
Ubiquitous Privacy-Preserving Identity
Managment

Kristof Verslype and Bart De Decker

Abstract The increasing use of digital credentials undermines the owner’s privacy.
Anonymous credentials offer a powerful means to improve this. However, more is
needed w.r.t. usability. A user will indeed have to manage dozens of credentials
in the future: sporting club credentials, a digital driving license, e-tickets, etc. The
owner will want to use these anytime at any place. The credentials must remain
manageable as well and, in case of theft or loss, they must become unusable by
others and recoverable by the legitimate owner. A possible solution based on smart
card or SIM tokens is presented, in which user privacy is maximized. An evaluation
reveals both strengths and future challenges.

1 Introduction

A credential is a piece of information attesting to the integrity of certain stated facts:
properties about or rights of its owner. Examples are a driving license, money, an
identity card and a ticket.
Traditional digital credentials (e.g. X.509 certificates) pose a threat to the privacy

of the owner since they generally contain a unique identifier together with other per-
sonal data. This data is registered in databases, potentially with other data (shopping
behaviour, medical records, etc.). These data are not only interesting to the entity to
which the user shows the credential, but also to insurance companies, to marketeers,
etc. Databases containing personal data are thus very valuable and a point of attrac-
tion for (internal or external) attackers. They can also get lost, and possibly fall in
the wrong hands, as we saw recently in the UK.
Moreover, a user will have to manage dozens of credentials in the future: a sport-

ing club credential, a digital driving license, digital prescriptions, cinema e-tickets,
etc. The problem of loss of privacy and identity theft will thus aggravate if we do

Department of Computer Science, K.U.Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
e-mail: firstname.lastname@cs.kuleuven.be

589

590 Kristof Verslype and Bart De Decker

not offer the proper techniques to the users in a practical way. At the same time, the
user needs access to these credentials anywhere at any place. E.g., it is not accept-
able that the user has a smart card for each credential or that the credentials can only
be used on a single computer. The credentials must thus remain easily manageable.
In case of theft or loss, credentials must be useless for others and recoverable by the
legitimate owner.
Privacy enhancing credentials are being developed and implemented. These al-

low the user to select what data will be released. However, more is needed. This
paper examines how a user can manage and use credentials such that the above
requirements hold. Therefore, a portable user-unique token (e.g. a smart card) is
introduced, as well as an online server where credentials can be stored in a privacy-
preserving way, while preventing loss and exposure of credentials and related cre-
dential data. This paper is the result of an exercise in which we tried to maximize
the privacy of the user, while still taking into account the other requirements. The
exercise revealed future problems and challenges that must be tackled in order to
have a deployable system.
Section 2 touches cryptographic and technology related aspects. Section 3 dis-

cusses the storage and management of credentials. Section 4 presents the roles and
high level interactions. Section 5 presents the requirements. The protocols are de-
scribed in section 6, and evaluated in section 7. Section 8 refers to related work.
Section 9 concludes and discusses future work.

2 Technologies

This section briefly touches aspects about modular exponentiations, zero-knowledge
proofs and key lengths and discusses anonymous credentials.

2.1 Some Cryptographic Aspects
A modular exponentiation (modex) has the form h← ga mod n. Finding a out of
h, g and n is infeasible for sufficiently large numbers (DL assumption).
A zero-knowledge proof proves some knowledge of the prover to a verifier,

without revealing any other information. The notation in [9] will be used in this
paper: PK{α : y = gα mod n} denotes a ”zero-knowledge proof of knowledge of
an integer α such that y = gα mod n with y,g and n publicly known”. A message
can be added to the proof: PK{α : y= gα mod n}(message). The proof can only be
correctly verified if the message is not modified.
As technology is evolving, 1024 bits modulus length will soon be insufficient;

2048 bits, both for DL and RSA, will suffice till 2022 and symmetric keys need to
have a length of at least 109 bits to be secure till 2050 [12].

Ubiquitous Privacy-Preserving Identity Managment 591

2.2 Anonymous Credentials
Anonymous credentials were introduced by Chaum [10]. Idemix [8] andU-Prove [7]
are two credential systems that are being developed. They allow for anonymous yet
accountable transactions between users and organizations and allow to show proper-
ties of some credential attributes while hiding the others. E.g. using an anonymous
credential containing one’s name, date of birth and address, one can prove that he is
older than 18, without revealing anything else. Credentials can have features such
as an expiry date, the number of times it can be shown and the possibility to be
revoked. A mix network ([15], [11]) is required for network layer anonymity. The
two most important (simplified) anonymous credential protocols are getCred() and
showCred().

