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Abstract Differential power analysis (DPA) is a strong attack upon cryptographic
devices such as smartcards. Correlation power analysis (CPA) is a specific form of
DPA where the Hamming-weight and the correlation coefficient are employed. In
this paper we investigate the intrinsic vulnerability of the individual operations that
are targeted in DPA attacks. We find that under the typical circumstances, there is
a difference in resistance to the attack between the operations. We then provide a
precise definition of CPA resistance and capture it in a simple yet effective metric to
rank operations. The metric is validated with both simulations and experiments on
actual hardware.

1 Introduction

Since the well-knownwork of Kocher et al. [7] and the research following [1, 2, 3, 8,
11, 12, 15], side-channel attacks and particularly Differential Power Analysis (DPA)
have become a major security concern for the implementation of cryptographic al-
gorithms on small devices such as smartcards. The side-channel exploited in DPA
attacks is the power consumption of a cryptographic device that usually reveals
some information about the data being processed. Unlike traditional cryptanalysis,
a DPA attack targets a small part of the key at a time. This is possible because the
power consumption of a cryptographic device at a point in time usually depends on
only a few bits of the processed data.
Correlation power analysis (CPA) [3], as a specific form of DPA attack, employs

the Hamming-weight model and the correlation coefficient. In this attack, the power
consumption of the device is assumed to be linked to the Hamming-weight of the
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data. By looking at the correlation between the Hamming-weight of the predicted
values and the actual power consumption, the hypothetical key values and the actual
key of the device are compared.
In this paper, we study the resistance to CPA by examining the individual oper-

ations executed on the cryptographic device. The resistance of fundamental opera-
tions in the algorithm determines the basic resistance of the algorithm as a whole.
Knowing which operation is the weakest, and how likely a CPA attack on this loca-
tion is to succeed given a certain level of noise in the measurements, is an important
starting point in defending the implementation of a cryptographic algorithm.
Our analysis of commonly used operations in smartcards indeed shows that there

are differences in the success rate of CPA attacks (assuming there is some noise
involved in the measurement of the power consumption, which is in practice al-
ways the case). We demonstrate this by simulated attacks and discuss the underly-
ing statistics. The main goal of this paper is to provide an easy to use yet effective
method for ranking operations based on their resistance to CPA attacks.
After formally defining the CPA resistance of operations, we introduce a metric

which captures this resistance. The metric is simple to calculate as it is purely based
on the correlation values for the different key candidates, using the operation and an
estimated noise level of the target device. We show why it is reasonable to build our
metric on these values and subsequently validate the metric. The validation is done
for four operations with simulated attacks as well as experiments based on physical
measurements in practice and then comparing the results with the ranking obtained
from the metric. The validation shows that the metric can capture the CPA resistance
of the operations on the device.
Prouff [13] investigated the problem of DPA vulnerability of S-boxes from a

cryptographic point of view and defined the notion of a ‘transparency order’ of an
S-box, meant to capture its resistance to a particular DPA attack [2]. The conclusion
of [13], that some of the very properties which cryptographically enhance opera-
tions, weaken them on the other hand to power analysis, corresponds to our general
observation (a point also made in [6]). Compared to the approach in [13], we de-
fine a metric that is simpler and more general in the type of operations that can be
addressed. The notion of ‘transparency order’ is complex and requires rapidly in-
creased computations regarding to the bit size. This is not really an issue for typical
S-boxes, as cryptographic devices generally do not have the storage space to deal
with large S-boxes, but it can become a practical problem for other types of opera-
tions. Individual operations were analyzed in [10] for DPA resistance as well, with
both simulated and physical means, but not compared with respect to a metric. In the
framework presented in [15], our approach fits in the class of strong implementation
with an adequate leakage model and sufficient many queries.
The paper is organized as follows. Section 2 starts with a description of the sim-

ulated CPA attacks. Sections 3 and 4 demonstrate the simulation on some examples
where noise is ignored and regarded, respectively. The essentials are then analyzed
in Section 5, where a metric for ranking operations regarding to their resistance to
CPA attacks is proposed and exampled. In Section 6, experimental results are shown
validating the ranking given by our metric. The last section provides conclusion.
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2 CPA Simulation

A comprehensive description of CPA simulation can be found in [11]. We here sum-
marize the general technique with emphasis to the characteristics of our experiment.

