Minimizing SSO Effort in Verifying
SSL Anti-phishing Indicators

Yongdong Wu, Haixia Yao and Feng Bao

Abstract In an on-line transaction, a user sends her personal sensitive data
(e.g., password) to a server for authentication. This process is known as Single
Sign-On (SSO). Subject to phishing and pharming attacks, the sensitive data
may be disclosed to an adversary when the user is allured to visit a bogus
server. There has been much research in anti-phishing methods and most
of them are based on enhancing the security of browser indicator. In this
paper, we present a completely different approach of defeating phishing and
pharming attacks. Our method is based on encrypted cookie. It tags the
sensitive data with the server’s public key and stores it as a cookie on the
user’s machine. When the user visits the server so as to perform an on-
line transaction, the sensitive data in the cookie will be encrypted with the
stored public key of the server. The ciphertext can only be decrypted by the
genuine server. Our encrypted cookie scheme (ECS) has the advantage that
the user can ignore SSL indicator in the transaction process. The security is
guaranteed even if the user accepts a malicious self-signed certificate. This
advantage greatly releases user’s burden of checking SSL indicator, which
could be very difficult even for an experienced user when the phishing attacks
have sophisticated vision design.

1 Introduction

With the rapid development of Internet and web technologies, most of the
online applications such as e-banking and e-government are built on or as-
sisted by WWW. For example, after China Government endorsed the “Dig-
ital Signature Law” in 2005, more and more China citizens open e-banking
accounts (over 60 million in 2007) such that the transaction amount is in-

Cryptography and Security Department, Institute for Infocomm Research, Singapore
e-mail: \{wydong, hxyao, baofeng\}@i2r.a-star.edu.sg

47

48 Yongdong Wu, Haixia Yao and Feng Bao

creased at a rate of 30% annually [1]. Usually, an on-line transaction is built
based on client/server model. When a user initiates a transaction with a web
browser (e.g., Internet Explorer or Firefox), she will send a request to the
web server with its URL (Universal Resource Locator). On a request, the
server sends back a form to request the user’s personal information. Once the
server authenticates the browser with the user’s input, the web server sends
the confidential page within the browser window which will be shown to the
user.

Most web sites currently authenticate users with a simple password sub-
mitted via an HTML form similar to Fig.1. Because the personal data are
involved, information submitted via HTML forms has proven to be highly
susceptible to phishing [2, 3] which exploits the visual mistake to lure vic-
tims. Evidence suggests somewhere 3-5% of phishing targets disclose sensitive
information and passwords to spoofed web sites [4, 5]; about two million users
gave information to spoofed websites resulting in direct losses of $1.2 billion
for US banks and card issuers in 2003 [6]. Presently, phishing attacks are
becoming more and more sophisticated [7]. As a result, good phishing tech-
niques can fool even the most vigilant users [8, 9], and the countermeasures
such as trusted paths [10, 11] and multi-factor authentication schemes [12]
are susceptible to phishing.

3 Microsoft Outlook Web Access

Microsoft Internet Explorer
Fle Edt Vew Favortes Took

Q- @ [M B G P Joroees @ 25 F)&
Ajdncs!: Ltps: in.com g o i hev | Elos s ®
Google G~ v oo B - | ¢ scmalse (D settngew &~

13 Gutiook Web Access

Providod by Microsoft Exchang Sorver

Domainjuses rame: |
Passerd: []
Chient (uht's et}
@Prerium
O

(@x I

Fig. 1 HTTPS GUI of Microsoft Internet Explorer (IE) for self-signed certificate. Firefox
will highlight the background of URL status besides those in IE.

To understand the workflow of phishing, let’s recall that an on-line trans-
action has three links which know the personal data: server, transmission
channel and user/browser. Hence, to provide secure transaction, the security
of each link should be ensured. Nowadays, the server usually installs hetero-
geneous firewalls, IDS (Intrusion Detection System) etc so as to guarantee
the safety of the server; meanwhile, the transmission channel is managed with
SSL (Secure Socket Layer [13]) protocol which is secure enough for message
transmission in an on-line transaction from the viewpoint of a cryptogra-

Minimizing SSO Effort in Verifying SSL Anti-phishing Indicators 49

pher. To provide a trustworthy browser/user interface, the browser renders
some security indicators so as to provide the user information about the au-
thenticity of the website. Concretely, a browser provides user interface which
includes at least three indicators: a HTTPS other than HTTP is shown in
the URL bar, besides the target domain name; (2) A closed lock is shown
in the status bar if the SSL protocol is performed successfully and the URL
bar matches the certificate of server, both (1) and (2) are highlighted with
circles in Fig.1; (3) If the user clicks on the closed lock, the visited server
certificate will be shown in a pop-up window. If and only if all of the above
items are checked carefully, all the links are protected and thus the target
server is authentic in principle.

