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Abstract Security incidents targeting information systems become more complex
and sophisticated, and intruders might evade responsibility due to the lack of sup-
porting evidences to convict them. In this paper, we develop a system for Digital
Forensic in Networking (DigForNet) which is useful to analyze security incidents
and explain the steps taken by the attackers. DigForNet uses intrusion response team
knowledge and formal tools to reconstruct potential attack scenarios and show how
the system behaved for every step in the scenario. The attack scenarios identifica-
tion is automated and the hypothetical concept is introduced within DigForNet to
alleviate lack of data related to missing evidences or investigator knowledge.

1 Introduction

Faced to the increase and sophistication of security incidents, security experts have
started giving a great interest to the digital forensic investigation of security inci-
dents. Defined in the literature as preservation, identification, extraction, documen-
tation and interpretation of computer data [1], digital investigation aims to perform
a post-incident examination of the compromised systems to identify conducted at-
tack scenarios and attackers source, understand what occurred to prevent future sim-
ilar incidents, and argument the results with non refutable proofs.

Performing a digital investigation is a challenging task. First, attacks may use
multiple sources and become difficult to trace using available traceback techniques.
Second, systems may not be initially prepared for investigation, leading to the ab-
sence of effective logs and alerts to be used for understanding the incident. In addi-
tion, the attackers may use a number of techniques to hide traces left on the compro-

Slim Rekhis', Jihene Krichene?, and Noureddine Boudriga3

Communication Networks and Security Research Lab. University of the 7th of Novem-
ber at Carthage, Tunisia, e-mail: Lslim.rekhis@isetcom.rnu.tn, 2jkrichene@gmail.c0m,
3nab@supcom.rnu.tn

637



638 Slim Rekhis, Jihene Krichene, and Noureddine Boudriga

mised system. Third, attack scenarios may use several automated tools that create
intensive damaging activities. A large amount of data should thus be analyzed.

To face the above complexity, the digital investigation should, first, be well struc-
tured by reconciling both the expertise of the incident response team (IRT) and the
use of formal reasoning techniques about security incidents. This reconciliation al-
lows to: a) better filter the data to be analyzed and source of evidences to be ex-
plored, based on the skills developed by the IRT, and b) validate the results of the
formal techniques by the IRT before presenting them and exploit them to accumulate
knowledge about security incident. Second, digital investigation should integrate the
use of formal techniques that are useful to develop non-refutable results and proofs,
and avoid errors that could be introduced by manual interpretations. Moreover, it
should consider the development of tools to automate the proof providable by these
formal methods. Third, since the collected evidences may be incomplete and de-
scribing all potential malicious events in advance is impractical, hypotheses need to
be put forward in order to fill in this gap.

Despite the usefulness of formal approaches, digital investigation of security in-
cidents remains scarcely explored by these methods. Stephenson took interest in
[8] to the root cause analysis of digital incidents and used Colored Petri Nets to
model occurred events. The methodology may become insufficient if there is a lack
of information on the compromised system that requires some hypotheses formula-
tion. Stallard and Levitt proposed in [7] an expert system with a decision tree that
exploits invariants relationship between existing data redundancies within the inves-
tigated system. To be usable with highly complex systems, it is imperative to have
a prior list of good state information, otherwise the investigator has to complete
its analysis in Ad-hoc manner. Gladychev provided in [2] a Finite State Machine
(FSM) approach to the construction of potential attack scenarios discarding scenar-
ios that disagree with the available evidences. However, if some system transitions
(e.g., malicious event) are unknown, the event construction may freeze.

We develop in this paper, a system for Digital Forensic in Networking (DigFor-
Net). It integrates the analysis performed by the IRT on a compromised system,
through the use of the Incident Response Probabilistic Cognitive Maps (IRPCMs).
DigForNet provides a formal approach to identify potential attack scenarios using
I-TLA logic. The latter allows to specify different forms of evidences, and identify
an attack scenario as a series of elementary actions retrieved from a used library,
that, if executed sequentially on the investigated system, would produce the set of
available evidences. To develop the concept of executable attack scenarios showing
with details how an attack is performed progressively on the system, DigForNet uses
I-TLC, an automated verification tool for I-TLA specifications. To handle unknown
attacks, DigForNet integrates a technique for generating hypothetical actions to be
appended to the scenario under construction.