2.1 Modeling of Power Consumption

For the modeling of the power consumption signals, we employ the decomposition
pattern from [11] as shown below,

Ptotal = Pdata+Pop+Pnoise+Pconst ,

where the total power consumptionPtotal at a single point in time can be decomposed
into four disjoint components: the data-dependent consumption Pdata, the operation-
dependent consumption Pop, the electronic noise Pnoise and the constant component
Pconst. The Pdata, Pop and Pnoise are the most important. The attacker can learn about
confidential information by analyzing Pdata and Pop. Electronic noise reflects the
fluctuation that occurs when a fixed measurement is repeated. The bigger Pnoise is,
the more difficult the analysis is. The electronic noise in most cryptographic de-
vices can be assumed to have a Gaussian distribution (see e.g. [9, 12]). In the pres-
ence of Pconst, the expected value of Pnoise equals zero. The standard deviation is,
of course, specific to a device. We thus denote that Pnoise∼N (0,σ). The constant
component Pconst occurs independently of the operation performed and the data pro-
cessed, and is therefore not relevant to CPA attacks.

2.2 The Attack Strategy

Let f denote the operation under attack and let f (d,k) be the output of performing f
on input d and key k. Input d can in general be calculated by the attacker based on
the input to the device. The key material k is often a small portion of the secret key
of the device.
In an CPA attack one can distinguish three phases – measurement, prediction,

and analysis. In the first phase, the power consumption of a device is physically
measured while the device performs cryptographic operations. In second phase, we
predict the power consumption Pdata for hypothetical key values, by constructing the
output f (d,k) for chosen d. In the analysis phase, the predicted power consumption
values are compared with the measurements. The result determines which key guess
used for power prediction can be a candidate for the key of the device. In our work,
the measurements in the first phase is simulated based on the power model in Sec-
tion 2.1. This implies we are supposed to know the key of the device in this phase,
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so that given an operation and its input message, the output can be computed based
on the key. We will next present the attack strategy in more details.

Phase 1: measurement. We compute the output f (d,k) for different input d us-
ing the key k from the device. For this purpose, we generate an input vector
d= (d1,d2, . . . ,dm)′ such that d includes all possible values for d. This allows us
to obtain maximal information about the operation and, subsequently, about the key.
The computation results in a vector of output values v= (v1,v2, . . . ,vm)′. They are
thenmapped to power consumption values h= (h1,h2, . . . ,hm)′ using the Hamming-
weight power model, which projects a value X to the number of bit set in it, here
referred to as HW (X). To model the Pnoise while each value in v is computed on the
device, we use a vector of noise values p= (p1, p2, . . . , pm)′ sampled from normal
distribution N (0,σ). Since we perform the analysis for specific operation indi-
vidually, Pop is constant for each measurement and is thus captured by Pconst. As
stated before, component Pconst is not relevant in determining the correct key value.
Hence, by omitting Pop and Pconst from our simulation, the power consumption of
the device at the point in time when an output value vi is handled, is modeled as
ti = HW ( f (di,k)) + pi, yielding a vector of simulated power consumption values
t= (t1,t2, . . . ,tm)′.

Phase 2: prediction. In this phase, we compute f (di,k j) with the input vector d
from Phase 1 and a key hypotheses vector k= (k1,k2, . . . ,kn) containing all possible
choices for k. The simulation of Pdata when f (di,k j) is processed is similar to that in
Phase 1, however, it now needs to be done for each k j ∈ k. This leads to a matrix H
of power consumption values, where hi, j =HW ( f (di,k j)). Because Pdata is the only
relevant power component for determining the key in a CPA attack, the matrix H is
then the result of this phase. Since k contains all possible choices for k, the key of
the device is then among k. We refer to the index of this element as ck and the key
of the device as kck. Column hck of H is correspondingly derived based on kck.

