher that is able to detect exedafilbs with embed-
ded information throughlydan To construct this distinguisher, first we have built a
statistical model otleanexecutable files. Then, we have performed different con-
cealment operations in a variety of executable files. We laaadyzed the main
differences between the set@éanexecutables and the setldfdanmodified exe-
cutables. In this paper, we also describe possible courtesunes and the maximum
capacity ofHydansteganographic files to overcome this steganalysis.

4.1 Statistical Analysis of Clean Executable Files

The distinguisher proposed is based on the presence of alnsets of instructions
on executable files. We have performed a statistical arsabfsa set of 126tlean
executable files retrieved frorusr/bin and/usr/sbinof an Ubuntu x86distribu-
tion. Figure 1 shows the frequency distribution of foectionality-equivalent in-
structionssets for our set of files. This distribution tells the prolligbthat a ran-
dom instruction belongs tofanctionality-equivalent instructioset. Depending on
this distribution, the bandwidth of the covert channel teby an executable may
differ a lot. The bigger is the proportion of instructionddrgging to a big set of
functionality-equivalent instructionshe bigger will be the informatioklydanis
able to hide.

Jorge Blasco-Alis et al.

Our analysis has shown that all thenctionality-equivalent setsf instructions
are present in our test files. Nevertheless, most of theuictstns found on the an-
alyzed files belong to a small group fifnctionality-equivalent instructionsets.
Therefore, the capacity of the covert channel depends oceth&city of these com-
monly used sets (Fig. 1). In order to build our statisticaldelpwe have analyzed
distribution of instructions inside each of the most fregtfenctionality-equivalent
instructionssets.

One of the most usefilinctionality-equivalent instructionsets istoac32 This
set includes five different instructions. Thus, it can ercddg,(5)] = [2.32| =2
bits. Frequency distribution of instructions inside theisshown in Fig. 2.

Results obtained in the frequency analysis of this insibactet have been gath-
ered in Table 2.

Table 2 Frequency distribution of instructions emac32set

Instruction Frequency
test r/m32, r32 100.0%
orr/m32, r32 0.0%

or r32, r/m32 0.0%

and r/m32, r32 0.0%

and r32, r/m32 0.0%

In all analyzed files, only one instruction of this set wasdude this case, a
variation of the distribution of instructions within thistsvould be detected easily.

35

30

25

20

Frequency in %

10 7

3

cmp32 |E—

mov8

toac8
toac32
rremp8
rrcmp32
toascx8
toascx32
addsub8-1
addsub8-2
add8
add32
adc8
and8
and32
cmp8
or8
or32
sbb8
sbb32
sub8
sub32
xor8
xor32

addsub32-1
xorsub8

addsub32-2
addsub32-3
xorsub32
mov32

Functionality-equivalent instruction sets

Fig. 1 Frequency distribution dinctionality-equivalent instructiorsets

Steganalysis of Hydan 7

For each of the remaining sets of equivalent functions, we ltmmputed the
frequency distribution of its instructions based on ourcafedxecutable files, as in
thetoac32set. Once we have constructed a frequency distribution hfiodeach of
the sets, we have also computed the proportion of instmgier set in each of the
executable files. Each of the proportions computed for edelafidfunctionality-
equivalent instructionset has been compared using a chi-square statigf (
against the frequency distribution of thiatnctionality-equivalent instructionset
calculated for all the files. For each of thenctionality-equivalent instructiorsets
we have calculated the averag@statistic (Equation 1).

N Xfie,
Averagge; = ;T

1)

Wheresei is afunctionality-equivalent instructionset, andfile; is theith file
on our set of files. Figure 3 shows the averggéor all thefunctionality-equivalent
instructionssets. For most of the equivalent instructions sets, theildigton of
its instructions has remained constant in all the execetfliek. Thus, its averaged
chi-square is OFunctionality-equivalentinstructiorsets with higher average value
indicate that the frequency distribution of that sets hasemariability between
executable files. Figure 3 shows how six of thectionality-equivalent instructions
sets suffer lots of variability on the distribution of itssinuctions depending on the
executable file.

Differences introduced bilydanwill change the frequency distribution of in-
structions inside each of tHfenctionality-equivalent instructionsets. Comparing
the new instruction distributions obtained against thenexice distributions for each
of the functionality-equivalent instructionsets will allow to determine if informa-
tion has been embedded into the executable file.

100

90

80

70

60

50

Frequency in %

40

30

20

test r/m 32, r32 or r/m 32, r32 or r32, r/m32 and r/m32, r32 and r32, r/m32

Instructions

Fig. 2 Frequency distribution of instructions ¢oac32set

Jorge Blasco-Alis et al.

