
Investigating the problem of IDS false alarms:
An experimental study using Snort

G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

Key words: Intrusion Detection System, False Alarm, Snort

1 Introduction

IDS can play a vital role in the overall security infrastructure, as one last defence
against attacks after secure network architecture design, secure program design and
firewalls [1]. Although IDS technology has become an essential part of corporate
network architecture, the art of detecting intrusions is still far from perfect. A signif-
icant problem is that of false alarms, which correspond to legitimate activity that has
been mistakenly classed as malicious by the IDS. Recognising the real alarms from
the huge volume of alarms is a complicated and time-consuming task. Therefore,
reducing false alarms is a serious problem in ensuring IDS efficiency and usability
[2].
A common technique for reducing the false alarm rate is by performing a tuning

procedure. This can be done by adapting the set of signatures to the specific en-
vironment and disabling the signatures that are not related to it [8], based on the
fact that some vulnerabilities exist in a particular OS platform only. However, al-
though this can offer a means of reducing the number of false alarms, the procedure
can also increase the risk of missing noteworthy incidents. Therefore, the tuning
process is actually a trade-off between reducing false alarms and maintaining the
security level. This often leaves administrators with the difficulty of determining a
proper balance between an ideal detection rate and the possibility of having false
alarms. Furthermore, tuning requires a thorough examination of the environment by
qualified IT personnel, and requires frequently updating to keep up with the flow of
new vulnerabilities or threats discovered [26].

The authors are with the University of Plymouth, UK
e-mail: {gina.tjhai,maria.papadaki,s.furnell,n.clarke}@plymouth.ac.uk

253

254 G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

This paper investigates the problem of false alarms based upon experiments in-
volving the popular open source network IDS, Snort [7]. A number of potential
issues are presented along with the analysis undertaken to evaluate the IDS perfor-
mance on real network traffic. Section 2 critically reviews background information
on the false alarm problem, and provides a critical analysis of existing research in
the area. The methodology of the experiment is presented in section 3. Section 4
provides the findings from the private dataset, followed by conclusions in section 5.

2 Related work

The problem of false alarms has become a major concern in the use of IDS. The vast
imbalance between actual and false alarms generated has undoubtedly undermined
the performance of IDS [9]. For that reason, the main challenge of IDS develop-
ment is now no longer focusing only upon its capability in correctly identifying
real attacks but also on its ability to suppress the false alarms. This issue had been
extensively explored and analysed by Axelsson [2] based on the base-rate fallacy
phenomenon. At present, a solution to restrain the alarms is not close at hand, as
numerous aspects (e.g. attack features) need to be considered as the prerequisites to
develop a better alarm reduction technique [12]. Developing an alarms suppressing
technique is a continuing process rather than an isolated, one-off action. The num-
ber of reported attacks (and the associated IDS signatures), increases each month,
with the consequence that tuning becomes a requirement throughout the lifecycle of
an IDS.
Similar to our research, an evaluation had been carried out by Brugger and

Chow [4] to assess the performance of traditional IDS, Snort. This evaluation had
been conducted using the baseline Defense Advanced Research Projects Agency
(DARPA) dataset 1998 against a contemporary version of Snort. Although the use
of DARPA dataset had been strongly criticised in IDS evaluation, it still serves as a
benchmark by allowing the comparison of IDS tools with a common dataset [16].
This assessment was performed to appraise the usefulness of DARPA as an IDS
evaluation dataset and the effectiveness of the Snort ruleset against the dataset. In
order to analyse Snort’s alarms, a perl matcher script was used to report the false
negative and positive rates; thus generating the Receiver Operating Characteristic
(ROC) curve for a given set of attacks. Given the six year time span between the
ruleset and the creation of the dataset, it was expected that Snort could have effec-
tively identified all attacks contained in the dataset. Conversely, what they found
instead was the detection performance was very low and the system produced an
unacceptably high rate of false positives, which rose above the 50% ROC’s guess
line rate. This might be due to the fact that Snort has a problem detecting attacks
modelled by the DARPA dataset, which focused upon denial of service and probing
activities [13]. In particular, Snort is alleged to commonly generate a high level
of false alarms [17] and the alarm rate reported in this evaluation was not cred-
itable enough to prove Snort’s false positive performance in a real network, which

Investigating the problem of IDS false alarms: An experimental study using Snort 255

might be much worse or much better. Moreover, the other experiments took place
a few years ago, which means that Snort’s performance may have changed since
then. In view of that, our research decided to assess the performance of Snort on a
more realistic data, as an attempt to critically evaluate the false positive issue of the
system.