Phase 3: analysis. After having obtained the simulated power consumption data
and the predicted power consumption data, we next compare them and determine
the correct key value. The comparison is based on the correlation coefficient, which
is commonly used to express the linear relationship of two random variables, defined
as:

CC(X ,Y ) =
Cov(X ,Y )

√

Var(X) ·Var(Y )
·

Based onN samples for X andY each, the value of Cov(X ,Y ), Var(X) and CC(X ,Y )
can typically be assessed by the following estimators, respectively:
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W (x,y) =
1

N−1
·
N

∑
i=1

(xi− x̄) · (yi− ȳ)

S2(x) =
1

N−1
·
N

∑
i=1

(xi− x̄)2

R(x,y) =
∑Ni=1 (xi− x̄) · (yi− ȳ)

√

∑Ni=1 (xi− x̄)2 ·∑
N
i=1 (yi− ȳ)2

The correlation between t and each column of H is estimated by R, resulting in a
vector r = (r1,r2, . . . ,rn), where r j compares the j-th column of H to t. Recall that
column hck has been processed with the key hypothesis kck, which has also been
used to simulate t. Therefore, column hck and t are assumed to be strongly related
and the corresponding correlate coefficient rck is the highest in r. Other values of r
are expected to be lower because the other columns of H and t are less correlated.
Following this line of reasoning, the index of the correct key hypothesis ck is re-
vealed.
A minor point suppressed in the sequel is the following. If the power consump-

tion increases with the Hamming-weight, kck has a positive correlation coefficient;
otherwise it has a negative correlation coefficient. The linear dependency is deter-
mined by specific cryptographic device, which, if is unknown beforehand to the
attacker, a brute-force analysis needs to be applied. Therefore, we consider both
positive and negative correlation peaks as possible candidates. Consequently, the
absolute values of the correlation coefficients (|r1|, |r2|, . . . , |rn|) are taken as ref-
erences for the analysis, instead of the actual values. Some wrong key hypotheses
cause what are often referred to as ‘ghost peaks’ in context of CPA attacks. The
presence of ghost peaks typically requires additional brute-force methods to iden-
tify the correct key; and the cost increases exponentially on the number of ghost
peaks. Therefore, we say that the more ghost peaks there are, the more resistant an
operation is to CPA attacks.

2.3 Demonstration

In order to demonstrate the attack simulation, we take as examples four operations
that are typically targeted in DPA attacks for software implementations of AES [4],
TEA [16] and Edon [5]. The operations are: exclusive-or, modular addition, mod-
ular multiplication, and AES AddRoundKey plus SubBytes. In this paper, we refer
to them as operations XOR, ADD, MUL, and AES, respectively. To achieve a fair
comparison between the operations, they are all carried out with 8-bit data.
A note for MUL (see [5]) is that to avoid multiplications by zero, the inputs are

mapped from ZZ255 to ZZ∗256 by a function g and the output is projected from ZZ∗256
back to ZZ255 by the inverted function g′ after modularmultiplication. The f -function
is then: f (d,k) = g′(g(d)×g(k) mod 257).
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3 Idealized Simulation

This section provides examples of CPA attacks for the idealized case, where the
electronic noise component Pnoise is omitted in the simulation and only the data-
dependent component Pdata is taken into account in the measurements. Clearly, this
situation never occurs in practice. However, it is useful for better understanding the
dependency between the processed data and the power consumption of the device.
Technically, column hck of H and vector t now contain the same values, which
results in the maximum correlation coefficient value 1 for rck for all operations.
We have performed this simulated attacks on every operation. The resulting cor-

relation coefficients are plotted in Fig. 1. Note that for operations that are bijective,
which is the case for our examples, the frequency distribution of the correlation
coefficients is subject to the operation only, independently from the choice of the
correct key. Based on the results in Fig. 1, we will next analyze the characteristics
of the operations individually.
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Fig. 1 Correlation coefficients for all key hypotheses when kck = 160.