Nonetheless, the transaction scheme may still be vulnerable in practical
since the client/browser interface can be easily reproduced with “Web spoof-
ing” technique [14, 15, 16]. Friedman et al. [17] summarized that it is difficult
for average users to determine whether a browser connection is secure due to
the follows:

e It is trivial to insert a spoofed image with any security indicator where
one does not exist [14].

e Many users do not understand the meaning of the SSL security indicator.
Hence, they ignore the security indicator such that a non-SSL malicious
website is mis-regarded as a trusted server.

e Many users do not notice the absence of SSL lock icon.

e The lock icon only indicates that the current page was delivered to the
user securely with SSL protocol. However, the page content including the
user input can be sent to other website insecurely, or is accessible to other
frame shown in the same browser instance in a multi-frame page [18].

e Regardless certificate is critical in verifying the authenticity of the server,
few common users understand SSL certificates, and rare users go through
the effort of checking SSL certificates and certificate authorities (CAs).
Indeed, there are too many cryptology jargons in the definition of digital
certificate.

e Some browsers provide warnings to inform the user when data is submitted
insecurely, or server certificate is problematic such as expiry or self-signed,
but many users ignore these warnings or turn them off.

In summary, the major reason that an attacker can start phishing or
pharming attack is that users do not reliably notice the absence of a security
indicator, and do not know how to use. Hence, the browser must provide ease
of use interface, and minimize the effort in checking the security indicators.
In contrast, if an anti-pharming solution is too complicated, it will likely be
misused by average users.

This paper presents an anti-phishing scheme called as ECS which enhance
the security of the user/browser link. ECS upgrades the browser with han-
dling cookies so as to minimize the user effort in on-line transaction. To this
end, the cookie including the password as well as the public key of the target

50 Yongdong Wu, Haixia Yao and Feng Bao

server is generated in the user registration process. To perform an on-line
transaction, the browser builds an SSL channel with the server, then the
browser merges the password with SSL session key, and encrypts them with
the stored public key. The ciphertext is sent to the target server as an en-
crypted cookie. After the SSL server decrypts the ciphertext, it will recover
the password since it knows the session key. This improvement enables that a
user is free from checking SSL indicators at any time except the registration
period. As a result, the present protection scheme provides to the user the
following advantages:

free from identifying closed lock;

free from identifying HTTPS and URL in the status bar;
free from identifying the certification;

free from identifying self-signing certificate.

free from dictionary attack.

The organization of the paper is as follows. Section 2 introduces the pre-
liminaries. Sections 3 describes the present scheme. Section 4 addresses our
implementation. Section 5 analyzes relevant work. Section 6 concludes the

paper.

2 Preliminaries

2.1 Phishing and Pharming

In a phishing attack, an adversary duplicates a known site of business (e.g.,
www.paypai.com mimics www.paypal.com) and then sends spams to encour-
age users to visit the malicious site. When users click on the link within the
spam email, they are taken to the fake site to divulge critical information.

Pharming accomplishes the same thing as phishing, but with more stealth
and without spam email. In this case, the adversary plants false code on
the domain name server (DNS) itself, so that anyone who enters the correct
website address will be directed by the DNS to the fake site.

2.2 HTTPS-enabled Browser

Of all security techniques against Internet attacks, SSL3.0 [13] is the de facto
standard for end-to-end security and widely applied to do secure transactions
such as Internet banking. When the client’s web browser makes a connection
to an SSL-enabled web server over HTTPS, the browser must verify the
server’s certificate, all the CA’s certificates, name of the server certificate
against URL status, and expiry. If any of these checks fails, the browser

Minimizing SSO Effort in Verifying SSL Anti-phishing Indicators 51

warns the user and asks the user if it is safe to continue. If the user chooses
positively, she may permit the SSL connection to continue even though any or
all of these checks have failed [19], expiry or self-signed certificates. In reality,
researchers have shown that users routinely ignore such security warnings
[20, 21, 22]. Unfortunately, this kind of ignorance enables the phishing attack.
In other words, SSL merely guarantees that the received message is authentic
and confidential in the transmission, but it does not care about the message
before or after transmission.