• In cred← getCred(attributes, f eatures) an issuer issues a new credential cred
to the receiver. The credential attributes and features are given as input.

• In trans← showCred(cred, props, [msg]), the prover shows properties props of
credential cred to the verifier resulting for the verifier in a transcript that can
serve as proof in case of disputes. By giving message msg as (optional) input, the
prover additionally signs msg anonymously: the verifier knows that the signer
fulfills the revealed properties.

A U-Prove modification was proposed [7] to enforce the collaboration of a smart
card or SIM token, containing a credential secret, during a credential show by a
device. A similar Idemix modification exists. The notation becomes:

• (secret;cred)← getCred(attributes, f eatures). The credential issue results in a
credential on the device and a secret on the token.

• trans← showCred(secret;cred, props, [msg]). The credential is shown by the
user’s computer, with the help of the token, which needs to know the correspond-
ing secret. The secret never leaves the token in cleartext.

Anonymous credential systems heavily rely on complex zero-knowledge proofs
an thus on modular exponentiations. Both getCred() and showCred() require only
a single modex on the token if the token is involved.

3 Credential Manager and Credential Repository

We distinguish between the Credential Repository and the Credential Manager. The
former stores the user’s credential data such as credentials, but also transcripts, while
the latter enables usage and management of this data.
TheCredential Repository can be situated locally at the user’s side, on a remote

server or even a hybrid combination is possible. A purely local credential store, on
a device such as a USB-stick, smart card, PDA or mobile phone, can have dramatic
consequences in case of loss, theft or damage of the device. If a server-based solu-
tion is applied, tampering, deletion, reading or use of credential data and linkage of
credential data to the owner by the server must be prevented. Also, an Internet con-
nection is required, which will not always be available, and which potentially slows

592 Kristof Verslype and Bart De Decker

down the system. Therefore, a hybrid solution is presented; permanent remote stor-
age is combined with local caching.
The Credential Manager runs the credential protocols and therefore, it must be

trusted by the user; e.g. it should never show a credential to another party without the
user’s consent. The Credential Manager is the only place where credential data may
exist in cleartext. If the Credential Manager runs on a server, it cannot be trusted
by the user, as it is completely outside the user’s control. Also, network access
is required. If the Credential Manager runs locally on a device which is a user’s
PDA, mobile phone or PC, it is relatively trustworthy, but a Trojan horse or malware
cannot be excluded in case of a software implementation. A Credential Manager
that runs on a computer outside the user’s control is much more dangerous (e.g. a
computer in a public library or shop). If the Credential Manager runs entirely on a
secure token such as a smart card, the Credential Manager is trustworthy. This paper
focuses on a more realistic approach, where most of the computation is outsourced
by the token to the client device to which the token is connected.

4 Roles and Interactions

An overview of the roles and their most important interactions is given in figure 1.
Token T is a SIM or smart card owned by the user who inserts it in a client device
D in order to manage or use his credentials. Token T locally caches a part of the
credential data. The client device D will do most of the computations (outsourced
by T). D is also responsible for the network connection and for the token-user in-
teractions. The dashed part of D is trusted by the user. This part can for instance
be a sealed smart card reader with limited user interaction capabilities (e.g. small
screen) on a public computer. The Online RepositoryOR stores almost all the user’s
credential data. The credential issuer I issues new credentials to the user. These cre-
dentials can be shown to a service provider SP and stored on the OR. During token
issuance and initialisation, as well as during token recovery, a token issuer TI and
and a notary1 are needed.

Fig. 1 Overview of the different roles and their interactions.

5 Requirements

The requirements on which we focus are now summed up.

1 A trusted intermediary in contract signing, testaments, etc. Exists in many countries.

Ubiquitous Privacy-Preserving Identity Managment 593

• User privacy. The OR must be unable to link actions or data stored on the OR to
an identifiable user (P1). The anonymity set w.r.t. the OR must thus also be kept
as large as possible, i.e. profiling must be minimized. The amount of personal
data the (potentially untrustworthy) deviceD can extract must beminimized (P2).
Eavesdroppers and attackers must not be able to derive any personal information
(P3).

• Integrity. The OR must be unable to tamper with uploaded credential data (I1).
This also means that theOR is unable to add or delete credential data. Abuse must
be provable (dispute handling). It must be impossible to tamper with messages
by external attackers (I3) or by the intermediary D (I2).

• Confidentiality. It must be impossible for anyone to get hold of the sensitive data
such as protocol keys and credential secrets (C1).