XOR. The correlation coefficients for XOR are evaluated to 1 for the correct key
hypothesis kck and to −1 for its bitwise inverted value ¬kck; hence, they are both
considered as possible key candidates in this case. Ghost peaks occur at key hy-
potheses that differ by 1 bit from kck or ¬kck. The subsequent peaks correspond to
key hypotheses that differ by 2 and 3 bits from kck or ¬kck. Those that differ by 4
bits from ¬kck are not correlated and hence lead to zero correlation.

ADD. Operation ADD is similar to XOR except for the bit carry propagation. The
wrong key hypotheses that cause ghost peaks can be ranked as: kck±27, kck±26, . . .,
kck±20, kck±27±26, kck±27±25, . . ., kck±27±20, . . .. For instance, the output
of f (d,kck±27) differs by one bit from f (d,kck) for any input d; and f (d,kck±26)
differs from f (d,kck) for 28/2 values by one bit, for 28/4 values by zero bit and
for 28/4 values by two bits.
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MUL. A few wrong key hypotheses show ghost peaks here. Employing the method
in [10], we summarize the correlated key hypotheses in four sequences K1,i, K2,i,
K3,i and K4,i as follows:

K1,i = g′(2i ·g(kck) mod 257) ; K2,i = g′(257−g(K1,i)) ;

K3,0 = kck , K3,i+1 = g′( g(K3,i)2 ) for g(K3,i) even ,

K3,i+1 = g′( 257−g(K3,i)2 ) for g(K3,i) odd ; K4,i = g′(257−g(K3,i)) ,

where i= 0,1, . . . ,8. To give an example, the key hypotheses that cause the peaks in
Fig. 1 are: kck = 160; K1,i = {160, 63, 126, 252, . . .}; K2,i = {97, 194, 131, 5, . . .};
K3,i = {160, 80, 40, 20, . . .}; and K4,i = {97, 177, 217, 237, . . .}.

AES. In contrary to the other operations, no ghost peak occurs for AES. This is due
to the fact that the AES S-box has been well chosen regarding to the non-linearity
criterion. Although it is an advantage to resist linear cryptanalysis, this optimization
allows CPA attacks to succeed easily.

4 Simulation with Noise

We now discuss more realistic DPA attacks where electronic noise is involved. A
notion for the failure of CPA attacks is introduced, and experiments using the simu-
lated CPA attacks based on this notion are presented.
Again, CPA selects possible key candidates according to the absolute values of

the obtained correlation coefficients. A straightforward CPA chooses only the most
significant correlation peak as the candidate. Due to the noise, the highest peak may
not exactly occur at the correct key hypothesis and thus a wrong candidate could
be returned. In this case, the attack is deemed to be failed. Intuitively, an attack can
easily fail this way when the noise is high. As stated in Section 2.1, the influence
of the electronic noise on the measurement is typically characterized by its standard
deviation σ . The greater σ is, the higher Pnoise is. Given the standard deviation σ for
the noise Pnoise, we refer to the resulting correlation coefficients based on Pnoise as
(rσ1 ,rσ2 , . . . ,rσn ). Accordingly, the correlation values obtained in the idealized case
(see Section 3) are denoted as (r01,r02 , . . . ,r0n). Using these notations, we define the
difference between the absolute correlation values for kck and k j, for some σ , as
follows:

δσj = |rσck|− |rσj | · (1)

We introduce notionF (σ) for the event that CPA fails when the standard deviation
of noise equalsσ . NotionF (σ) can then be formulated as a set of boolean outcomes
that if there is any ghost peaks higher than the peak at kck:

F (σ) = {δσj < 0 | 1≤ j ≤ n} ·
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Fig. 2 Prob(F (σ )) for all operations.
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Fig. 3 A zoom of Fig. 2.