3 Experiment Description

In order to further explore the problem of false alarms faced by current IDS tech-
nology, an experiment was conducted to analyse and evaluate IDS alerts generated
by real network traffic. In common with the earlier research referenced in the previ-
ous section, Snort, was chosen as the main detector. The reason for utilising Snort
was due to its openness and public availability. Moreover, an investigation involv-
ing such a commonly used IDS can give an insight into the extent of the false alarm
problem in other IDS systems as well.
A number of criticisms had been raised over DARPA dataset, questioning the

use of synthetic data to picture a real world network as well as the taxonomy used
to categorise the exploits involved in the evaluation [15]. Owing to these issues,
our experiments involved the evaluation of Snort on both DARPA [23] and private
dataset. However, this paper only presents an experiment using a private dataset,
which was collected at University of Plymouth. The data was collected on a public
network (100-150 MB/s network) over a period of 40 days (starting from May 17th
to June 25th), logging all traffic to and from the University’s web server. This in-
cludes TCP (99.9%) and ICMP (0.1%) traffic. The traffic collection was conducted
with a conventional network analysis tool, tcpdump, and it involved the collection
of the full network packet, including the packet payload. Although storing the full
packet information significantly increased the storage requirements for the experi-
ment, it was important to maintain this information for the validation and analysis of
IDS alarms. The collected payload data was then further processed by Snort IDS in
Network Intrusion Detection (NIDS) mode. It should also be noted that traffic con-
taining web pages with the potential of having sensitive / confidential information
was excluded from the packet capture, in order to preserve the privacy of web users.
This was accomplished by applying filters on the traffic, prior to it being captured
by tcpdump. Ngrep was used for this purpose [18].
The first stage of the experiment was to run Snort in NIDS mode, in its default

configuration. This means that no tuning whatsoever was conducted. The aim of
this phase is to investigate the extent of the false alarm problem with Snort’s default
ruleset. The next phase of the experiment involved the analysis of the same traffic,
after tuning had been performed on Snort. A number of techniques were applied for
the tuning, including setting up the event thresholds and adjusting Snort’s rules [19].
A necessary requirement for this was the manual validation and analysis of alerts
produced by Snort in the first phase, and identification of signatures that are prone
to false alarms. The analysis of IDS alerts was supervised by a certified intrusion

256 G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

analyst, and the front-end tool Basic Analysis and Security Engine (BASE) was
utilised to assist the intrusion analysis process [3].
The analysis of alerts was supervised by a GIACCertified Intrusion Analyst [10].

Once the alerts were manually verified, the result was presented in a ROC diagram;
a graphical plot of Snort alarm generation. In order to reveal a clear picture of the
false alarm problem, a ROC plot is preferable. This type of graph can demonstrate
the trade-off between the ability to identify correctly between true positives and the
risk of raising too many false positives. Unfortunately, there were no true negative
(number of benevolent activities passed) and false negative (number of real attacks
missed) value known in this analysis since real network traffic was used as the input
dataset. As an alternative, the plot diagram is drawn to represent the actual number
of false and true alarms instead of their alarms rate. This diagram provides a simple
graphical representation of the false alarm problem, thus enabling the analyzer to
easily comprehend the trend of false alerts. By demonstrating the graphical plot of
false positive versus true positive, this approach visibly explains the criticality of the
false alarm issue. The alarm rate is calculated as follows:

False Alarm Rate=
False Alarm
Total Alarm

×100

True Alarm Rate=
True Alarm
Total Alarm

×100

4 Results

The lack of knowledge or awareness about the complexity of network by IDS tech-
nology has led to the generation of excessive amount of false alarms. Generally,
there are three possible alert types raised by the system, namely true positives (alerts
from real attacks), false positives (legitimate activities thought to be malicious) and
irrelevant positive (alerts from unsuccessful attacks or attempts [12]. The last two
alerts are the main concerns in this study.
This section presents the results of the experiment. Figure 1 depicts the ROC plot

for the overall result, which represents the general detection performance of Snort
IDS. In order to create a simpler illustrative graph, which facilitates the comprehen-
sion of Snort’s detection ability, the false and true positives values are presented in
a proportion of thousands. The number of false positives generated is presented per
unit time (per day) for the X-scale, while true positives are portrayed for the Y-scale.
This diagram also represents the random guess (known as non-discriminatory line),
which gives a point along a diagonal line from the left bottom (0,0) to the top right
corner (10,10). This diagonal line divides the space into two domains; namely good
and bad classification. Ideally, a good detection system should yield a point above
the line, meaning the number of real alerts (true positives) triggered should not be
exceeded by the number of false positives generated.

Investigating the problem of IDS false alarms: An experimental study using Snort 257

Fig. 1 Generation of alerts

Significantly, our research has also produced a similar result to that yielded in
Brugger and Chow’s evaluation. The number of false positives generated is massive.
This indicates that the Snort’s false positive performance on real network could be
much worse than described in their evaluation.
This experiment focused on the analysis of false positive alarms, as opposed to

other studies [14, 4], which were directed to explore the issue of false negatives.
The main objective of this analysis is to merely provide a general view of the scale
of false positives that may be generated by current IDS. The following subsections
discuss this case in greater detail.

4.1 False Positives

A large volume of alerts, largely comprised of false alarms and irrelevant positives,
drives the need to verify the validity of the alerts generated. Interestingly, apart from
the false positives, our study reveals that some alerts were raised due to informa-
tional events, which merely occurred as a result of a network problem, not owing to
the detection of real attacks. These types of alerts are known as irrelevant positives.
Indeed, the unsuccessful attacks, or attempts that aim at an invincible target, might
cause the system to generate such alarms.
Figure 2 provides a clear picture of the number of true and false alarms generated

per day. In this context, it is obvious that the false alarms highly outnumbered the
true alarms. Approximately 96% of alerts generated are asserted as false positives,
while less than 1% of the total alerts are affirmed to be irrelevant positives. In order
to make it simpler, irrelevant alarms are regarded as false positives alerts in this case
since no immediate and crucial responses required from these events. By looking
at the Snort alerts generated from the University’s web server, most of the false
positive alarms came from the category of web application activity. Table 1 shows

258 G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

Fig. 2 Comparison between False Positive and True Positive alarms

a complete list of the Snort alerts triggered by the data. The first 3 alerts are the false
positives alerts, which will be further investigated later in the subsubsections. The
reason for focusing upon these alerts is due to the quantity generated, which is made
up of more than 80% of total alerts raised by the system.

4.1.1 WEB-IIS view source via translate header

This event is categorized as web application activity, which targets the Microsoft IIS
5.0 source disclosure vulnerability [20]. Since Microsoft IIS has the capability of
handling various advanced scriptable files such as ASP, ASA and HTR, the use of
specialized header “Translate f” on HTTP GET request might force the web server
to present the complete source code of the requested file to the client without being
executed first by the scripting engine. In addition, this attack only works well if the
trailing slash “/” is appended to the end of requested URL [5, 6].
Surprisingly, this single alert accounted for 59% of the total alerts. Therefore, ap-

proximately 1970 alerts were generated per day by this event. Although this event is
deemed to be an attack that targets the Microsoft IIS source disclosure vulnerability,
this could possibly be a false positive. Some applications, for example Web-based
Distributed Authoring and Versioning (WebDAV) that make use of “Translate f” as
a legitimate header, might cause this rule to generate an excessive amount of false
alarms [25]. Moreover, WebDAV PROPFIND and OPTION methods also make use
of this “Translate f” as a legitimate header to retrieve the information or properties
of the resources identified by the Uniform Resource Identifier (URI) (nearly 96% of
alerts generated by this event were not HTTP GET requests). Significantly, in this
experiment, there is no alert generated by this signature, which required immediate
action or indicated the occurrence of the real attack.