DigForNet contribution is three-fold. First, to the best of our knowledge, it is the
first investigation system that reconciles in the same framework conclusions derived
by the incident response team and theoretical and empirical knowledge of digital
investigators. Second, using the concept of hypothetical actions, DigForNet stands
out from the other existing approaches and allows to generate sophisticated and
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unknown attack scenarios. Third, most of the techniques brought by DigForNet can
be automated which makes it a promising computer-assisted investigation tool.

This paper is organized as follows. Section 2 describes the DigForNet’s method-
ology for reasoning about security incidents. The use of the IRPCM technique is de-
scribed in Section 3. Section 4 describes I-TLA as a logic for specifying evidences
and identifying potential attack scenarios that satisfy them. It also shows how to
pass from IRPCM to I-TLA specification. Section 5 introduces I-TLC showing how
it can be used to generate executable attack scenarios. Section 6 illustrates with
an example the use of DigForNet in investigating a real security incident. Finally,
Section 7 concludes the paper.

2 Methodology of structured investigation

DigForNet methodology is composed of five steps in a waterfall model as shown in
Figure 1. The first step collects evidences available within three different sources,
namely the operating systems, networks, and storage systems. DigForNet integrates
the incident response team contributions under the form of Incident Response Prob-
abilistic Cognitive Maps (IRPCMs). An IRPCM is nothing but a directed graph
representing security events, actions and their results. It is built during the second
step with a collaborative fashion by the IRT members based on the information
collected on the system. IRPCMs provide a foundation to mainly investigate and
explain occurred security attacks.

The third step generates a formal specification. Sets of evidences and actions are
extracted from the cognitive map for the formal specification of the potential attack
scenarios. A formal approach is necessary for this purpose. DigForNet uses a logic,
referred to as I-TLA, to generate a specification containing a formal description of
the set of extracted evidences and actions, the set of elementary attack scenario frag-
ments retrieved from the library of elementary attacks, and the initial system state.
In this step, DigForNet uses I-TLA to prove the existence of potential attack sce-
narios that satisfy the available evidences. To be able to generate a variety of attack
scenarios, DigForNet considers the use of a library of elementary actions supporting
two types of actions: legitimate and malicious. Malicious actions are specified by
security experts after having assessed the system or appended by investigators upon
the discovery of new types of attacks.

The fourth step generates of executable potential attack scenarios using a model
checker tool associated with the formal specification. DigForNet uses Investigation-
based Temporal Logic Model Checker called I-TLC. The latter rebuild the attack
scenarios in forward and backward chaining processing, showing details of all in-
termediate system states through which the system progresses during the attack. I-
TLC provides a tolerance to the incompleteness of details regarding the investigated
incident and the investigator knowledge. It interacts with a library of hypothetical
atomic actions to generate hypothetical actions, append them to the scenarios under
construction, and efficiently manage them during the whole process of generation.
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The library of hypothetical atomic actions is composed of a set of entries showing
interaction between a set of virtual system components and a set of rules used to
efficiently create hypothetical actions as a series of hypothetical atomic actions.

The fifth step uses the generated executable potential attack scenarios to identify
the risk scenario(s) that may have compromised the system, the entities that have
originated these attacks, the different steps they took to conduct the attacks, and the
investigation proof that confirms the conclusion. These results are discussed with
the IRT members to check the hypotheses added by I-TLC and update the initial IR-
PCM where concepts can be omitted because they do not present an interest for the
attack scenario construction, while other concepts corresponding to the hypothetical
actions can be added to the IRPCM and linked to the other concepts. Links in the
IRPCM are deleted in the case where the concepts at their origin or end are omitted.
Hypothetical actions are also added to the attack library. In addition, tools collecting
the evidences are enhanced to detect the newly discovered vulnerabilities.
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) Library of Generation of I-TLA Extraction of
elementary specification evidences
actions
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Fig. 1 DigForNet Methodology

3 Intrusion Response Probabilistic Causal Maps

We have studied in [3] a new category of cognitive maps to support intrusion re-
sponse. In this paper, we provide an extension to these cognitive maps referred to
as Incident Response Probabilistic Cognitive Maps (IRPCMs) by introducing the
notions of probability and activation degree of concepts. IRPCMs provide a foun-
dation to investigate and explain security attacks which have occurred in the past
and predict future security attacks. These aspects are important for negotiation or
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mediation between IRT members solving thus disparities which are generated by
the difference in their view points and which can lead to conflict between them.