Next, we perform simulated CPA attacks according to the strategy presented in
Section 2. In contrast to the idealized case, the noise values in vector p are now
added to the power consumption values in t. To model different levels of electronic
noise, we generate a set of possible values {0.5,1,1.5, . . . ,13} for σ . In order to de-
liver a promising assessment for the probability that an attack fails, which is referred
to as Prob(F (σ)), we have repeated each experiment for 500 times2 with the same
input d and k and different values for p. The number of times that the attacks fail is
recorded for each choice of σ . Dividing these numbers individually by 500 yields
the probabilities Prob(F (σ)) for each value of σ .
The above experiment has been performed to all the operations and the results

are plotted in Fig. 2. The overall rising of the probabilities agrees that the attacks
fails more often for all the cases as the noise is turned up. As the figure presents,
after an initial leveling down at 0%, the failure rates start growing for all the cases.
The increase is the most rapid for XOR. When σ = 4, for instance, the probability
for XOR is close to twice as much as that for ADD and almost three times as much
as that for MUL; and, it exceeds the one for AES by a ratio of 1.5 to 0. The ranking
of the operations by their failure probabilities stays this way until σ hits 10. After
that, they all converge to 1. As can be seen, in majority of the cases, the failure rates
remain in the order: XOR>ADD>MUL>AES, which is, hence, taken as the ranking
of the operations for the resistance to CPA attacks in our experiment.

5 A Metric for Resistance to CPA attacks

Above, we have shown the results of CPA simulation for both the noise-free case and
the noise-involved case. In this section, we analyze the probability of CPA failure
in Section 4 and show it primarily depends on the correlation values obtained in
the idealized case in Section 3. We then integrate the results from both sections

2 The number 500 is chosen as a trade-off of precision and cost of experiment.
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and propose a metric for evaluating the resistance of an operation to CPA attacks,
based on correlation values in the idealized simulation. Additionally, we show by
examples how this metric can be used to rank operations.

5.1 Reasoning about Prob(δσj <0)

As previously assumed, a CPA attack fails when at least one ghost peak is higher
than the resulting correlation by the correct key hypothesis. The difference δσj de-
fined in (1) is modeled as in (2). Random variables Hj and Pσnoise are used to denote
respectively the hypothetical power consumption values in column j of H and the
simulated noise values in p with a standard deviation of σ .

δσj = |CC(Hck,Hck +Pσnoise)|− |CC(Hj,Hck +Pσnoise)|

=
1

√

Var(Hck +Pσnoise)
·
(

√

Var(Hck) ·
(

|CC(Hck,Hck)|− |CC(Hj,Hck)|
)

+
( ±|Cov(Hck,Pσnoise)|

√

Var(Hck)
−

±|Cov(Hj,Pσnoise)|
√

Var(Hj)

)

)

≈
1

√

S2(hck)+σ2
·
(

√

S2(hck) ·
(

1− |r0j |
)

+
( ±|W(hck,p)|∓ |W(h j,p)|

√

S2(hck)

)

)

·

(2)

One assumption underlying the deduction in (2) is that the attacked operation is as-
sumed to be balanced [13], which is the case for most of the operations used in cryp-
tographic algorithms. So that, given uniformly distributed random input and key, the
output of the operation is also uniformly distributed. This assumption yields that the
variances of the Hamming-weight of the outputs for different key hypotheses are
constant when all input values are used, i.e., Var(Hi) =Var(Hj) for any 1≤ i, j ≤ n.
In Eq. (2), the variables are in the end substituted by their estimators. The ex-