2.3 HTTP Cookie

HTTP cookies (see http://en.wikipedia.org/wiki/HTTP_cookie) are parcels
of text sent by a server to a web browser and then sent back unchanged by the
browser each time it accesses that server. Since cookies may contain sensitive
information (user name, a token used for authentication, etc.), their values
should not be accessible to other computer applications.

A cookie contains the name/value pair, an expiration date, optional se-
cure flag and version number, a path/domain name. The name/value pair
is the content of the cookie; the expiration date tells the browser when to
delete the cookie; if the secure flag is set, the cookie is intended only for
encrypted connections; the path/domain tells the browser where the cookie
has to be sent back. For security reasons, the cookie is accepted only if the
server is a member of the domain specified by the domain string. Therefore,
a cookie is actually identified by the triple name/domain/path, not only the
name. In other words, same name but different domains or paths identify dif-
ferent cookies with possibly different values. Generally, the browser objects
including cookie are under control of same origin policy.

2.4 Same Origin Policy

The same-origin policy is an important security measure in modern web
browsers for client-side scripting (mostly JavaScript)!. It governs access con-
trol among different web objects and prevents a document or script loaded
from one “origin” from getting or setting properties of a document from a
different “origin”, where an “origin” is defined using a tuple <domain name,
protocol, port>.

1 Internet Explorer uses an alternative approach of security zones in addition to the same-
origin (or “same-site”) policy.

52 Yongdong Wu, Haixia Yao and Feng Bao

3 The Encrypted Cookie Scheme

3.1 Attack Model

Fig.2 illustrates the participants involved in on-line transaction model: user,
SSL server, client/browser and attacker. The user will authenticate herself
with SSO (Single-Sign-On) to the SSL server, while the SSL server authen-
ticates itself with a certificate issued by a certificate authority. The browser
is an application such as Firefox™ or Microsoft Internet Explorer™ which
helps the user to make transactions. When a user requests a secure page,
the browser will verify the server’s certificate with HTTPS/SSL protocol. If
the server is authentic, both sides will negotiate a session key for the secure
communication, and the user’s browser status line shows a security lock. Ad-
ditionally, if the user clicks the security lock, a popup window will show the
security information on server certificate. The attacker aims to impersonate
an innocent user by forging an SSL site and luring an innocent user to disclose
sensitive data.

i % Genuine pages

SSL Channel

i& Forged pages

Browser

Fig. 2 Attack model

In this paper, suppose that an adversary can create an arbitrary self-
sign certificate, but the user ignores the security warning and accepts the
certificate in any transaction period. Thus, the attacker can insert, delete and
tamper the communication data at will. This phishing attack is powerful such
that many countermeasures are invalid. For example, SecurID [23] provides
One-Time Password for two-factor authentication and has been deployed in
a lot of financial institutions, but it is still vulnerable to the phishing attack.

Minimizing SSO Effort in Verifying SSL Anti-phishing Indicators 53

3.2 ECS Modules

Suppose a server generates a public/private key pair PK/SK, and obtains
a certificate C4 from a CA (e.g., www.verisign.com) whose public key is
hard-coded in the user’s browser. To improve the browser’s security against
phishing attack, ECS encrypts the user’s sensitive data with server’s public
key PK and transmits the encrypted cookie to the server. To this end, ECS
has 3 modules: Registering cookie, reading cookie, and verifying cookie.

3.2.1 Registering cookie

After the browser builds an SSL channel with the registration server, it dis-
plays a form as Fig.1 for registration. Before filling in the form, a user should
carefully verify all the security indicators, i.e., closed lock, HI'TPS URL sta-
tus and attributes of server certificate (subject, issuer, expiry, etc). If all the
SSL indicators are in place, the user will input her personal data <username,
password>, and send the complete form to the server. Then the server will
return a cookie whose content as

C=PK | m| Aux, (1)

where m =<username, password>, Aux is the auxiliary information such
as certificate version of the server in case of certificate upgrading. Moreover,
the server saves username and the hash of password into a database B.