3.1 IRPCM definition

An Incident Response Probabilistic Cognitive Map (IRPCM) is a directed graph that
represents intrusion response team members’ experience-based view about security
events. In this graph, the nodes represent concepts belonging to the network security
field, while the edges represent relationships between the concepts.

IRPCM concepts can be symptoms, actions, and unauthorized results related to
network security field. Symptoms are signs that may indicate the occurrence of an
action (e.g., system crashes, existence of new user accounts or files). An action is
a step taken by a user or a process in order to achieve a result (e.g., probes, scans,
floods). An unauthorized result is an unauthorized consequence of an event (defined
by an action directed to a target, e.g., increased access, disclosure of information).
IRPCM concepts are labeled by values in the interval [0,1] informing about the
activation of the correspondent concepts.

IRPCM edges link concepts to each others. Each edge e;; linking concept ¢; to
concept ¢; is labeled as (75, ¢;;) where m;; is the predicate expressing the relation-
ship between the two nodes (examples include <;, I/ O, CE) and gi; (taking values
in ]0,1]) is the probability expressing the certitude degree that the relationship ;5
really exists between concepts ¢; and c¢;. Quantitative values are given by security
experts. Notice that the predicate m;; depends on the nature of the concepts ¢; and
¢; . For the reason of simplicity, we consider four cases in this paper:

1. ¢; is a symptom and c; is a symptom or an action: m;; expresses an input/output
relationship (7;; = I/ O). Part of output of ¢; is the input of ¢;.

2. ¢; and ¢; are two actions: 7r;; expresses a temporal relationship between the two
concepts (i =<). ¢; is an action that precedes c;.

3. ¢; is an action and ¢; is an unauthorized result: ;t;; expresses the causality exist-
ing between the action and the unauthorized result (7;; = CE).

4. ¢; and c; are the same concept: m;; is the identity.

3.2 Building IRPCMs

The IRT members are responsible for building the IRPCM (second step in the Dig-
ForNet methodology). The basic elements needed in this activity are the events col-
lected on the Information System. These events may be IDS alerts, compromises
of network services, or any sign indicating the occurrence of a malicious action
against the network. IRT members analyze these signs and define the appropriate
symptoms, actions and unauthorized results and assign the appropriate probabilities
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and relationships to the edges linking the defined concepts. The process of building
an IRPCM has two properties: completeness (if an attack has occurred and a suf-
ficient number of events are collected to identify this attack, then we can find an
IRT able to build an IRPCM allowing to identify the attack) and convergence (if an
IRPCM is built and is large enough to collect all the events related to a given attack,
then the IRT must build in a finite time an IRPCM allowing to provide the right
solution to protect against this attack).
The building of an IRPCM follows seven steps:

1. Collect security events observed in the compromised system or detected by se-
curity tools.

2. Build an IRPCM based on the collected events.

3. Continue to collect security events.

4. Update the IRPCM based on the collected events. Events which do not belong to
the previous IRPCM are added. Links related to the newly considered concepts
are also added to the IRPCM.

5. Refine the IRPCM by omitting the nodes that the IRT members find not interest-

ing for the investigation activity.

. Update the probabilities of the links and the activation degree of the concepts.

7. If the stopping criterion is satisfied, stop the IRPCM building process; else, return
to step 4.

=)}

Two criteria can be considered to decide about the end of the IRPCM building pro-
cess. The first is when all the candidate actions in the library (those which have
a relationship with the collected events) are present in the IRPCM. The second is
based on the decision of the IRT members. If the latter agree that the IRPCM is large
enough, then the building process is stopped. The IRT decision can be shared by all
the members or it can be taken by a mediator.

3.3 Activation degree of a concept

IRPCM concepts values give indications about their activation. These values, re-
ferred to as activation degrees, belong to the interval [0, 1]. We define the function
dac to assign activation degrees to the concepts as follows:

dac: C' —[0,1]
¢ dac(c)

A concept is said to be dac-activated if its activation degree is equal to 1. In the
following, we show how to build a dac function based on a given set of selected
concepts in the IRPCM. Let [ be the set of concepts related to collected events of
involvement in attack with respect to detected intrusions. I = {¢;--- ¢, } C C.