act value for Prob(δσj < 0) is difficult to derive analytically based on this model,
requiring statistical methods out of the scope of this paper. However, we have dis-
covered some interesting properties for the probability Prob(δσj <0) based on (2).
Since Var(Hck) is constant, S2(hck) tends to constant when all possible input values
are used. Because Pσnoise andHj are independent, by the Central Limit Theorem [14],
when all possible values for input are used, the distribution ofW (h j,p) is approx-
imately normal with expectation zero and some variance Var[W (h j,p)], which in-
creases on σ . Therefore, considering two arbitrary key hypotheses ki and k j, we can
assume thatW (hi,p) andW (h j,p) have nearly the same distribution for a fixed σ .
Consequently, we can assume that when all inputs are used, δσj can be seen as a
function of |r0j |. Hence, the probability Prob(δσj <0) depends only on |r0j | for some
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fixed σ and the relation of Prob(δσj <0) between different key hypothesis can be
approximated by their relation for |r0j |. As shown in (3), for two key hypotheses ki
and k j where i ̸= j, their probabilities of resulting a higher correlation peak than
that by kck, are approximately equal if |r0i | = |r0j | and have the same relation as |r0i |
and |r0j | if otherwise. Note that when |r0i | is smaller than but very close to |r0j |, the
probability Prob(δσi <0) can be approximately equal to and not necessarily smaller
than Prob(δσj <0).

|r0i | = |r0j | =⇒ Prob(δσi < 0)≈ Prob(δσj < 0)

|r0i | < |r0j | =⇒ Prob(δσi < 0) < Prob(δσj < 0) ·
(3)

When two balanced operations op1 and op2, both processing with b-bit data,
are considered, we have that Var(Hop1

i ) =Var(Hop2
j ) = b/4 for any i and j, when

all input values are used. As Pσnoise is also independent of the operation, similar
arguments as previously regarding W (h j,p) can also be applied here. Hence, we
can conclude that the properties in (3) hold independently of operations as long as
they are carried out with data of the same sized.

5.2 Assessing Prob(δσj <0) and Prob(F (σ))

Based on the relation between |r0j | and Prob(δσj < 0) as in (3), we define a func-
tion h(r,σ) which takes non-negative inputs r and σ , and returns the probability
that a key hypothesis with correlation coefficient±r in the noise-free simulation, be-
comes the key candidate in an attack when the standard deviation of noise equals σ .
Thus, the probability Prob(δσj <0) can be expressed as h(|r0j |,σ).
We estimate the function h(r,σ) by applying the CPA simulation performed in

Section 4 on the four demonstrated operations with 500 repetitions each. Unlike the
previous experiment, we have now recorded the number of times that each hypoth-
esis k j results in a negative δσj , i.e. when the absolute value of the correlation by
k j is higher than that by kck, for σ = 0.5,1,1.5, . . . ,13. The ratios of these numbers
to 500 are then the estimation of h(r,σ). Note that this assessment for h(r,σ) covers
only a part of the possible values for r, which however, as we will show later, is
sufficient to capture the characteristics of h(r,σ).
The results of this experiment agrees with our analyzed properties about relations

between r and h(r,σ) as in (3). Due to the lack of space, we do not show the result
for each individual experiment. In order to give a clear illustration of h(r,σ), we
plot the averaged results in Fig. 4 for a few representative values of r. Figure 5 gives
an example when σ = 7, which is the column of Fig. 4 where σ = 7. The plottings
indicate that h(r,σ) monotonically increases on σ for every r, and grows rapidly
on r in most of the cases for σ .
We now discuss how to reason about Prob(Fσ ) using h(r,σ). An assessment

of Prob(Fσ ) can be derived as in (4), where every step of approximation is la-
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beled with the amount of errors that this approximation causes. That is, for X ε
≈ Y ,

ε = Y −X . Therefore, a positive ε represents overestimating and a negative one
represents underestimating. We will later investigate into the precision of each indi-
vidual and the overall approximations.

Prob(Fσ ) = Prob({δσj < 0 | 1≤ j ≤ n})
ε1
≈

n

∑
j=1
Prob(δσj < 0) =

n

∑
j=1

h(|r0j |,σ)

ε2
≈

n

∑
j=1

h(|r0j |,σ) for 1> |r0j |≥ ρ

ε3
≈
h(1,σ)+h(ρ ,σ)

2
·#{ j | 1> |r0j | > ρ } ·

(4)