• Access Control. In order to use/manage credential data, the user needs to au-
thenticate to the token, using a sufficiently strong user authentication mechanism
(A1). If there is a possibility that a thief obtains access to the owner’s token (e.g.
using the proper PIN), the legitimate owner should be able to revoke further us-
age of the token and access to the OR (A2). The OR must be ensured that the
user indeed has the right to use its services and that the user is indeed the owner
of the OR record he wants to access (A3). The user must be ensured that he is
communicating with the right I, OR and SP and vice versa (A4).

• Efficiency. Computational, interaction and storage efficiency are especially im-
portant w.r.t. the token, which has limited capabilities (E1).

• Functionality. Even without Internet connection, the user must be able to use a
limited set of credentials (e.g. a one show digital cinema ticket) (F1). The OR
must be able to limit the amount of storage space that can be used by a single
user (F2). Loss, theft or damage of the token should not result in loss of any
credentials or other credential data (F3).

6 Protocols

We start by presenting the most important data structures; next we describe the
protocols for issuing credentials, uploading credentials to the OR, downloading cre-
dentials from the OR and showing a credential to a service provider SP. We also
discuss some other protocols and aspects in lesser detail.

6.1 Data structures
This section shows the data structures on the online repository and token.
Each user has exactly one token T , which contains:
- An unextractable user-specific user master secret S. This secret is required to ac-
cess the user’s credential data (both locally and on the OR).
- A credential credT and a corresponding secret secretT . These allow to authenticate
anonymously to the OR. To do so, credT is off-loaded to the deviceD. secretT never
leaves the token. This way, the credential is linked to the token.

594 Kristof Verslype and Bart De Decker

- X.509 certificates certsigOR and certauthOR of the OR which allows to verify signatures
from and authentications of the OR.
- Locally cached credentials.
- The credential index file f ileindex, containing for each credential a tuple
(i,desc,receipt):
• i is an index for the credential, used only inside the token.
• desc contains a user-friendly credential name, a short description, and the cre-
dential attribute names. This allows T to locally search for the proper credential.
E.g. with what credential is it possible to prove that age> 18.

• receipt is a proof attesting that a credential is stored by the OR.

The Online Repository (OR) contains:
- Secret keys SKsig

OR and SKauth
OR and the corresponding certificates certsigOR and certauthOR

for signing and authentication purposes.
- For each upload credential, an (id,credE ,receiptOR)-tuple is stored:

• id is the unique index of the OR-record where the credential is stored. Each
credential of each user has its unique index.

• credE is the credential and credential (token) secret encrypted by T .
• receiptOR is the receipt, anonymously signed with credT . The OR can use it as a
proof in case of dispute. The signature (i.e. a transcript) can be deanonymizable
by a trusted third party.

6.2 Assumptions and Notation
We assume that (1) the user is already authenticated to the token, (2) all secret data
loaded in T ’s volatile memory will be removed from that memory by the T as soon
as it is no longer required in the protocol session and (3) the user is informed by T
about the protocol status at the end.
All the network connections involving D are integrity and confidentiality pre-

serving in which OR, I and SP identify and authenticate to D, while the client stays
anonymous. user↔ D and D↔ T connections are direct connections. We assume
that during one protocol execution, the same (secure) connection is used between
two parties, introducing linkabilities of actions during the protocol.
All the ciphers are integrity preserving. This can easily be done by adding a MAC

before encryption. The numbers g and p are generated byOR, publicly available and
stored by T . p is prime and g is a generator of a multiplicative group with order q
with q|p−1 and p and q sufficiently large.
The method genKey(seed) generates a symmetric key. The method

sendEncrypted(PK,data) sends data to a receiver, via the potentially un-
trusted device D. Therefore, the data is encrypted using the public key of the
receiver.
Superscripts E and S denote a cipher and a signed message: ME ←

encrypt(K,M), M ← decrypt(K,ME)), and MS ← (M)sigK . The initiating entity
is put in bold: X→ Y . Optional steps are between square brackets [. . .].

Ubiquitous Privacy-Preserving Identity Managment 595

6.3 Token Issuance and Deployment
We focus on the realistic business model where the token issuer TI and the online
repository OR are two roles which may collaborate in order to obtain user informa-
tion; e.g., the TI and OR can be owned by the same company.
In order to obtain a token for getting access to the OR, the user first needs to reg-

ister to the OR. Therefore, payment and/or identification might be necessary. What
exactly is required, depends upon the applied business model. E.g. the government
can offer for free access to the OR for all its citizens and thus, it issues exactly one
token to each citizen. Therefore, the citizens need to prove their identity, e.g. with
their eID card.
To guarantee the user’s privacy and security, the user secret S on the token must