1. Let dac(c;)) =1,i=1---n.
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2. Compute iteratively the remaining activation degrees as follows: Let I be the set
of the concepts for which we have already computed the activation degree. F' is
initially equal to the set I.

3. Let GG be the set of concepts that have a relation with one or more concepts
belonging to F. G = {c € C/3d € F,(d,c)is arelation}. Then, dac(c) =
supg e g{qacdac(d)}.

4. F:= FUG and return to step 3 if /' # @.

In the case where the IRT members have detected malicious actions against the
secured system, they construct the IRPCM corresponding to this situation. The con-
cepts that represent the collected events are activated and will form the set /. The
activation degree of the remaining concepts is determined according to the previous
algorithm. The dac function is used in the third step of the DigForNet methodology
to extract nodes having a degree greater than a predefined threshold. These nodes
will be used as evidences for the formal specification.

4 Generation of a formal specification of attack scenarios

The Investigation-based Temporal Logic of Actions, I-TLA [6], is a logic for the
investigation of security incidents. It is an extension to S-TLA logic [5], which is
itself an extension to the TLA logic [4]. I-TLA is provided with I-TLA™, a highly
expressive formal language that defines a precise syntax and module system for
writing I-TLA specifications. I-TLA will be used in this paper to model and specify
available set of evidences, and generate a specification describing potential attack
scenarios (as a series of elementary actions extracted from a library describing legit-
imate and malicious events) that satisfy these evidences. In the sequel, we focus on
describing the different forms of evidences supported by I-TLA, showing how they
can be specified and how they should be satisfied by the expected attack scenario.
The reader is referred to [6] for a complete understanding of I-TLA and I-TLA™"
and a complete semantic and syntactic description.

4.1 Modeling scenarios and evidences in I-TLA

I-TLA is typeless and state-based logic that allows the description of states and
state transitions. A state, while it does not explicitly appear in a I-TLA specification
formula, is a mapping from the set of all variables names to the collection of all
possible values. An I-TLA specification ¢ generates a potential attack scenario in
the form of: w = (59, s1,..., n), as a series of system states s; (i =0 to n). This
form of representation allows a security expert to observe how its system progresses
during the attack and how it interacts with the actions executed in the scenario. I-
TLA supports four different forms of evidences, namely history-based, non-timed
events-based, timed events-based, and predicate-based evidences.
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e History-based evidences: I-TLA encodes a history-based evidence, say E, as
an observation over a potential attack scenario w, generated by Obs(w). Obs()
is the observation function that characterizes the ability of a security solution to
provide evidences as histories of the value of the monitored system components,
during the spread of an attack scenario. Obs(w) is obtained as follows:

1. Transform very state s; to 5; using a labeling function that makes the value of
every variable v in s; be: invisible (in that case it will be represented by ¢€),
equal to a fictive value, or unmodified.

2. Delete any 3; which is equal to null value (i.e., all values are invisible) and
then collapse together each maximal sub-sequence (3;, ..., 3;) such that 3y =
... = §;,1nto a single ;.

Taking into consideration the availability of a history-based evidence £, consists
in generating, an attack scenario @ such that Obs(w) = E.

e Ordering of observations: As the scope of observations differs, they may not
allow to notice that the system has progressed during the attack at the same
time. I-TLA allows to specify for two given history-based evidences, which one
is expected to vary first/last when the attack scenario starts/finishes. Consider
the following example involving an attack scenario w, and two history-based
evidences OBS = [ey, ..., e,] and OBS' = [ei, .., €], generated by observa-
tion functions Obs() and Obs’(), respectively. OBS allows to notice the occur-
rence of an incident before OBS’, if and only if: Jw, such that: © = w, Wy N
Obs(w;) = [e1, ..., ¢;] A Obs'(w,;) = e, for some j (1 < j < m.