For ε1, outcomes {δσj <0} for all j are not mutually exclusive. Hence, this error
is related to the dependency between the outcomes, which is unknown. However,
we can give a translation of ε1 in the context of CPA attacks. Let us consider a
stronger attacker who always takes the highest N correlation peaks from an attack,
and later determines the correct key by brute-forcemethods in the order of the height
of the peaks. In this case, the expected maximum number of trials that the attacker
performs for each operation under attack before he finds the correct key hypothesis
(or gives up) can be computed by E[min(#{ j | δσj <0},N)]. Intuitively, the attacker
can tolerate N wrong key candidates at maximum and a CPA attack can succeed
if |rσck| is ranked in the top N correlation peaks. Using this notation, the probability
Prob({δσj < 0}), on the left hand side of ε1, is equal to E[min(#{ j | δσj <0},1)]
and can be interpreted as the expectation of the number of trials that an attacker
performs on brute-force, when he takes only one key candidate in an attack. On
the other hand, the sum of Prob(δσj <0) equals, by definition, the expectation of the
total number of wrong candidates a CPA attack returns, i.e. E[#{ j | δσj <0}], which
is no less than E[min(#{ j | δσj <0},1)]. Therefore, ε1 is non-negative and increases
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Table 1 The value of ρ for selected σ .

σ –2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 8 9 10 11 12 13–

ρ 13
16

12
16

11
16

8
16

7
16

6
16

11
32

5
16

4
16

3
16

5
32

2
16

1
32

1
64

1
128 0

on σ . For example, when σ is small, noise influences less and the correlation peak
for the correct key hypothesis is likely to be the highest so that ε1 is small; and
when σ is big, noise influences more and |rσck| is unlikely to be the highest resulting
a big ε1.
The second estimation ignores the case when r is smaller than some thresh-

old ρ . Hence, ε2 =−∑nj=1h(|r0j |,σ)≤0, for r<ρ . Figure 5 shows an example
when ρ=0.19. Although h(r,σ) can be small when r is small, the correlation values
resulted from an attack can very likely be close to zero, referring to the demonstra-
tions in Fig. 1. Therefore, the sum of h(r,σ) for r< ρ is not necessarily small.
Generally speaking, ε2 decreases on σ and ρ for all operations. When σ grows,
h(r,σ) rises for every r and the sum of h(r,σ) increases for r<ρ ; when ρ increases
more cases for r will be ignored by this approximation.
By making the third approximation in (4), we are actually assuming that r is

equally distributed for r≥ρ . This may in practice not be the case for an operation.
The value of ε3 depends on the distribution of r for r≥ρ , which is subject to the
operation. Taking Fig. 5 as an example, at interval r= [ρ ,1), ε3 is positive if the
distribution of r is denser in the area close to ρ and is negative if the distribution of r
is denser in the area close to 1. The amount ε3 approaches zero when σ increases,
whereas its relation to ρ requires more details on the distribution of r.
In summary of the previous analysis, ε1 is non-negative and increases on σ ,

whereas ε2 is non-positive and decreases on σ and ρ , somehow compensating ε1.
Amount of ε3 is uncertain, depending on specific operations. Therefore, we can
claim that our approximation for Prob(Fσ ) in (4) is not too rough and can be
very close to the true value if the threshold ρ is well chosen. Deriving a function
for ρ based on σ , however, requires information that is unknown to us, such as the
distribution of correlation coefficient for a random operation and the exact value
for h(r,σ). Nonetheless, the values for ρ can be assessed based on our experimental
results for h(r,σ) and Prob(Fσ ) (see Section 4). The approximated ρ for selected
values of σ is shown in Table 1.

5.3 A Metric for CPA Resistance

Previous section shows that given an estimated standard deviation σ for noise Pnoise,
one can find a value for ρ in Table 1 such that Prob(F (σ)) can be assessed us-
ing (4). The resulting formula indicates that when σ and ρ are fixed, the probability
that a CPA fails is proportional to the number of correlation peaks that are smaller
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Table 2 Metrics for the operations for selected values of σ .