This can be easily seen through an example. Figure 4 repsetien differ-
ences, in terms of g2 statistic, on the frequency distribution of edanctionality-
equivalent instructiorset of theapt-getexecutable file with no embedded informa-
tion. Differences obtained are consistent with the aveshgavn on Fig.3.

Inserting information into this executable file will modifige frequency distri-
bution of instructions inside some of the sets of equivalestructions. Figure 5
represents differences, in terms ok 4 statistic, on the distribution of instructions
inside each of the equivalent instructions sets ofabiegetexecutable with embed-
ded information.

Frequency distribution of instructions inside the highrigble functionality
equivalent instruction sets has also offered high chi-sgjwalues, as in the ref-
erence (Fig. 3) and clean file comparison (Fig. 4). Neveed®ldistributions of
somefunctionality-equivalent instructiorsets have changed and its chi-square has
increased comparing it with the reference comparison @jignd the previous chi-
square value (Fig. 4), which was 0.

The same procedure has been performed with all the exeeits, obtaining
for each set a model of the frequency distribution of thatBeis has allowed us to
establish which distributions of instructions insiectionality-equivaleninstruc-
tion sets remain constant between differeleanexecutable files.

These results have been used to build our distinguishethidiexplained in the
next section.

20

15

10

Average chi-square value

o
L

toac8
toac32
rremp8
rremp32
toascx8
toascx32
addsub8-1
addsub8-2
addsub32-1
xorsub8
xorsub32
adds
add32
adc8
and8
and32
cmp8
cmp32
mov8
mov32
or8
or32
sbb8
sbb32
sub8
sub32
xor8
xor32

addsub32-2
addsub32-3

Functionality-equivalent instruction sets

Fig. 3 Average chi-square statistic for each of thactionality-equivalent instructiorsets

Steganalysis of Hydan 9

5 Distinguisher Design

The proposed distinguisher measures the changes on thibudish of instructions
inside a selection diinctionality-equivalent instructiorsets. These measures have
been made in terms of @ statistic against the reference distribution for each of
the selectedunctionality-equivalent instructionsets.Functionality-equivalent in-
structionssets with high variability of instruction distribution lve¢encleanfiles
have not been selected in the calculations of our distimguigalue. High variabil-
ity may elevate the result offered by the distinguisher, kimay somecleanfiles

as stego-objects. Our distinguisher only usesftimetionality-equivalent instruc-
tions sets which its average chi-square value is 0, as calculatéd Therefore, 8
sets offunctionality-equivalent instructiorare not usedtoac8 rrcmp32 addsub8
addsub8-2addsub32-1addsub32-2addsub32-&ndxorsub8 Mathematically, the
value obtained with our distinguisher is expressed asvalio

n
D(f”e) = ‘%Xi%struction st (2)
i=

Wheren is the number of sets dfinctionality-equivalent instructionghose
average chi-square value is 0. To obtain the threshold oflistinguisher we have
calculated all the results the distinguisher offers frome¢hset files: a set of clean
files, a set of files with embedded information using a 40 % ®fcdpacity and
a set of files with embedded information using an 80 % of itsacép. We have
calculated the mean and standard deviation of values autdin the distinguisher
for the three sets. Results obtained are shown in Table 3.

180

160

140

120

100

80

Chi-square value

60

40

20

toac8
toac32 |
rremp8 |
toascx32 |
addsub8-1
addsub8-2
xorsub8 |
xorsub32 |
add8 |
add32 |
adc8
and8 |
and32 |
cmp8 |
cmp32
mov8 |
mov32
or8
or32 |
sbb8
sbb32 |
sub8 |
sub32 |
xor8
xor32 |

toascx8 |
addsub32-1

rremp32 |

addsub32-2 |
addsub32-3 |

Functionality-equivalent instruction sets

Fig. 4 Chi-square statistics for each of the equivalent instonstisets irmpt-get

10 Jorge Blasco-Alis et al.

Table 3 Distinguisher results for different sets of executablesfile

Distinguisher Clean Hidden at 40% Hidden at 80%
Mean 0.000604 151.254608 299.039886
Standard Deviation 0.024571 12.298561 17.292770

We have selected the threshold of our distinguisher as ttiti@a of the mean
and the standard deviation of the clean files set. When a féesd value above the
expected mean and typical deviation it is marked as a stbgeeb Threshold of our
distinguisher is described be as follows.