not be known by the OR or the TI and must thus be generated at the user side. On
the other hand, it is unacceptable that loss of S (e.g. damaged token) obliges the
user to renew all his - potentially expensive - credentials. Therefore, a secret sharing
scheme can be applied. E.g. TI could generate half of S, store it together with the
user id and put it on the token T . During token initialisation by the user, the other
half is generated on the token and sent to a user-chosen notary. Using both secret
halves, S is generated (e.g. by xoring) and the TI generated secret part is removed
from T .
Different parties can deploy our system. The government can issue eID cards,

combined with the credential management functionality. The government can man-
age the OR itself, or can outsource it to a commercial company. Other potential
token issuers are banks (bank card issuers), and GSM operators (issuers of SIM
tokens for mobile phones).
Although we focus on anonymous credentials, it is possible to extend the pro-

tocols to support other credential types as well, although this will have a negative
impact on the privacy. Computationally, it will be less intensive.

6.4 Receiving a Credential
In table 1, a credential is issued to the user (1). This results in a credential on the
deviceD and a corresponding secret on T . The credential is transfered byD to T (2).
Then, T generates a local index i for the new credential (3). This i is used together
with the user’s master secret S to generate a credential specific symmetric key K (4).
This K is used to encrypt both the credential and the corresponding secret (5). The
resulting cipher is stored (6). Potentially with the help of the user, a description of
the credential is made (7) and together with i added to the index file (8). The null-
value indicates that there is no receipt; the credential has not yet been uploaded to
the OR.

6.5 Upload Credential
Now, the credential is only stored on the token, making it vulnerable to loss. There-
fore, it is uploaded (see table 2). Afterwards, the credential can be deleted from the
token.

596 Kristof Verslype and Bart De Decker

1 T ↔ D↔ I (secret;cred, . . .)← getCred(. . .)
2 T ← D send(cred)
3 T i← getFreeLocalIndex()
4 T K← genKey(i||S)
5 T credE ← encrypt(K, (secret,cred))
6 T store(credE)
7 T[↔U] desc← composeDescription(cred)
8 T addToIndexFile(i,desc,null)
Table 1 The ’Receive Credential’ protocol

To upload the credential to the OR, the credential cipher stored by T is retrieved
from T ’s local storage (1). The corresponding symmetric key K is calculated (2).
Based on this K, the OR specific, global id for that credential is calculated (3). The
user proves with the help of both T and D that he is allowed to use the OR by
showing credT (4, 5). T now sends id and credE to OR (6, 7) and proves that he is
the owner of the OR-record with index id (8). By linking the zero knowledge proof
with credE , the OR is sure that D did not tamper with the credential cipher.
The OR generates for the user a receipt (9), stating that at a given moment, an

encrypted credential with a certain hash value was uploaded to record id. Newer
receipts invalidate older ones. The signed receipt is sent to and verified by T with
certsigOR (10, 11).
T now signs anonymously that receipt with credT (12). The resulting transcript

(signature) is stored by the OR, together with the credential cipher, id and receipt
(13). T adds the receipt to the index file (14). Both user andOR now have a proof that
can be used in case of dispute (e.g. user claims that a credential has been removed
by OR.

1 T credE ← retrieveLocalCred(i)
2 T K← genKey(i||S)
3 T id← gK mod n
4 T→ D send(credT)
5 T ↔ D→ OR showCred(secretT ;credT , possession)
6 T→ D→ OR sendEncrypted(PKOR , id)
7 T→ D→ OR send(credE)
8 T→ D→ OR PK{K : id == gK mod n}(credE)
9 OR receipt ← (id,H(credE), timestampOR)sigOR
10 T ← D←OR send(receipt)
11 T veri f y(certsigOR, receipt)
12 T ↔ D→ OR transOR← showCred(secretT ;credT , possession, receipt)
13 OR store(id,credE , receipt, transOR)
14 T updateIndexFile(i, receipt)
Table 2 The ’Upload Credential’ protocol

6.6 Show Credential
Table 3 shows how a credential is shown after it has been retrieved from the
OR. First, T searches for a credential able to prove the requested properties
propertiesshow (1,2). If more credentials can be shown, the user selects the most

Ubiquitous Privacy-Preserving Identity Managment 597

appropriate one. The credential decryption key K is calculated and the credential’s
OR-index id is retrieved from the receipt (3,4). D and T show together credT to the
OR (5,6) to prove that the user is allowed to use theOR. Now the OR-index id of the
required credential is sent to the OR (7). The OR replies with the credential cipher
and the corresponding receipt (8). We will later argue why this receipt is required
although it is not used in this protocol. T decrypts the credential cipher. This results
in a credential and its corresponding secret. No proof of possession of the OR-index
id is required as no changes on that record are performed and only the owner of
the record can decrypt the content. Finally, the credential is shown (11, 12) after the
user has given his consent (10).