σ –2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 8 9 10 11 12 13–

XOR 0 16 16 72 72 72 72 72 184 184 184 184 184 184 184 254
ADD 0 1 1 15 17 19 27 31 71 99 125 157 237 247 255 255
MUL 0 0 2 5 7 9 9 9 11 17 21 29 115 177 209 255
AES 0 0 0 0 0 0 0 0 0 4 17 35 188 223 241 255

than 1 and higher than or equal to ρ in the results of the idealized attack simulation.
Intuitively, the more high correlation peaks an operation results in from a noise-free
CPA attack, the more wrong key hypotheses are correlated to the correct one and
the more likely the real CPA attack on this operation, where the noise fluctuates the
power consumption measurements, is going to fail.
Therefore, we can deliver a metric for the resistance of an operation to CPA

attack:

Definition 1. Given correlation coefficient values r0 = (r01,r02, . . . ,r0n) obtained from
the idealized CPA simulation on an operation, a metric for its resistance to CPA
attacks where the electronic noise has a standard deviation approximately equal
to σ , is the number of elements in r0 whose absolute values fall into interval [ρ ,1),
i.e.,

#{ j | 1> |r0j |≥ ρ , 1≤ j ≤ n} ,

where, knowing σ , the threshold ρ can be obtained from Table 1.

Using Definition 1, we have calculated the metrics in Table 2 for the operations
used in demonstration. It shows that the ranking of the failure rates for the operations
previously obtained by attack simulations (see Section 4) is now well captured by
the metrics of those operations in Table 2.

6 Validating the Metric

In this section, we discuss executing the exemplary operations on a Atmel AVR
microcontroller with all switchable countermeasures off. Nowadays, most crypto-
graphic devices available on the market come with countermeasures against side-
channel analysis. Information leakage in the Atmel AVR microcontroller reports
similarity to that in cryptographic devices such as smartcards, but with a customiz-
able setting for the countermeasures. Hence, it is typically seen as a good represen-
tative for predicting the leakage of cryptographic devices in the worst scenario at an
earlier stage.
Usually for a practical CPA, one needs to record the power consumption values

for a large number of time samples during execution. Therefore, each input results
in a power trace consisting of numerous power consumption values each of which
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corresponds to a single time sample. However, only the time sample at which the
output of the attacked operation is processed is relevant to an CPA attack. We de-
note this point of time using τ . Hence, we firstly apply the CPA attack using the
complete power traces for all input and then identify this concerned time sample τ
based on the resulting correlation values. The power consumption values at τ then
corresponds to the power consumption vector t in our simulation (see Section 2).
Accordingly, the correlation values at τ are then captured in r.
We have performed the attack for a number of traces (input). In general, the

more resistant an operation is to CPA attacks, the more traces is needed to obtain a
clear correlation peak. The resulting correlation values at τ are shown in Fig. 6. The
correct key hypothesis is plotted in black. The plotting for XOR is vertically sym-
metric every key hypothesis and its bitwise inverted value report exactly negated
correlation values. Although the correct key hypothesis always results in the highest
correlation coefficient after about 250 traces, ghost peaks are still very significant.
For ADD, only one ghost peak, which is caused by the key hypothesis kck±27, re-
mains very high after 400 traces. The results for MUL shows that the peak for kck
becomes clear after about 250 traces, followed by a few of ghost peaks. In case
of AES, the peak at kck stands out very obviously after only about 50 traces. The
results show that the physical measurements from these experiments are in confor-
mance with our previous simulation results, thereby validating the ranking and the
metric of the operations in Section 5.
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Fig. 6 The correlation values for different number of traces at τ .
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7 Conclusion

In this paper, we analyze the resistance to CPA attacks for fix-sized primitive oper-
ations. By studying the results from simulated CPA attacks on a few operations that
carry out 8-bit data, we provide a model for the resistance to CPA attacks. Based on
this reasoning, we propose a convenient metric for measuring the resistance of an
operation to the attacks and argue its validity. By demonstration, we show how this
metric can be employed to rank operations with respect to their CPA resistance. Ad-
ditionally, physical attacks are applied on the operations in practice on a Atmel AVR
micro-controller and the results of agree well with the ranking metric proposed.
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