3.2.2 Reading Cookie

As we mentioned in the Section 2.4, same origin policy makes sure that a
cookie is read only when the requested source is the same as the stored one.
If a user visits a HT'TPS website whose domain matches the cookie domain,
the browser will read the cookie after setting up an SSL channel with the
transaction server. Then the browser will encrypt the username/password
pair to generate a cookie whose content is

c=E8(PK,m®k®Ca,r), (2)

where r is a random number, k is the the SSL session key, and £(PK,) is a
CCA2 encryption algorithm (e.g., ElGamal cryptosystem). Afterwards, the
browser generates cookie C, further sends to the server the cookie as an SSL
traffic, i.e., cookie’s encryption F(k,C), where F(-) is a symmetric cipher
such as AES such that no adversary can eavesdrop the traffic.

Remark: a client can not distinguish an adversary from a genuine server
by comparing the received public key with the stored public key PK in the

54 Yongdong Wu, Haixia Yao and Feng Bao

transaction since a genuine server may update its public key (ref. Subsection
4.3) from time to time.

3.2.3 Verifying cookie

After receiving the encrypted cookie F(k, C), the server decrypts it to obtain
cookie content ¢. Then it calculates m = D(SK, ¢) @ k@® C4 with the decryp-
tion algorithm D(-) and its private key SK. Based on the user database B,
the server can verify the identity of the user.

3.3 Security Analysis

Based on same origin policy, a cookie will not be read from the user’s ma-
chine unless the transaction URL domain is identical to the registration URL
domain. Hence, to launch a phishing attack, the following diagram should be
employed.

e an attacker A forges a website with the same URL as the genuine site;

e A selects a public/private key pair, and self-signs his public key to create
a certificate C 4. Please note that public key of A must be different from
that of a genuine server, otherwise, A can not setup SSL channel with the
user;

e A lures a user to visit the bogus site. For example, by sending spam email;

e The user visits the bogus site and ignores the certificate warning.

To obtain the sensitive data of a user so as to impersonate her with the above
diagram, an adversary 4 will start man-in-the-middle attack as follows,

e attacker A4 produces a bogus certificate C 4, and sends a polynomial num-
ber ny of queries to the client so as to obtain the ciphertext

ci:é'(PK,m@kiEBC'A,ri),z’:1,2,...,n1,

where k; is the SSL session key, and r; is random.

e attacker A tries to impersonate the user by connecting to the genuine
server. Both A and server negotiate an SSL session key k with the server.
Clearly, k ® Cx # k; ® Cy for any i € [1,n4]

e attacker A continues to send a polynomial number no of queries to the
user so as to obtain the ciphertext

cj :5(PK7mEBkjEBC~’A,Tj)7j:n1+1,...,n1 + no,

where k; is the SSL session key, r; is random, and k ® C4 # k; ® C 4 for
any j € [ny + 1,n1 + nal.

Minimizing SSO Effort in Verifying SSL Anti-phishing Indicators 55

Since £(+,-) is CCA2, it is semantically secure such that the distribution
of £(+,+) is uniform for any m. Thus,

'H(m):H(m|ci,ki@CA),i:1,2,...,n1 + na, (3)

where H(X) represents the entropy of variable X. Informally, m is inde-
pendent from ¢; due to the random number r;, thus the query results
provide negligible information to adversary .4 in generating an encryption
c=E(PK,m®k®Cj,). Therefore, to impersonate a user, A has to generate
a well-formed ciphertext ¢ = E(PK,m ® k ® Cy,r) from (PK,k,C4) and
some 7 but without knowing m.

If A succeeds in generating ¢ at non-negligible probability, A queries the
server with ¢ so as to obtain m @ k@ C4. Thus E(PK,) is not secure against
chosen ciphertext attack, i.e., £(PK,-) is not CCA2. It contradicts with our
assumption on £(PK,-).

On the other hand, Eq.(2) demonstrates that the present scheme is secure
against dictionary attack.

4 ECS Implementation

In our implementation, Firefox browser (http://developer.mozilla.org/
en/docs/Download_Mozilla_Source_Code) and Apache server are used as
testbed for demonstrating ECS. A module in Firefox is used to encrypt
<username, password> to generate an encrypted cookie in the reading stage,
and a PHP program is used to generate cookie and verify the encrypted
cookie.