Investigating the problem of IDS false alarms: An experimental study using Snort 259

Table 1 Complete list of Snort alerts

No Signatures Total alerts

1 WEB-IIS view source via translate header 78865
2 WEB-MISC robots.txt access 30011
3 ICMP L3retriever Ping 10254
4 BARE BYTE UNICODE ENCODING 6392
5 POLICY Google Desktop activity 3258
6 SPYWARE-PUT Trackware funwebproducts mywebsearchtoolbar-funtools

runtime detection
1873

7 ATTACK-RESPONSE 403 Forbidden 720
8 ICMP PING Cyberkit 2.2 Windows 651
9 DOUBLE DECODING ATTACK 504
10 ICMP Destination Unreachable Communication Administratively Prohibited 151
11 TCP Portsweep 124
12 SPYWARE-PUT Hijacker searchmiracle-elitebar runtime detection 80
13 WEB-MISC .DS Store access 60
14 IIS UNICODE CODEPOINT ENCODING 49
15 WEBROOT DIRECTORY TRAVERSAL 35
16 SPYWARE-PUT Adware hotbar runtime detection - hotbar user-agent 27
17 WEB-IIS asp-dot attempt 26
18 TCP Portscan 19
19 SPYWARE-PUT Trackware alexa runtime detection 19
20 WEB-PHP IGeneric Free Shopping Cart page.php access 17
21 ICMP PING NMAP 17
22 ICMP Destination Unreachable Communication with Destination Host is Ad-

ministratively Prohibited
13

23 WEB-CGI calendar access 11
24 MULTIMEDIA Quicktime User Agent Access 10
25 WEB-MISC intranet access 8
26 ICMP redirect host 8
27 ICMP PING speedera 7
28 SPYWARE-PUT Hijacker marketscore runtime detection 7
29 WARNING: ICMP Original IP Fragmented and Offset Not 0! 6
30 WEB-MISC WebDAV search access 5
31 WEB-FRONTPAGE / vti bin/access 5
32 Open Port 5
33 WEB-PHP remote include path 4
34 WEB-CGI formmail access 3
35 WEB-FRONTPAGE vti inf.html access 3
36 SPYWARE-PUT Trickler teomasearchbar runtime detection 2
37 WEB-PHP xmlrpc.php post attempt 2
38 WEB-CLIENT Microsoft wmf metafile access 2
39 WEB-MISC Domino webadmin.nsf access 2
40 OVERSIZE CHUNK ENCODING 2
41 ICMP Source Quench 2
42 WEB-PHP test.php access 2
43 WEB-PHP calendar.php access 1
44 WEB-PHP admin.php access 1

260 G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

4.1.2 WEB-MISC robots.txt access

This event is raised when an attempt has been made to access robots.txt file di-
rectly [21]. Basically, robots.txt file is a file that is created to keep the web pages
from being indexed by search engines. More to the point, this file provides a specific
instruction and determines which part of a website a spider robot may visit. Interest-
ingly, the problem is that the webmaster may detail sensitive and hidden directories
or even the location of the secret files within the robots.txt file. This is considered
extremely unsafe since this file is located in web server’s document root directory,
which can be freely retrieved by anyone.
Although this event is raised as the indicator of vulnerable information attack,

there exists high possibility that all these alerts were raised due to legitimate activ-
ities from web robots or spiders. A spider is software that gathers information for
search engines by crawling around the web indexing web pages and links in those
pages. Robots.txt file is basically created to restrict the web spider from indexing
pages that should not be indexed (e.g. submission pages or enquiry pages). As web
indexing is regular and structurally repetitive, this activity tends to cause the IDS
to trigger a superfluous amount of alerts. In this study, approximately 23% of to-
tal alerts (approximately 750 alarms per day) were accounted for by this web-misc
activity. Given that all alerts generated from this event are owing to the activities
of web spider, they are considered to be false positives. Significantly, this issue has
apparently disclosed the drawback of Snort IDS in distinguishing legitimate activ-
ity from the malicious one; especially when it deals with the authorization or file
permission.