T = Mearyean-+ T.Deviationyean= 0.000604+ 0.24571= 0.025175 (3)

5.1 Results

With the selected threshold we have performed a test ovee thets of files, each
having 1063 files. The first set of files is a selectiortiefanfiles from theUbuntu

8.10 x86distribution. Second set of files is the setaéanfiles with embedded
information up to 40% of the capacity of each file. Last sebismposed by the first

160

140

120

100

80

Chi-square value

60

40

20

By 28 %8300 089883838828398298888¢988
g o g a 8 x R} Y Y320 BT T gad 2O ¥ aoa3a QP
2 8 s E QG 33 2223 g ®©asc 5 EEQ °© o g a3 2
2 £ 8 82 @ 55 g5 2 © < S = @ @
£ * 0T DT ? » X G
< T T o T X
S @ T ©
S @

addsub32-1

Functionality-equivalent instruction sets

Fig. 5 Chi-square values for each of the equivalent instructids iseapt-getwith hidden infor-
mation

Steganalysis of Hydan 11

set of files with embedded information up to an 80% of the ciypaé each file.
Distinguisher values obtained for each of the files are shiowig. 6.

Values obtained by our distinguisher for the clean files apagated from the
ones offered by files with embedded information. Some residiered by embedded
information files are low, but higher than the values retdimgany of the clean files.
In fact, our distinguisher has classified all the executabterectly (Table 4).

Table 4 Distinguisher classification results for different seterécutable files

Expected clean executables Expected embedded exec.

Predicted clean executables 1063 0
Predicted embedded exec. 0 2126

In order to produce executable files that are not detectedunytanl some
changes should be done ktydan Our analysis have shown that replacement of
functionality-equivalent instructionis not secure if the frequency distribution of
instructions inside &unctionality-equivalent instructioeet is constant. A first ap-
proach to secure Hydan would be to use only the functionaljyivalentinstruction
sets not used by our distinguisher. This would reduce thaaigpof hidden infor-

1000

100

0,1
®no hidden information

©40% hidden information
*80% hidden information

0,01

Distinguisher value (logarithmic scale)

0,001

0,0001

0,00001

Fig. 6 Distinguisher results for sets of executable files

12 Jorge Blasco-Alis et al.

mation up to a 35% of the original capacity. Stego-files gatest this way would
not be detected by the distinguiser, producing false negmti

6 Conclusions and Future Work

Steganalysis techniques are needed in order to ensure @noviethe security of
stego-systems in the same way cryptanalysis is needed ter fie security of
cryptography techniques. With this work, we have developetistinguisher that
is able to recognize executable files with hidden infornmatltoroughHydan To
create our distinguisher we have built a statistical model@anexecutable files.
In our tests, the proposed distinguisher classified cdyredit executable files in
different proportions of concealment (0%, 40% and 80%). \Akehalso described
how to overcome this steganalysis. Research on stegarggoépxecutable files is
not extensive at the moment, but improvements to seldycanand other related
steganographic tools [1] could only be achieved througkresive research in the
field. We have advanced in this direction, and plan to furdtsance by refining the
steganalytic methods proposed in [1] agaBisto.

References

1. Anckaert B., De Sutter B., Chanet D., De Bosschere K.:a@8tegraphy for Executables and
Code Transformation Signatures. Lecture Notes in Com@@demce3506, 425—-439 (2005)

2. El-Khalil, R.: Hydan: Hiding Information in Program Binas (2003). Lecture Notes in Com-
puter Scienc&269, 187-199 (2004) http://crazyboy.com/hydan/. Cited 20 ZD&8

3. Hernandez-Castro J.C., Lopez |.B., Tapiador J.M.E agdbda A.: Steganography in Games.
Computers and Securib(1), 64—71 (2006)

4. Johnson N.F., Jajodia S.: Exploring steganographyn§eke unseen. Computgt(2), 26-34
(1998).

5. Kipper, G.: Investigator's Guide to Steganography. CRE® (2004)

6. Murdoch S.J., Lewis S.: Embedding Covert Channels intB/TRC Lecture Notes in Computer
Science3727, 247-261 (2005)

7. Naor M., Yung M.: Universal One-Way Hash Functions andiiT@eyptographic Applica-
tions. Proceedings of the twenty-first annual ACM symposamTheory of computing, pp.
33-43. ACM, New York, NY, USA (1989).

8. Peterson W., Brown D.: Cyclic Codes for Error Detectiorrodeedings of the IRE9(1),
228-235 (1961)

9. Petitcolas F.A.P., Anderson R.J., Kuhn M.G.: Informati¢iding:A Survey. Proceedings of
the IEEE87(7) pp. 1062—-1078 (1999)

10. Petitcolas F.A.P.: MP3Stego (2006). http://www.pelis.net/fabien/steganography. Cited 20
Oct 2008

11. Shirali-Shahreza M., Shirali-Shahreza M.H.: Text Stegyraphy In SMS. Int. Conference on
Convergence Information Technology pp. 2260-2265 (2007)

12. Simmons G.J.: The History of Subliminal Channels. IER&dal on Selected Areas in Com-
munications16(4), pp. 452—-462 (1998)

13. Zhu W., Thomborson C.: Recognition in Software Watekimgr. Proceedings of the 4th
ACM international workshop on Contents protection and ggcypp. 29-36. ACM (2006)