e Non-timed events based evidences: Constructed attack scenarios may dif-
fer by the manner in which observations are stretched and stuck together to
generate intermediate states of the execution. I-TLA defines non-timed events
based evidences in the form of predicates over I-TLA executions, that specify
the modification pattern of variables values through an execution. The follow-
ing evidence E, for instance, states that predicate p; switches to value true in
the same state the predicate p, switches to value false (E £ V(s;,s,11) € 0 :
(si ¥ p1 Asit1 Ep1) = si EpaAsit1 ¥ pr)). Taking into consideration the avail-
ability of a non-timed event-based evidence £, consists in generating, an attack
scenario @ such that w F E.

e Timed events-based evidences: Starting from a set of available alerts, an inves-
tigator can extract some indications related to occurred events. I-TLA defines a
timed event-based evidence E = [Ay, ..., A,,] as a set of ordered actions (A to
Ap,) that should be part of an expected execution without requiring that these
events be contiguous. Given a timed event-based evidence £ = [Ay, ..., A, ], an
execution w = (8, ...sp) satisfies evidence E if and only if: V(A,, A1) € E:
3(s4, Si+1) € @ such that: (Ay(s;, si11) = true A Agyi(sj, sj41) = true for
some j > 1+ 1).

e Predicate-based evidences: An unexpected system property, is a preliminary
argument supporting the incident occurrence (e.g., the integrity of a file was vi-
olated). I-TLA defines a predicate-based evidence as a predicate, say F, over
system states, that characterizes the system compromise. An execution o satis-
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fies evidence F, if I divides w into two successive execution fragments w; and
;. w; is composed of secure states (Vs € w;: s ¥ E), while w; is composed of
insecure system states (Vs € wy: s ¥ F).

4.2 Illustrative example

We consider a system under investigation which is specified by three variables z, ¥,
and z. The initial system system state, described in advance, states that z, y, and z
are all equal to 0. The library of elementary actions, contains two actions A; and A,
that can be executed by the system: A1 £ (2/ = 2)A(y' = y+1)A(2' = 2 +2) and
AHE2E =2+ DAY =y) AN =2/2).

Action Ay, for instance, keeps the value of variable z in the new state unchanged
with respect to the previous state, and sets the values of y and z in the new state 1
and 2 higher than its values in the old state, respectively.

Three different evidences are provided. The first two represent history-based ev-
idences, defined as E1=(0¢¢, lee, 2¢¢) and E,=(c0¢, el¢, €2¢, €3¢). They are
generated by observation functions Obs; () and Obsy(), respectively. The first ob-
servation function Obs; (), allows a security solution to only monitor variable .,
meaning that, when applied to a state s, it makes the value of y and z both equal to
¢, and keeps the values of variable z unchanged. The second observation function
Obs, () allows a security solution to only monitor variable y. The ordering of ob-
servations indicates that observation provided by Obs; () allows to notice the occur-
rence of an incident before the observation provided by Obs; (). The third evidence
E5, is provided as a predicate-based evidence defined as E3 £ 2 > 1. The fourth
evidence Fy, defined as Ey 2 V(s;,5,11) € 0 : (s Epi Asiv1 Ep1) = s, F po),is
an non-timed evidence, stating that predicate p; £ 4 = 1, which is false in a state
si, could not switch to true in the next state s; |, unless predicate p, £, # 4 is true
in that state. Finally, evidence Es, indicates that sequence of events (A;, A) is part
of the attack scenario.

Figure 2 shows how I-TLA guarantees the satisfaction of evidences during con-
struction of the potential attacks. Two potential attack scenario satisfying the avail-
able evidences are provided by I-LA, namely w; and w,. The first scenario w; is
described as w; = (s, 3, 84, $7, S12, S15), and consists in consecutively executing
the five following actions A;— A;— A;— A;— Aj;. The second scenario w, is
described as w] = <81, S3, 55, 89, S11, 518>-

Starting from state s, I-TLA cannot execute action A; as it moves the system
to a state that does not satisfy the ordering of observations. In fact, the sub-scenario
(s0, 1) is observed by Obs;() as (Oee, 1e€) and by Obsy() as (€0¢). The event
A, is thus detected by Ej but not by F5. Starting from state s4, I-TLA does not
execute action A, as it moves the system to a state that violates evidence Ey. State
sg could not be considered in the construction process as it violates predicate 3.
In fact, the predicate p1 has became already true in state s3 and should not change
again to false in state sg. [-TLA discards states s;3, sj4, and sj9 as each one of them
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would create an execution that violates evidence F, if appended to the scenario
under construction. In the same context, state s is also not added to the scenario
under construction as it creates an execution that violates F.
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Sg 1s s S\ s
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Fig.2 I-TLA attack scenario generation: an illustrative example

4.3 From IRPCM to I-TLA specification

Starting from the IRPCM built by the IRT, useful information, in the form of symp-
toms, unauthorized results, or actions, will be extracted and used to formally de-
scribe different type of evidences with I-TLA. We denote by useful information,
any concept in the IRPCM having a degree of activation value that exceeds some
predefined threshold, denoted by extraction threshold.