4.1.3 ICMP L3retriever Ping

ICMP L3retriever Ping is an event that occurs when ICMP echo request is made
from a host running L3Retriever scanner [22]. This type of ICMP echo request
has a unique payload in the message, which significantly designates its distinctive
characteristic. This traffic is considered to be an attempted reconnaissance since
the attackers may use the ping command to obtain ICMP echo reply from a lis-
tening host. Surprisingly, in this analysis, quite a few alerts were generated from
this event; contributing to 8% of the total alerts generated. This figure indicates that
approximately 250 alerts were generated by this signature rule every day.
Considering the source IP address associated with these alerts, it is obviously

clear that all ICMP requests were sent from the external hosts. Further investigation
was conducted to critically analyse and discover if possible malicious events hap-
pened subsequent to the ICMP echo request. Surprisingly, there were no malevolent
activities detected following the ICMP traffic. In addition, normal ICMP requests
generated by Windows 2000 and Windows XP are also known to have similar pay-
loads to the one generated by L3Retriever scanner [24]. Generally, this traffic is
routine activities run by computer systems (especially Windows 2000 and XP sys-
tems) to communicate with their domain controllers or to perform network discov-

Investigating the problem of IDS false alarms: An experimental study using Snort 261

ery. In view of this issue and given that no suspicious output detected following
these ICMP requests; these alerts were likely false positives.

4.2 Fine Tuning

False alarm for one system might not be an erroneous alert for other systems. For
example, port scanning might be a malicious activity for normal users, but it is a
legitimate activity if it is performed by a system administrator. Figure 3 shows an
example of an event which triggered both false alarms and true alarms from the
experiment. From the IDS’s perspective, as long the activity’s pattern match to the
signature defined in the rule database, it is considered to be a malicious event. In
view of this, fine tuning is exceptionally required to maintain the IDS’s performance
and enable the administrator to adapt the signature rule to the protected environment.

In order to optimize Snort’s performance, fine tuning is necessary to reduce the
number of alerts raised. Since only 3 signatures were tuned in this experiment, the
false alarm rate accounted for 86.8% of total alarms after tuning was performed.
Figure 4 depicts the ROC plots for the overall result after tuning was performed.
Obviously, only less than two thousands alerts per alert type have been generated
by Snort. In order to understand the effectiveness of fine tuning, the alarm rate be-
tween default and tuned Snort is presented in Figure 5. This figure does not seem
particularly impressive but fine tuning did fare well on those signatures; reducing up
to 90% of false alarms per signature, excluding WEB-MISC robots.txt access. The
following subsections discuss tuning processes in more details.

Fig. 3 ”ICMP PING NMAP” event

262 G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

4.2.1 WEB-IIS view source via translate header

Regarding the information disclosure vulnerability attack, Snort does not seem pro-
ficient enough to detect this type of event. The signature rule appears to be very
loosely written, by searching for a particular string in the packet payload (in this
case, “Translate: f”). Since the “Translate: f” is a valid header used in WebDAV
application, as discussed previously, this rule tends to trigger a vast volume of alerts
from the legitimate activities. Hence, tuning is needed to search for a more specific
pattern of the attack signature.
As this attack is basically launched through HTTP GET request, searching for

“GET” command in the content of analyzed packet can be a good start. Principally,
this attack is performed by requesting a specific resource using HTTP GET com-
mand, followed by “Translate: f” as the header of HTTP request. In this case, a
tuning can be performed by modifying the signature rule to:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS view source via translate header";
flow:to_server,established; content:"GET|20|";content:
"Translate|3A| F"; distance:0; nocase; reference:arachnids,
305; reference:bugtraq,14764; reference:bugtraq,1578;
reference:cve,2000-0778; reference:nessus,10491;
classtype:web-application-activity; sid:1042; rev:13;)