4.1 Registration Process

The registration is performed for the first time when a user visits an SSL
server without a cookie. In order to make use of on-line transaction, users
usually obtain sensitive data such as password via out-of-band channel (e.g.,
face-to-face delivery, mail) in advance. To register a user on line, the server
will send a form Fig.1.

After a user checks all the security indicators (i.e., lock, URL,certificate),
she fills in the form and submits the complete form to the SSL-server. After-
wards, the client will receive an HTTPS page generated with code segment
in Fig.3 from the SSL-server. When the browser cookie is enabled, the new
cookie will be stored in the user site.

56 Yongdong Wu, Haixia Yao and Feng Bao
<7php

$value = C;

$expiry=3600x 24x 365;

setcookie(“ECS_USER”, $value, time()+$expiry, “/”, “192.168.137.211”, 1);
7>

Fig. 3 Setting up an example cookie. The cookie name is ECS_USER, its value is
the string C' which is generated in Eq.(1), its expiry is of 365 days. The path/domain
/192.168.137.211 tells the browser to send the cookie when requesting a page of the
domain 192.168.137.211.

4.2 Transaction Process

After registration, a cookie which including the username/password and
server public key is stored in user’s machine. If a user likes to make a trans-
action, it is unnecessary to input her password any more, i.e., Fig.2 will not
be shown in the transaction period. With regard to Fig.4, the cookie will be
read when the user visits the authentic server based on the same origin policy,
and processed according to the proposed scheme in Section 3. Afterwards, the
encrypted cookie is sent to the server for verification. Concretely,

e In the member function nsCookieService:: GetCookielnternal() of the source
file mozilla\ netwerk\ cookie\ src\nsCookieService.cpp, we add ECS code for
searching the cookie with name “ECS_USER”, reading the cookie value,
parsing the value according to Eq.(1), and generating ¢ with Eq.(2).
Moreover, since either IETF RFC2109 or cookie processing module uses
semi-colon (0x3B), addition (0x2B), comma (0x2C), LF (0x0A) and NUL
(0x00) as separators, and the ciphertext ¢ may have the separators, ECS
encodes ¢ such that these separators do not occur in cookie. Technically,
As shown in the following table, ECS scans ciphertext ¢ byte by byte, and
replaces byte “\” (‘or ¢” 47, «” LF, NUL) with two bytes “\\” (or
“NA? A\B”,N\C?,“\D”, “\E” respectively).

Original symbol(ASCII code) Coded symbols

backslash (0x5C) < “\\” (0x5C5C)
semi-colon (0x3B) < “\A” (0x5C41)
addition (0x2B) « “\B” (0x5C42)
comma (0x2C) < “\C” (0x5C43)
LF (0x0A) < “\D” (0x5C44)

NUL (0x00) « “\E” (0x5C45)

e At the server side, after receiving the cookie, the server decodes the value
to ciphertext ¢ by replacing two bytes “\\” (or “\A”, “\B” “\C”,“\D”,
“\E”) with one byte “\” (or “” , “+7, “” LF, NUL resp.) sequentially,
then decrypts ¢ with its private key. If the decrypted password matches
the stored one, the user is authentic.

Minimizing SSO Effort in Verifying SSL Anti-phishing Indicators 57

Browser Server

Decode to ¢

Calculate ¢
with Eq.(2)

Read cookie Send/Receive Decrypt ¢

GetCookielnternal ()

cookie

Encode ¢

Verify password

Fig. 4 User authentication process. The shadow units are developed for ECS.

4.3 Refreshment Process

When the server receives the cookies from the client, it will check the version,
and select the private key based on the version. The private key enables the
server to decrypt the ciphertext correctly. If the username/password matches
a registration record of database B, the user is authenticated to perform on-
line transaction. Furthermore, if the version is not latest, the server will send
a new cookie ¢ with Eq.(1) including the old password, new public key and
new version. If the new cookie ¢ has the same password as that of the old
cookie ¢, the client/browser will replace the old cookie with the new one.

5 Related work

Since phishing attack is a realistic risk in on-line transaction, there are many
countermeasures on phishing attacks based on different security models.