1 T ← D← SP send(propertiesshow)
2 T[↔U] (i,desc, receipt)← f ind(propertiesshow)
3 T K← genKey(i||S)
4 T id← receiptT .id
5 T→ D send(credT)
6 T ↔ D→ OR transOR← showCred(secretT ;credT , possession)
7 T→ D→ OR sendEncrypted(PKOR , id)
8 T← D← OR send(credE , receipt ′)
9 T (secret;cred)← decrypt(K,credE)
10 U ↔ T user gives permission
11 T→ D send(cred)
12 T ↔ D→ SP showCred(secret;cred, propertiesshow)

Table 3 The ’Show Credential’ protocol

6.7 Other Relevant Aspects and Protocols
We touch token recovery and limiting the usage of the OR. Other protocols such as
f ileindex upload are not discussed in this paper.

Token recovery.The user requests a new token from the token issuer TI, which then
revokes the previous credT and puts a new one on a new token, as well as one half
of the user master secret S. After having contacted the notary, S is regenerated. If the
last version of the index file is not uploaded as a cipher to theOR, it can be recovered
by requesting for each id owned by that user the credential data from theOR, as it is
done in our show credential protocol, where the OR not only returns the credential
cipher, but the receipt as well. The index file can thus be regenerated/updated. For
each credential recovery, a new connection with the OR needs to be made to avoid
linkabilities. The credential data that were not yet uploaded to theOR are lost. Thus,
some credentials potentially need to be revoked and reissued.

Limiting usage of the OR. As a result of the unlinkability of OR records, the user
has a potentially unlimited online storage space. Limiting the size of a record is one
part of the solution. Secondly, the number of records per user can be limited. The
token issuer TI can issue two credentials cred∞T and credkT instead of a single credT .
The former is an unlimited show credential, the latter a k-show. credkT is only used
for step 5 in the upload protocol, in all the other situations, cred∞T is used. If the user
removes an OR record, he obtains a proof thereof, blindly signed by OR. Later, the

598 Kristof Verslype and Bart De Decker

user can use these proofs to update (reload) the k-show credential.

Keeping track of your anonymity.Different shows of the same U-Prove credential
are linkable, as well as shows of Idemix credentials over the same nym. The user’s
willingness to reveal personal data to a service provider might depend upon the
amount of data that has been revealed previously. Therefore, the user can decide
to store a profile tuple (idSP,spec, icred ,timestamp) on the token. spec describes (a
simplified propertiesprove) what properties of the credential referred to by icred were
shown. As the tokens usually do not have a clock, timestamp must be provided by
the client device D. For each service provider whereof the user stores such tuples, a
differentOR-record is needed. Each such profile record thus contains a set of profile
tuples. This can be uploaded in a similar way as the credentials. However, each time
a tuple is added, the record changes and thus a new receipt must be generated. This
receipt has the form (id,nb,acc,timestamp). nb is the number of tuples, acc has the
form H(...H(H(tuple1),tuple2, ...,tuplenb) and avoids tampering by the OR. Later,
the user can merge tuples, but this must be done in a trusted environment.

7 Evaluation

In this section, the requirements listed in section 5 are evaluated.

7.1 Privacy
The level of privacy is evaluated by analysing what personal information the differ-
ent entities can or cannot obtain. An overview is given in table 4.

OR 1.1 Size and time of action on OR-record with id id
1.2 Number of tuples per profile record
1.3 No inter-credential or credential-owner linkability

Eavesdropper 2.1 No linkability of packets
2.2 No information leakage on network layer.

Device 3.1 When, for how long are what entities contacted.
3.2 Credential and show specification, but no secrets or keys.
3.3 [I/O via client] Interception of commands, PINs, etc.
3.4 More properties can be revealed during a single show.

Illegal token access 4.1 [credT valid] Access to all credential data, not to secrets, keys.
4.2 [credT revoked] Access to local credential data, not to secrets, keys.

Table 4 Overview of the data the different entities can obtain.

P1 - During authentication, theOR first receives a credT credential show. If credT is
an Idemix credential, the OR cannot link different shows thereof. The proof of pos-
session of the record with index id does not reveal anything else. The OR can thus
not link records to each other or to the same user. A mix-network is required and
delay might be necessary to avoid time-based linking. The OR cannot distinguish
between credential retrieval for recovery or show purposes. We thus can theoreti-
cally have total unlinkability of credential records stored by the OR (1.3).
OR knows the index id, receipts and ciphers of credentials and privacy tuples.