The tuning process significantly reduced the number of alerts, with only 3463
generated by this rule as against 78865 alerts in the first case (i.e. without tuning).
Significantly, this tuned rule had been proved to effectively reduce up to 95% of the
initial false alarms from this event.
Although the tuning process had decreased the volume of alerts, there is still a

possibility that those 5% alerts were false positives. Searching for GET command
and the Translate f header is not effective enough to detect such attack. Putting trail-
ing slash “/” at the end of requested URL to HTTP request for example could lead in
the security bug [5]. Thus, matching the “/” pattern against the packet payload will
be helpful. Unfortunately, this idea seems hardly possible to achieve. Snort does not
have a specific rule option that can be used to match a specific pattern at a particular
location.
As to Snort’s signature, looking for an overly specific pattern of a particular at-

tack may effectively reduce the false alarms; however, this method can highly in-
crease the risk of missing its range. A skilful attacker can easily alter and abuse the
vulnerability in various ways as an attempt to evade the IDS. This might lead to
false negatives as a consequence.

Investigating the problem of IDS false alarms: An experimental study using Snort 263

4.2.2 WEB-MISC robots.txt access

Since accessing the robots.txt file is a legitimate request for Internet bots (web spi-
ders), a subjective rule, which mainly focuses on the source IP addresses, is nec-
essary to verify user authorization in accessing a certain file. This approach, how-
ever, seems to be hardly feasible to deploy. Of course, identifying all authorized
hosts from their source IP addresses is impractical. There is an infinite number of
IP addresses need to be discovered before the rule can be written. Indeed, lawfully
allowing specific hosts to access certain file might increase the risk of having false
negatives.
In this case, the only solution to suppress the number of false alarms generated is

by using event thresholding [19]. As robots.txt access requests generate regular and
repetitive traffic, a “limi” type of threshold command is the most suitable tuning in
this case. Such a threshold configuration would be as follows:

threshold gen_id 1, sig_id 1852, type limit,
track by_src, count 1, seconds 60

This rule logs the first event every 60 seconds, and ignores events for the rest
of the time interval. The result showed that approximately 10% of false alarms had
been effectively reduced. This indicates that only an insignificant number of false
alarms can be reduced in this scenario. The frequency of fetching robots.txt files
greatly depends on the web spider’s policy. Hence, deploying event suppression and
thresholding cannot effectively trim down the number of false alarms logged by the
system. Additionally, suppressing the number of alerts generated can also create

Fig. 4 Alerts generation after fine tuning

264 G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

a possibility of ignoring or missing significant alerts. A malicious user can hide
his/her action within the excessive number of alerts generated by using a spoofed
address from web spider agent.

4.2.3 ICMP L3Retriever Ping

The only method that can be deployed to suppress the number of false positive
triggered from this event is by applying event suppressing or thresholding command.
Similar to the one applied to “WEB-MISC robots.txt access” signature, a threshold
command is written to limit the number of alarms logged. Instead of using “limit”
type of threshold command as previous signature, this rule utilized “both” type of
command to log alerts once per time interval and ignore additional alerts generated
during that period:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP
L3retriever Ping"; icode:0; itype:8; content:
"ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI"; depth:32; reference:
arachnids,311; classtype:attempted-recon; threshold: type
both, track by_src, count 3, seconds 60; sid:466; rev:5;)

Similar to the previous signature (robots.txt access), the threshold applied will
not prevent the generation of false positives, but it will highly reduce the number
of redundant false positives triggered. Importantly, the threshold is written to de-
tect brisk ICMP echo requests by logging alerts once per 60 seconds after seeing 3
occurrences of this event.
The result showed that only 1143 alerts had been generated from this event in 40

days experiment data. This experiment has also proved that the event thresholding
can successfully reduce up to 89% of the false alarms generated by this activity.
Despite its ability in suppressing redundant alarms, the system is prone to missing
stealthy ICMP requests (e.g. requests sent once every 60 seconds can be missed by
the system).