5.1 Manual-checking Mechanism

Synchronized Random Dynamic (SRD) scheme [27, 28] defines an internal
reference window whose color is randomly changed, and sets up the boundary
of the browser window with different colors according to certain rules. If the
boundary of a pop-up window de-synchronizes with that of the reference
window, the user concludes that a web-spoof attack is under way. However, it
is impractical for the device of small screen (such as hand-held device) because
it is inconvenient to open two windows and switch between the windows.
Moreover, the attacker can create a bogus reference window to overlap the
original reference window.

RFC2617 [29] proposes a Digest Access Authentication scheme which em-
ploys password digest to authenticate a user. PwdHash [11] authenticates a
user with a one way hash of the tuple <password, domain name> instead of
password only so as to defeat the visual mistake on URL. Moreover, Dynamic

58 Yongdong Wu, Haixia Yao and Feng Bao

Security Skins (DSS) [30] creates a dedicated window for inputting username
and password so as to defeat bogus window. After both server and client will
negotiated a session key, a remote server generates a unique abstract image
called as “skin” that automatically customizes the browser window or the user
interface elements in the content of a remote web page. Similarly, the client
browser independently computes the same image. To authenticate content
from an authenticated server, the user needs to perform one visual match-
ing operation to compare two images. In addition, since username should be
disclosed to the server before authentication, username will be known to the
phishing attacker.

Adelsbach et al. [31] combines all concepts in an adaptive web browser
toolbar, which summarizes all relevant information and allows the user to
get this crucial information at a glance. As this toolbar is a local compo-
nent of the user’s system, a remote attacker cannot access it by means of
active web languages. The advantage of this implementation is that a user
has a permanent and reliable overview about the status of his web connec-
tion. Once a user has personalized the browser’s GUI, users achieve sufficient
security against visual attacks. Users only have to verify the web browser’s
personalization and the certificate information, which is always displayed. A
disadvantage of the toolbar described above is that the user must recognize
his personal image at each login.

5.2 Auto-checking mechanism

As an improvement on [31], ADSI (Automatic Detecting Security Indicator)
[32] generates a random picture and embeds it into the current web browser. It
can be triggered by any security relevant event occurred on the browser, and
then performs automatic checking on current active security status. When
a mismatch of embedded images is detected, an alarm goes off to alert the
users. Since an adversary is hard to replace or mimic the randomly generated
picture, the web-spoofing attack can not be mounted. However, ADSI can
not prevent man-in-the-middle phishing attack with self-sign certificate.

Adida [33] presents a FragToken scheme which employs the URL fragment
as an authenticator, and change-response for authentication. FragToken is
only useful in low-security environment (e.g., Blog) since it is vulnerable to
man-in-the-middle attack.

By examining the domain name, images and links, SpoofGuard [34] exam-
ines web pages and warns users when a certain page has a high probability
based on the blacklist in the server site.

Cache Cookie [35] utilizes the browser cache files to identify the browser.
It does not install any software into the client side and hence is easy of
deployment. Another cookie based scheme is called Active cookie scheme
[36] which stores both the user’s identification and a fixed server IP address.

Minimizing SSO Effort in Verifying SSL Anti-phishing Indicators 59

When a client visits the server, the server will redirect the client to the fixed
IP address. In short, Active cookie scheme acts as replacing URL domain
name with IP address so as to defeat pharming attack.

Karlof et al. [18] proposed the locked same-origin policy (LSOP) enforces
access control for SSL web objects based on servers’ public keys. LSOP grants
access only if the stored public key is identical to the public key sent with a
new connection. Applying the locked same-origin policy to SSL-only cookies
yields locked cookies, an extension to SSL-only cookies which binds them
to the public key of the originating server. However, as pointed out in [18],
LSOP does not consider the input problem such as SSO. For example, LSOP
is vulnerable to the most popular phishing attack which asks an innocent
user to fill in a password/account page as Fig.1.

For comparison, Table 1 lists the security performance of related counter-
measure and ECS. It demonstrates that the user effort for transaction security
is minimal. The weakness is that ECS asks the client to install a patch in the
client browser once. Nonetheless, this one-time installation is worthy for the
minimal effort in the transaction in comparison with the tedious certificate
management work in client-side SSL scheme.

Table 1 Comparison in terms of client effort in on-line transaction.