The only evidence it can collect is the time actions on records are performed and the
cipher sizes (1.1). This can be reduced by increasing the amount of credential data

Ubiquitous Privacy-Preserving Identity Managment 599

cached by T and by padding uploaded data. OR also knows the number of uploaded
tuples per profile record (1.2). The OR thus only obtains a very limited usage profile
per credential record and per profile record.
P2 - The device D can get hold of credentials and show specifications during the
protocol executions (3.2). D also knows when actions are performed, and to whom
(3.1).D can thus get hold of many personal data. Users should be aware of this when
they use potentially untrusted computers.
In the absence of a sealed token reader with user I/O capabilities,D can eavesdrop

on the interactions between user and T , however this does not reveal new personal
attributes (except the user’s PIN!) (3.3). D can never get hold of ids, preventing it
from collaborating with OR, nor does it ever see credential secrets or the master
secret. However, by synchronizing and collaborating with OR, linkabilities can be
revealed.
D can show more (or other) properties to the SP than what is required in

propertiesshow. Showing insufficient properties to D will be detected because the
user will not obtain the expected privileges. The required user consent to T before
a credential is shown and the corresponding secret on T prevents D from surrepti-
tiously showing a credential (3.4).
P3 - Eavesdroppers or external entities cannot link different sessions if a mix net-
work is used (2.1). Secure network connections prevent eavesdropping (or tamper-
ing) on the sent data (2.2).
If an attacker obtains access to T (e.g. by obtaining the PIN), the privacy is ev-

idently further reduced because he can access many locally stored data (4.2). If
credT is not yet revoked, the attacker can get hold of the other, OR-stored, data as
well (4.1). As long as the tamper resistance is maintained, the attacker cannot get
hold of keys or secrets.

7.2 Integrity
I1 - Tampering with individual ciphers stored by the OR will be detected as the ci-
phers are integrity preserving. Deletion of an individual cipher in a profile record
can be detected by verifying the receipt. The OR also stores an (anonymous) signa-
ture on the receipt from T , to prevent charges based on out-dated receipts of T . By
slightly modifying the protocol, the proof generated in step 8 in the upload creden-
tial protocol can serve as a pre-proof that can be used by OR in case the protocol is
interrupted after step 11.
An unsolved problem is that token (and thus credT) renewal results in an inval-

idation of the user’s anonymous signatures on the receipts, invalidating the OR’s
evidence. Renewal of other certificates such as certsigOR must also be possible in a
transparent way.
I2 - T cannot be sure whether there is indeed a secure connection between D on the
one side and OR, I or SP on the other side. Therefore, OR, I and SP need to have
and enforce policies that require D to set up such a connection.
I3 - If there is no sealed card reader with I/O capabilities, the communications be-
tween T and user need to pass D, which can do modifications. This is a typical

600 Kristof Verslype and Bart De Decker

smart card/SIM token problem. Everything else sent or forwarded by D to T or an
external party is integrity protected. However, T is unable to check the integrity of
anonymous credentials due to T ’s computational limitations. OR signatures (e.g. on
receipts) can be verified by T as it has the right OR certificate, but still, D is needed
to check the validity of that certificate. Even if propertiesshow is signed and T has
the corresponding certificate, T cannot verify whether the certificate corresponds to
the right SP.

7.3 Access control
A1 - A PIN or biometric data can be used for user authentication to the token. No
credential (including credT) secret ever leaves T in an unencrypted form. The token
is thus required to access the OR or credentials. However, if no sealed token reader
with user I/O capabilities is used,D can intercept the PIN, giving it complete control
over the usage of T .
A2 - By revoking credT , further access to theOR by an illegitimate user is prevented.
However, this user can still access and use the locally cached credential data. These
credentials need to be revoked as well. Quickly revoking credT and all the locally
cached credentials is thus of utmost importance. Caching too many credentials lo-
cally should be discouraged. Access by an illegitimate user to the locally cached
profile tuples or the index file cannot be prevented if he knows the PIN.
A3 - Only users having a valid token (i.e. containing a valid credT) can use the OR.
If a user wants to change something in OR-record with index id, he needs to prove
that his token knows the corresponding key K. Thus, only the owner of that record
can do changes. Because the user’s token is the only entity that knows K, only the
owner can decrypt the data in the OR-record. A proof of ownership is not necessary
in this case.
A4 - D is trusted to connect to the proper I, SP. If it connects to the wrong (fake)
OR, that OR will not be able to issue valid receipts or show the right data.