5 Conclusions and Future Work

The issue of false positives has become a critical factor in determining the success
of IDS technology. Not only must an IDS be accurate in detecting real attacks, but
it must also have the ability to suppress the number of unnecessary alerts generated.
The experiment presented in this paper has revealed a similar result to the work of
Brugger and Chow [4]. Over a span of two years since their research was published,
the issue of false positives remains a critical challenge for the current Snort IDS.

Investigating the problem of IDS false alarms: An experimental study using Snort 265

Fig. 5 Alarm rate before and after tuning

Obviously, Snort’s performance does not look particularly remarkable as illustrated
in Figure 1. The bottom right scattered plots demonstrate that the number of false
positives largely overwhelms the number of true positives generated. Approximately
3,000 alerts had been generated per day, requiring manual verification to validate
their legitimacy. Although the administrator can effectively distinguish the false and
true positives from the alerts generated, the massive amount of false alarms triggered
by one signature rule might cause the administrator to miss a malicious attack.
Principally, the overall effectiveness of Snort greatly hinges on the effectiveness

of keyword spotting (i.e. matching the packet content to the signature rule). This has
rendered the system prone to generating a superfluous number of false alerts. Inter-
estingly, most of the rules looking for web traffic related attacks are loosely written
and merely check for the presence of a particular string in the packet payload. This
could trigger a large number of false alerts if a particular string is included in the
content distributed by the web server. Hence, from this perspective, Snort is deemed
not to be ideal enough to detect more complex attacks, which are not detectable by
a pre-defined signature.
In view of these issues, an improvement is required to advance the performance

of IDS technology. This involves developing an automatic alert verification, which
no longer relies on human participation. Through this enhancement, it is expected
that the number of false alarms can be substantially suppressed without increasing
the possibility of false negatives. Also, a more intelligent system is required to help
discover the logical relationship between alerts generated and to reveal the potential
attack scenario; thus providing a better picture of the security issue to the system
administrator. Given the complexity of systems and the ingenuity of attacks, an IDS
will never be perfect, and there is still significant scope to enhance its performance.

Acknowledgements We want to thank Dr. Bogdan Ghita of University of Plymouth for his help
in capturing the network traffic and for his support until the completion of this paper.

266 G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

References

1. Allen J, Christie A, Fithen W, McHugh J, Pickel J, Stone E (2000) State of the Practice of
Intrusion Detection Technologies. Available via Software Engineering Institute.
http://www.sei.cmu.edu/publications/documents/99.reports/99tr028/99tr028abstract.html.
Cited 9 January 2007

2. Axelsson S (2000) The Base-Rate Fallacy and the Difficulty of Intrusion Detection. ACM
Transactions on Information and System Security 3(3), 186-205

3. BASE (2007) Basic Analysis and Security Engine (BASE) Project. Available via BASE
Project.
http://base.secureideas.net/. Cited 25 April 2007

4. Brugger ST, and Chow J (2005) An Assessment of the DARPA IDS Evaluation Dataset Using
Snort. Available via UCDAVIS department of Computer Science.
http://www.cs.ucdavis.edu/research/tech-reports/2007/CSE-2007-1.pdf. Cited 2 May 2007

5. Bugtraq (2007a) Microsoft IIS 5.0 ”Translate: f” Source Disclosure Vulnerability. Available
via Security Focus.
http://www.securityfocus.com/bid/1578. Cited 9 June 2007

6. Bugtraq (2007b) Microsoft IIS WebDAV HTTP Request Source Code Disclosure Vulnerabil-
ity. Available via Security Focus.
http://www.securityfocus.com/bid/14764. Cited 9 June 2007

7. Caswell B and Roesch M (2004) Snort: The open source network intrusion detection system.
Available via Snort.
http://www.snort.org/. Cited 3 October 2007

8. Chapple M (2003) Evaluating and Tuning an Intrusion Detection System. Available online:
SearchSecurity.com.
http://searchsecurity.techtarget.com. Cited 1 November 2006