Free from|Free from|Free from |Free from| Free |Free from
checking | checking | checking | checking | from [installing
URL | SSL lock |Cert warn| GUI |MiMA| patch

Pwdhash[11] v v X v X X
Client SSL [13] v v x v v v
LSOP[18] X v X X X X
SRD[28] v v X X X X
DigestAccess[29] X X X v X v
DSS[30] X v X X X X
FragToekn[33] X X X v X v
SpoofGuard[34] X X X v X X
ActiveCookie[36] v X X X X v
Present ECS v v v v v X

URL: https://domain;

SSL lock: the closed SSL lock on the status bar;

Cert warn: a pop-up window for self-signed /non-signed certificate;

GUI: the browser window against a reference window;

MiMA: man-in-the-middle attack; It has minor difference from general MiMA.

Patch: (source/exectutable) code inserted in browser;

+: Client-side SSL does not install any software patch, but it has to manage
certificates with much effort.

60 Yongdong Wu, Haixia Yao and Feng Bao

6 Conclusions

Users’ psychological acceptance of an authentication mechanism is vital to its
success [37]. However, users’ interpretations of “secure” web connections vary
significantly, and many users have trouble accurately interpreting browser
security indicators and cues, such as URL bar, locked icon, certificate dialogs,
and security warnings [21].

The encrypted cookie scheme ECS minimizes the user effort and guaran-
tees that only the target server can obtain the cookie. It does not modify the
access role and protocol but the cookie reading module, hence it is easy for
deployment.

References

1. Zhensheng Guan, Invited talk in International ICT Security Exhibition & Conference,
Guangzhou, China, Nov. 28, 2007.

2. Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach, “Web spoofing: An
Internet Con Game,” 20th National Information Systems Security Conference,1997.
http://www.cs.princeton.edu/sip/pub/spoofing.html

3. Serge Lefranc, and David Naccache, “Cut and Paste Attacks with Java,”
http://eprint.iacr.org/2002/010.ps

4. Evgeniy Gabrilovich, and Alex Gontmakher, “The homograph attack,” Communica-
tions of ACM, 45(2):128, 2002.

5. Martin Johns, “Using Java in anti DNS-pinning attacks,” http://shampoo.antville.
org/stories/15666124/,February2007.

6. Avivah Litan, “Phishing Attack Victims Likely Targets for Identity Theft,” in Gartner
First Take FT-22-8873. 2004, Gartner Research

7. Microsoft. Microsoft security bulletin MS01-017: Erroneous VeriSign-issued dig-
ital certificates pose spoofing hazard,March 2001. http://www.microsoft.com/
technet/security/Bulletin/MS01-017 .mspx

8. Tyler Close, “Waterken YURL,” http://wuw.waterken.com/dev/YURL/httpsy/

9. Russell Housley, Warwick Ford, Tim Polk, and David Solo, “Internet X.509 public
key infrastructure certificate and Certificate Revocation List (CRL) profile,” 2002.
http://tools.ietf.org/html/rfc3280

10. V. Benjamin Livshits, and Monica S. Lam, “Finding security vulnerabilities in Java
applications using static analysis,” USENIX Security Sym., pp.271-286, 2005.

11. Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C. Mitchell, “A
Browser Plug-in Solution to the Unique Password Problem,” Usenix Security Sym-
posium, 2005.

12. mozilla.dev.security, “VeriSign Class 3 Secure Server CA?,” http://groups.google.
com/group/mozilla.dev.security/browse_thread/threa’,d/6830a8566de24547/
Obe9dealc274d0c5, March 2007.

13. A. Freier, P. Kariton, and P. Kocher, “The SSL Protocol: Version 3.0,” Netscape
communications, Inc., 1996.

14. Tieyan Li, and Yongdong Wu, “Trust on Web Browser: Attack vs. Defense,” First
MiAn International Conference on Applied Cryptography and Network Security, LNCS
2846, pp.241-253, 2003.

15. Jeffrey Horton, and Jennifer Seberry, “Covert Distributed Computing Using Java
Through Web Spoofing,” ACISP, pp.48-57, 1998. http://www.uow.edu.au/ jen-
nie/ WEB/JavaDistComp.ps.

Minimizing SSO Effort in Verifying SSL Anti-phishing Indicators 61

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

F. De Paoli, A.L. DosSantos, and R.A. Kemmerer, “Vulnerability of Secure Web
Browsers,” National Information Systems Security Conference, 1997.