7.4 Confidentiality.
C1 - We assume that the notary does not collaborate with the OR and that the token
is tamper proof such that secret data cannot be extracted. Each record on the OR is
encrypted using another key. If such a credential-specific key is leaked, only a single
credential record is compromised.

7.5 Storage
Our reference credential has 7 attributes. Tests showed that Idemix needs about
4.5Kb and about 7KB when using respectively 1024 and 2048 bit keys. This in-
cluded the credential itself, an XML description and the public key data.
Based on the assumptions in Figure 2 on the observation that T stores f iledesc,

credOR, secretOR, S, and a two OR certificates, about 50KB is needed to manage 50
credentials stored on the OR.

Ubiquitous Privacy-Preserving Identity Managment 601

Additionally managing 25 profile records (25 different SPs) requires about 7KB
as the receipts are about the same size as the credential receipts. The size of a single
privacy tuple will be dominated by the size of spec, which will seldom be larger
than 0.5KB if expressed in a compact way.
Thus, a realistic token with 100KB storage space satisfies in our setting.

Cred. Description
Cred. desc. 64 byte
att. names 7 * 32 byte
TOTAL: 288 byte

Receipt
id 128 byte
hash 20 byte
timeOR 8 byte
sigOR 128 byte
TOTAL: 284 byte

f ileindex entry
counter 2 byte
desc 288 byte
receipt 284 byte
TOTAL: 572 byte

Other
single character 1 byte
master secret S 256 byte
small cert. < 5 KB

Fig. 2 Estimated size of a credential description, a receipt, an index file entry and other data.

7.6 Performance
Token T will be the bottleneck in the protocols. Especially modex operations are
cumbersome. RSA signature verification as well as RSA encryption can be done
efficiently if the exponent is well chosen.Modex operationswith a small, numerical,
values (e.g. numerical attributes) are no problem either. The Chinese Remainder
Theorem can never be applied in our protocols. Based on these observations, only
the underlined step in the protocols require a ’hard’ modex by T : credential receive,
upload and show, need respectively one, four and two modex. This can be done in
174, 696, and 348 ms for 2048 bit moduli by a state-of-the-art smart cards (Infineon
SLE 88CFX4002P). Less expensive, but still considered as fast, smart cards require
much more time. E.g. the ST22N144 requires 1.7, 6.8 and 3.4 seconds to do the
same operations. The remaining operations on T are lightweight: sending, receiving,
storing, reading, en- and decryption of small amounts of data, user interactions and
generation of symmetric keys.
The showCred() and getCred() methods will dominate the steps performed by

the other entities. The time required by client and I, OR or SP to issue a credential
or to prove properties highly depends upon the involved attributes and properties.
Issuing our reference credentials required 25 modex for Idemix at 2048 bit. Show
tests required between 12 and 106 hard modex. Even the latter was only proving that
one’s age is in a given interval. We did not consider the use of Idemix pseudonyms.
Usually, the big half of the modex are on the user side. An Intel 1.83GHz CPU
needed on average about 80 ms for a 2048 bit modex.
The proposed protocols are thus computationally feasible and acceptable on ths

fastest smart cards. Theoretically, the prover part of very simple credential shows
can be done solely on these smart cards. However, even for these cards, still help
of the client device is indispensable to do more complex operations on credentials.
Future improvements (more powerful tokens, more efficient implementations, etc.)
will improve this, enhancing the security and privacy. Then, a secure connection
could be established between T and OR, I or SP. Still, a trusted sealed token reader
is required for user I/O.
Only small packets are transfered. The use of mix networks will likely introduce

most delay on the network level. By caching, network interactions are reduced. An

602 Kristof Verslype and Bart De Decker

implementation is required to test the real-life performance and feasibility of our
proposed protocols.

8 Related Work

Online Credential Repositories can be categorized in mechanism-aware or
mechanism-neutral systems [6]. Mechanism-aware repositories (e.g. MyProxy [13],
CredEx [16]) can support mechanism-specific protocols for credential retrieval. The
disadvantage of such systems is that only few types of credentials are supported.
Furthermore, the repository can access the credentials. Our repository can store ev-
ery type of credential and does not know the credential data. Several credential
repositories (Entrust Roaming PKI [1], Verisign roaming [5], etc.) are described in
[14], which lists some problems that most current repositories suffer from. First,
compromising the credential repository allows the attacker to perform an offline at-
tack on each credential [6, 14]. This can be a serious threat if the credentials are
encrypted using a password. Our approach uses strong encryption for credentials.
Furthermore, because the users’s credentials are unlinkable, it is infeasible to gain
access to all the credentials of one particular user. Second, most repositories use a
potentially untrusted client that can directly access the credentials. On public work-
stations, this of course poses a big security risk. Our approach minimizes trust put
in the client.
Multiple Identity Management Systems exist.Microsoft CardSpace [3] enables