9. Chyssler T, Burschka S, Semling M, Lingvall T and Burbeck K (2004) Alarm Reduction and
Correlation in Intrusion Detection Systems. Available via The Department of Computer and
Information Science Linkopings Universitet.
http://www.ida.liu.se/ rtslab/publications/2004/Chyssler04 DIMVA.pdf. Cited 15 June 2007

10. GCIA (2008) GIAC Certified Intrusion Analyst (GCIA). Available via Global Information
Assurance Certification.
http://www.giac.org/certifications/security/gcia.php. Cited 8 May 2007

11. Koziol J (2003) Intrusion Detection with Snort, 2Rev edition. Sams Publishing, United States
of America

12. Kruegel C and Robertson W (2004) Alert Verification: Determining the Success of Intrusion
Attempts, Proc. First Workshop the Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA 2004). Available via Department of Computer Science, University of
California, Santa Barbara.
http://www.cs.ucsb.edu/ wkr/publications/dimva04verification.pdf. Cited 19 May 2007

13. Lippmann RP, Haines JW, Fried DJ, Korba J and Das KJ (2000) The 1999 DARPA off-line
intrusion detection evaluation. Computer Networks 34:579–595

14. Mahoney MV and Chan PK (2003) An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection. In Recent Advances in Intrusion Detection
(RAID2003), Lecture Notes in Computer Science, Springer-Verlag 2820:220–237

15. McHugh J (2000) Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA
Intrusion Detection System Evaluations as Performed by Lincoln Laboratory. ACM Transac-
tions on Information and System Security 3(4), 262-294

16. Mell P, Hu V, Lippmann R, Haines J and Zissman M (2003) An Overview of Issues in Testing
Intrusion Detection Systems. NISTIR 7007. Available via National Institute of Standards and
Technology.
http://csrc.nist.gov/publications/nistir/nistir-7007.pdf. Cited 7 July 2007

17. Patton S, Yurcik W and Doss D (2001) An Archilles’ Heel in Signature-Based IDS: Squeal-
ing False Positives in SNORT. Recent Advanced in Intrusion Detection (RAID), Univ. of
California-Davis.

Investigating the problem of IDS false alarms: An experimental study using Snort 267

18. Ritter J (2006) Ngrep - network grep. Available via SourceForge.net.
http://ngrep.sourceforge.net. Cited 30 June 2007

19. Snort (2007a) Event Thresholding. Available via Snort.
http://www.snort.org/docs/snort htmanuals/htmanual 2.4/node22.html. Cited 1 July 2007

20. Snort (2007b) WEB-IIS view source via translate header. Available via Snort.
http://snort.org/pub-bin/sigs.cgi?sid=1042. Cited 9 June 2007

21. Snort (2007c) WEB-MISC robots.txt access. Available via Snort.
http://www.snort.org/pub-bin/sigs.cgi?sid=1:1852. Cited 9 June 2007

22. Snort (2007d) ICMP L3retriever Ping. Available via Snort.
http://www.snort.org/pub-bin/sigs.cgi?sid=1:466. Cited 13 June 2007

23. Tjhai GC, Papadaki M, Furnell SM and Clarke NL (2008) The problem of false alarms:
Evaluation with Snort and DARPA 1999 Dataset. Submitted to TrustBus 2008, Turin, Italy,
1-5 September 2008

24. Web Server Talk (2005) L3Retriever false positives. Available via Web Server Talk.
http://www.webservertalk.com/message893082.html. Cited 12 July 2007

25. WebDAV (2001) WebDAV Overview. Available via Sambar Server Documentation.
http://www.sambar.com/syshelp/webdav.htm. Cited 20 June 2007

26. Zhou A, Blustein J, and Zincir-Heywood N (2004) Improving Intrusion Detection Systems
Through Heuristic Evaluation. 17th Annual Canadian Conference on Electrical and Computer
Engineering.
http://users.cs.dal.ca/ jamie/pubs/PDF/Zhou+CCECE04.pdf. Cited 25 June 2007