Batya Friedman, David Hurley, Daniel Howe, Edward Felten, and Helen Nissenbaum,
“Users’ Conceptions of Web Security: A Comparative Study,” Conference on Human
Factors in Computing Systems, pp.746-747, 2002.

Chris Karlof, Umesh Shankar, J.D. Tygar, and David Wagner, “Dynamic pharming
attacks and the locked same-origin policies for web browsers,” CCS 2007.

Security Space and E-Soft, “Secure Server Survey,” http://www.securityspace.com/
s_survey/sdata/200704/certca.html, May 2007.

Stephen Bell, “Invalid banking cert spooks only one user in 300,” ComputerWorld
New Zealand, http://www.computerworld.co.nz/news.nsf/NL/-FCC8B

Rachna Dhamija, J. D. Tygar, and Marti Hearst, “Why phishing works,” SIGCHI
Conference on Human Factors in Computing Systems, pp.581-590, 2006.

Min Wu, Robert C. Miller, and Simson Garfinkel, “Do security toolbars actually pre-
vent phishing attacks?” the SIGCHI Conference on Human Factors in Computing
Systems, pp.601-610, 2006.

RSA Security Inc, “SecurlD product description,” http://rsasecurity.com/node.
asp?id=1156.

Sudhir Aggarwal, Jasbinder Bali, Zhenhai Duan, Leo Kermes, Wayne Liu, Shahank Sa-
hai, and Zhenghui Zhu, “The Design and Development of an Undercover Multipurpose
Anti-Spoofing Kit (UnMask),” 23rd Annual Computer Security Applications Confer-
ence, 2007.

M. Burnside, Blaise Gassend, Thomas Kotwal, Matt Burnside, Marten van Dijk, Srini-
vas Devadas, and Ronald Rivest, “The untrusted computer problem and camera-
based authentication,” International Conference on Pervasive Computing, LNCS 2414,
pp-114-124, 2002.

Pim Tuyls, Tom Kevenaar, Geert-Jan Schrijen, Toine Staring, and Marten van Dijk,
“Visual Crypto Displays enabling Secure Communications,” Proceeding of First Inter-
national Conference on Security in Pervasive Computing, pp.12-14, 2003.

Yougu Yuan, Eileen Zishuang Ye, and Sean Smith, “Web Spoofing,” 2001. http://
www.cs.dartmouth.edu/reports/abstracts/TR2001-409/

Eileen Zishuang Ye, and Sean Smith, “Trusted Paths for Browsers,” ACM Transactions
on Information and System Security,8(2):153-186, 2005.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L.
Stewart. HTTP Authentication: Basic and Digest Access Authentication, June 1999.
http://www.ietf.org/rfc/rfc2617.txt.

Rachna Dhamija, and J.D. Tygar, “The Battle Against Phishing: Dynamic Security
Skins,” Symposium On Usable Privacy and Security (SOUPS) 2005.

Andre Adelsbach, Sebastian Gajek, and Jorg Schwenk, “Visual Spoofing of SSL Pro-
tected Web Sites and Effective Countermeasures,” Information Security Practice and
Experience(ISPEC), LNCS 3469, pp.204-216, 2005.

Fang Qi, Tieyan Li, Feng Bao, and Yongdong Wu, “Preventing Web-Spoofing with
Automatic Detecting Security Indicator,” ISPEC, LNCS 3903, pp. 112-122, 2006.
Ben Adida,“BeamAuth: Two-Factor Web Authentication with a Bookmark,” CCS
2007.

Neil Chou, Robert Ledesma, Yuka Teraguchi, Dan Boneh, and John C. Mitchell,
“Client Side Defense Against Web-based Identity Theft,” http://crypto.stanford.
edu/SpoofGuard/#publications

Ari Juels, Markus Jakobsson, and Tom N. Jagatic, “Cache Cookies for Browser Au-
thentication,” IEEE Symp. on Security and Privacy, pp.301-305, 2006.

Ari Juels, Markus Jakobsson, and Sid Stamm, “Active Cookies for Browser Authenti-
cation,” http://www.ravenwhite.com/files/activecookies--28_Apr_06.pdf.

J. H. Saltzer, and M. D. Schroeder, “The protection of information in computer sys-
tems,” Proceedings of the IEEE, 63(9):1278-308, Sept. 1975.