Symptoms are typically extracted from log files, traffic capture, or even keystrokes.
They can be traduced to history-based evidences by transforming the whole content
of the log file (including the record indicating the symptom itself) into an I-TLA
history-based evidence. Symptoms extracted from alert files indicate the occurrence
of events whose position in the constructed attack scenario cannot be determined.
They will typically be transformed to a non-timed I-TLA based evidence.

Actions selected from an IRPCM represent steps taken by a user or a process
in order to achieve some result. A well intentioned reader has noticed that actions
in the I-TLA library and actions in the IRPCM may not have the same form, and
are not of the same granularity. In fact, an IRPCM action can be traduced to one or
several consecutive I-TLA actions. In this context, for every selected IRPCM action
an investigator has to extract sequence of elementary actions from the I-TLA library.
The different obtained sequences will represent Timed events-based evidences.

Unauthorized results represent unauthorized consequence of events. They are
traduced to I-TLA predicate-based evidences. An investigator identifies the system
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variable affected by the unauthorized consequence and then uses it to describe the
evidence.

5 Executable scenarios generation using I-TLC

To automate the proof in the context of digital investigation and generate executable
attack scenarios showing with details how the attack was conducted and how the
system progressed for each action part of the scenario, I-TLC [6], a model checker
for I-TLA™ specifications can be used. I-TLC is somehow an extension to TLC, the
model checker of TLA™T specification.

I-TLC represents a node in the graph as a tuple of two information: node core
and node label. The node core represents a valuation of the entire system variables,
and the node label represents the potential sets of hypothetical actions under which
the node core is reached. A reading of the node label indicates a) the state of the
system in the current node, and b) the alternatives (hypothetical action sets) under
which the system state is reachable.

As the generation of potential attack scenarios may fail if the library of actions is
incomplete, I-TLC tries to generate a hypothetical action and append it to the graph
under construction, whenever available evidences are not completely satisfied. The
idea behind the generation of hypothetical actions is based on the fact that unknown
actions can be generated if additional details about internal system components (i.e.,
those abstracted by the specification) is available. This detail involves a description
of how these internal system components are expected to behave (if an atomic ac-
tions is executed on them) and how they depend on each other. These internal system
components are modeled by a specific set of variables denoted by internal variables.
The other variables specified by I-TLA are denoted by external variables.

Semantically, a hypothetical action is true or false for a pair of states (s, t). Syn-
tactically, a hypothetical action is modeled as a series of hypothetical atomic actions,
executed one after the other from state s to move the system to state ¢. It is defined
in the following form H = m;chy — ... — hyme;. m; defines a mapping from the
external variables values to the internal variables values in state s and m.; defines
a mapping from the internal variables to the external variables in state . The set of
hi (i from O to n) represents executed hypothetical atomic actions. A hypothetical
atomic action h; only modifies a single internal variable, and represents a relation
between two consecutive internal system states. During hypothetical actions gener-
ation, I-TLC needs access to the library of hypothetical atomic actions. This library
describes all the potential hypothetical atomic actions that can be executed on the
investigated system.

During scenarios generation, several hypothetical actions may be appended
whenever needed. I-TLC manages hypotheses following the two key ideas. First as
hypotheses are not completely independent from each others and some hypotheses
are contradictory, I-TLC avoids reaching a state under a contradictory situation. In
this context, the library of hypotheses indicates potential contradictory sequences of
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hypothetical atomic actions. Second, in order to ensure that generated hypothetical
actions are at the maximum close to real actions performed on the system, I-TLC
defines techniques to refine the selection of hypothetical atomic actions.