the user to request from identity providers security tokens asserting claims (e.g. age
> 21). Although computationally less demanding, each show of a security token
requires a new interaction with the identity provider if unlinkability of shows has
to be achieved. More trust is put in the identity provider (the issuer). This entity
must also be trusted not to collaborate with service providers. Liberty alliance [4]
is based on federated identity management; service providers exchange personal
data about the user to facilitate user’s authentication. The default setup is thus not
privacy-friendly. However, the user can setup his own identity provider or strong
privacy preference can be set to the identity provider. The Higgins framework [2],
of which Idemix is part of, is a young project aimed at creating a common interface
layer that will allow various existing identity management systems to interoperate.

9 Conclusion and Future Work

This paper tried to maximize the user’s privacy, as well as the usability of his creden-
tials. Although feasible on the fastest smart cards, a number of problems appeared,
that are likely to appear in other similar solutions as well. E.g. the trust put in the
client device. The paper revealed those challenges that will need to be tackled in
order to have a deployable system that satisfies the user’s needs.
A prototype implementation is necessary and aspects such as the use of Idemix

nyms and mix network latency need to be looked at. A study of the evolution
of token crypto co-processors w.r.t. the available computer power would reveal

Ubiquitous Privacy-Preserving Identity Managment 603

whether it will once become possible to run the protocols always entirely on the
token. Other challenges are updating the security parameters, using ECC and
examining to what extent Trusted Computing Base (TCB) can offer a solution
for the untrustworthy client problem. Development of similar protocols for e.g.
Microsoft CardSpace are likely to be possible.

Acknowledgements. This research is a contribution to the European PRIME
project and is partially funded by the Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, the Research Fund K.U.Leuven and the
IWT-SBO project (ADAPID) ”Advanced Applications for Electronic Identity Cards
in Flanders”.

References

1. Entrust authority roaming server. http://www.entrust.com/pki/roaming/index.htm.
2. Higgins trust framework project home. http://www.eclipse.org/higgins/.
3. Introducing windows cardspace. http://msdn2.microsoft.com/en-us/library/aa480189.aspx.
4. Liberty allicance project. http://www.projectliberty.org/.
5. Verisign roaming. http://www.verisign.com/products-services/security-services/pki/pki-
security/wireless-roaming/index.html.

6. J. Basney, W. Yurcik, R. Bonilla, and A. Slagell. The credential wallet: A classification of
credential repositories highlighting myproxy. In Proceedings of the 31st Research Conference
on Communication, Information and Internet Policy, 2003.

7. Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Building in
Privacy. MIT Press, Cambridge, MA, USA, 2000.

8. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In EUROCRYPT ’01: Proceedings of the
International Conference on the Theory and Application of Cryptographic Techniques, pages
93–118, London, UK, 2001. Springer-Verlag.

9. Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (ex-
tended abstract). In CRYPTO ’97: Proceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology, pages 410–424, London, UK, 1997. Springer-Verlag.

10. David Chaum. Security without identification: transaction systems to make big brother obso-
lete. Commun. ACM, 28(10):1030–1044, 1985.

11. Matt Hooks and Jadrian Miles. Onion routing and online anonymity. CS182S, 2006.
12. Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. Journal of Cryp-

tology: the journal of the International Association for Cryptologic Research, 14(4):255–293,
2001.

13. J. Novotny, S. Tuecke, and V. Welch. An online credential repository for the grid: Myproxy.
In Proceedings of the Tenth International Symposium on High Performance Distributed Com-
puting (HPDC-10). IEEE Press, 2001.

14. G. Sarbari. Security characteristics of cryptographic mobility solutions. In Proceedings of the
1 Annual PKI Research Workshop, Gaithersburg, Maryland, 2002.

15. Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous connections and
onion routing. In SP ’97: Proceedings of the 1997 IEEE Symposium on Security and Privacy,
page 44, Washington, DC, USA, 1997. IEEE Computer Society.

16. David Del Vecchio, Marty Humphrey, Jim Basney, and Nataraj Nagaratnam. Credex: User-
centric credential management for grid and web services. In ICWS ’05: Proceedings of the
IEEE International Conference on Web Services (ICWS’05), pages 149–156, Washington, DC,
USA, 2005. IEEE Computer Society.