To generate potential scenarios of attacks, DigForNet uses I-TLC Model Checker,
which follows three phases. The reader is referred to [6] for a detailed description
of I-TLC algorithms.

1. Initialization phase: During this step, the generated scenarios graph is ini-
tialized to empty, and each state satisfying the initial system predicate is computed,
appended to the graph with a pointer to the null state, and a label equal to 0 (as no
hypothetical action is generated).

2. Forward chaining phase: The algorithm starts from the set of initial system
states, and computes in forward chaining manner all the successor states that form
scenarios satisfying evidences described in I-TLA. Successor states are computed
by executing an I-TLA action or by generating a hypothetical action and executing
it. When a new state is generated, I-TLC verifies if another existing node in the
graph has a node core equal to that state. If the case is false, a new node, related
to the generated state, is appended to the graph under construction, and linked to
its predecessor state. If the case is true, the label of the existing node is updated so
that it embodies a sound, consistent, complete, and minimal the set of hypothetical
actions under which the new system state is reachable.

3. Backward chaining phase: All the optimal scenarios that could produce ter-
minal states generated in forward chaining phase and satisfy the available evidences,
are constructed. This helps obtaining potential and additional scenarios that could
be the root causes for the set of available evidences. The new generated predeces-
sor states are managed and appended to the graph under construction with the same
manner followed in forward chaining phase.

All potential scenarios are supposed to be generated by I-TLC. The only ex-
ception may occur due to the lack of actions in the library of elementary actions.
Nonetheless, the use of hypothetical actions allows to alleviate this problem.

6 Case study

We concentrate on the following case study, related to the investigation of a DoS
attack against a web server. Upon the occurrence of the incident, DigForNet collects
traces from the network IDS, the web server log files, and the storage-based IDS
located in the web server.

IRPCM generation
The IRT members analyze the compromised system and the output of the security

tools to build the IRPCM. The generated graph is represented in Figure 3 and is
composed of six symptoms, seven actions, and two unauthorized results. They ap-
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pear in by dashed, continuous, and dotted ellipses, respectively. The first steps of
the construction process are described as follows. Snort IDS provided two alerts re-
lated to the occurrence of a buffer overflow attack and a reconnaissance attack. The
web server log file indicates that a malformed URL was used by some users. These
alerts form the symptoms linked to the action “probe the web server version”. This
action precedes the action “Launch a remote buffer overflow on HTTP service”.
The occurrence of the latter is vindicated by the alert provided by the network mon-
itoring tool. The remote buffer overflow action is used to execute some privileged
commands aiming at sending network traffic to an unused port.

Having appended the set of concepts, IRT members define the edges linking the
nodes and set their labels. We highlight here the existence of some high probabilities
related to edges linking the concepts S4 to A2, 55to A6,and A6 to U2. The degree
of activation of the concepts 54, S5, A1, A6 and U2 are set to 1 as their existence is
well vindicated by the content of the log and alert files provided by the web server,
the network monitoring tools, and the NIDSs.

iz S1. - ~Snartalert = ~ | 32 = Shortalert: = ~ |
Password P reconnaissance \
file theft N ’ robe the - .
== Web server ~ - _attack _ -

- -

3
- Web log file: \,
~ _ Malformed URL _ -

xecute some

privileged ) T 4 _ - = Neo T~ = - R
UlNkff S4 Network ~ S.’; - Snort alert: ~ «
o Network traffic™... ¢ monitoring: Web ( \
3 ~ ’ Shell probes
sent to an ~ ~ service Down_ - ~ N 4

~onport 81~

" unused port o

AS (<, 0.5)

Gain information
about disk layout

Log out

.................. 6 _
Uz Corruption of "%.... (1/0, 0.4) —>-storage IDS:~
3 information: [ Modified ~ }
""""" deletion of filgs.." ~ file system- =

Fig. 3 Case study: Generation of the IRPCM

Extracting evidences from IRPCMs

To extract useful information from the IRPCM, the IRT members defined an ex-
traction threshold equal to 0.9. Concepts in the IRPCM having a degree of activa-
tion value that exceeds 0.9 are retained to be translated into I-TLA evidences. The
investigated system is modeled using four variables, namely Pr, Srv80, Weblog,
Srv81. They represent the privilege granted to the remote user, the service granted
on port 80, the tail of the content related to the web service log, and the ser-
vice granted on port 81. Symptoms S4 and S5 are traduced to a history-based
evidence described in I-TLA in the form of (&”http”ee, €’ noservice”ee), and
(ee€e’noservice”, eg€”/bin/sh”), respectively. The first evidence is generated by
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the network monitoring tool that allows to monitor variable srv80. The second ev-
idence is generated by the NIDS that verifies that none traffic is directed to unused
server ports. In other words, it monitors variable srv81. The unauthorized result U2
is traduced to a predicate-based evidence in the form of weblog = ”_". Each one of
actions A1 and A6 is mapped to a single action in the I-TLA library. These actions
are described as follows:

Actl £ APr=0A Srv80 = "hitp”

APr’ = 1A Weblog' ="get/?”
AUNCHANGED (Srv81, Srv80)

Act3 2 APr >2 A Weblog' =_7
AUNCHANGED (Pr, Srv81, Srv80)

Action A1, for instance, cannot be executed unless Pr and Srv80 values are set
to 0 and ”http”, respectively. Once executed, it sets the value of Pr equal to 1 (a non
privileged access is granted), and the value of Weblog equal to ”get /?” (the tail of
the web log file indicates that a specific URL was requested to probe the web server
version). Actions Act1 and Act3 form a timed event-based evidence indicating that
sequence (Act1, Act3) is part of the attack scenario. The evidences extracted from
the IRPCM in conjunction with the library of elementary actions are then used by
the I-TLA logic to specify the set of potential attack scenarios.

Executable scenarios generation by I-TLC

Starting from the I-TLA™ specification, I-TLC generates one potential executable
attack scenario, composed of six states, described in Figure 4. Every state in the
scenario describes the value of the four system variables used in the I-TLA™ speci-
fication. Edges linking states, are labeled by the name of the executed I-TLA action.
An attacker gets an unprivileged access to the web server and requests a specific
URL that probes the web server version. After that, it conducts a buffer overflow
attack, by exploiting a remote vulnerability in the web service. The web service be-
comes down and the intruder escalates its privilege on the compromised system. In
the third step, the intruder executes an anti-investigation attack on the file system,
hiding the content of the blocks related to the web log file.

I-TLC has generated some hypothetical actions. For the lack of space, we only
kept one hypothesis among those generated. Starting from state ss, I-TLC could
not find in I-TLA specification an action which can be executed. It looks within
the library of hypotheses if it is possible to generate a hypothetical action, which if
executed, will let the system progress to a state that satisfies all available evidences.
I-TLC generates a hypothetical action H and executes it to move the system to
state sg. The hypothetical action consists in attaching a shell to port 81 to be used
by a backdoor allowing the intruder to maintain his access to the system. Later
the intruder logs out. I-TLC specifies that states sg and s; are reachable under the
hypothetical action H by setting their label equal to the singleton { H }.
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S1 S2 S3
Pr=0 Pr=1 Pr=2
Srv80= “http” Actl: Probe the web Srv80= “http” Act2: Buffer Srv80= “noservice”
Weblog="_" service version Weblog= “get/?” overflow attack Weblog= “mfurl”
Srv81= “noservice” Srv81= “noservice” Srv81= “noservice”
Act3:
Hiding the log file
S6 S5 € & sS4
Pr=0 Pr=2 Pr=2
Srv80= “noservice” Act5: Srv80= “noservice” H: hypothetical action | srv80= “noservice”
Weblog=“_" {H} Weblog= “_" {H} “ . L, Weblog=“_”
- - Shell installation -
Srv81= “/bin/sh” Log out Srv81= “/bin/sh” Srv81= “noservice”

Fig. 4 Executable scenarios generation by I-TLC

7 Conclusion

In this paper we have developed a system for digital investigation of networks se-
curity incidents. This system uses formal techniques as well as the IRT members
knowledge to analyze the attacks performed against the networks. We have intro-
duced the intrusion response probabilistic cognitive maps that are constructed by
the IRT upon the occurrence of the attack. A formal language has been introduced
to help specifying the attack scenarios based on the cognitive map. A model checker
was built to automatically extract the attack scenarios and a hypothetical concept is
introduced here to help in the construction process. To illustrate the proposed sys-
tem, we used it in a real case of security attack.
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