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Abstract Decentralized detection has been an active area of research since the late
1970s. Its earlier application area has been distributed radar systems, and more re-
cently it has found applications in sensor networks and intrusion detection. The
most popular decentralized detection network structure is the parallel configuration,
where a number of sensors are directly connected to a fusion center. The sensors
receive measurements related to an event and then send summaries of their obser-
vations to the fusion center. Previous work has focused on separate optimization of
the quantization rules at the sensors and the fusion rule at the fusion center or on
asymptotic results when the number of sensors is very large and the observations
are conditionally independent and identically distributed given each hypothesis.
In this work, we examine the application of decentralized detection to intrusion

detection with again the parallel configuration, but with joint optimization. Particu-
larly, using the Bayesian approach, we seek a joint optimization of the quantization
rules at the sensors and the fusion rule at the fusion center. The observations of the
sensors are not assumed to be conditionally independent nor identically distributed.
We consider the discrete case where the distributions of the observations are given
as probability mass functions. We propose a search algorithm for the optimal so-
lution. Simulations carried out using the KDD’99 intrusion detection dataset show
that the algorithm performs well.
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1 Introduction

There is pressing need for extensive research and development of novel approaches
to address security problems in networked systems. The current cost of security-
related issues is on the order of billions of dollars in terms of lost productivity,
prevention, and clean-up. This affects individuals, businesses, and organizations on
a global scale. For an example, the Code Red worm, which infected some 360,000
servers, cost about $1.2 billion in damage to computer networks [1]. As a result
of the general-purpose nature of current computing systems and due to their social
underpinnings, network security poses significant challenges that require innovative
security architectures.
The problem of decentralized detection has been addressed in many works ([2],

[3], [4], [5], [6], and [7]). The concepts and taxonomy of intrusion detection sys-
tems can be found in [8] and [9]. Reference [10] provides a survey on intrusion
detection for mobile ad hoc networks. Furthermore, the authors in [11] have pro-
posed an algorithm for decentralized intrusion detection in the context of wireless
sensor networks. The use of Principal Component Analysis (PCA) to detect net-
work anomalies has been examined in [12], [13] and [14], while reference [15] uses
a Markov chain model to learn the normal behavior and then detect the anomalies.
Also, application of game theory to intrusion detection has been examined in [16]
and [17].
A variety of network security issues such as attack and anomaly detection can

be addressed within the framework of Bayesian hypothesis testing. In such a frame-
work, one considers networked security systems with multiple virtual sensors (de-
tection units) implemented as software agents that report various measurements or
observations. In many cases, sending all this information to a centralized location
for processing (attack detection) has several disadvantages such as traffic overhead
and need for extensive computing resources at the center. To remedy these issues,
we resort in this paper to decentralized hypothesis testing for attack detection.
KDD1 Cup 1999 [18] is a dataset extracted from the TCP dump data of a Lo-

cal Area Network (LAN). The LAN was set up to simulate a United States Air
Force LAN and speckled with different kinds of attacks. From this dataset, it can be
shown that the observations from different sensors (parameters) are not necessarily
identically distributed and may also be strongly correlated. Thus the analyses and
results developed under the assumption of conditionally independent and identically
distributed (i.i.d.) observations with a large number of sensors will not be applica-
ble here. We therefore attempt to analyze a sensor network with a finite number of
sensors. We do not assume that the observations are conditionally i.i.d.We use the
Bayesian criterion, i.e., the cost function is the average probability of error at the
fusion center.
The main contributions of this paper are: (i) applying decentralized hypothesis

testing to intrusion detection, where each sensor observes a parameter of the system
or current connection; (ii) proposing a search algorithm for the optimal (Bayesian)

1 KDD stands for Knowledge Discovery and Data Mining [18].
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thresholds for the general case of non-i.i.d. observations, provided that the sensors
are restricted to use likelihood ratio tests; and (iii) deriving some relationships be-
tween the majority vote and the likelihood ratio test for a parallel configuration.
The rest of the paper is organized as follows. The background theory is presented

in Section 2. In Section 3, we derive some relationships between the majority vote
and the likelihood ratio test at the fusion center. We then propose a search algorithm
to find the optimal thresholds for the sensors in Section 4. Section 5 gives a brief
overview of the KDD 1999 dataset, discusses the application of hypothesis testing in
attack and anomaly detection, and presents the simulation results using the dataset.
Finally, some concluding remarks end the paper.

2 Decentralized hypothesis testing with non-i.i.d. observations

In this section, we formulate the problem of decentralized hypothesis testing with
non-i.i.d observations. We first discuss centralized detection before proceeding with
the decentralized problem. Extensive discussion on both models can be found in [4].
In Subsection 2.2, we provide details on the fusion rule and the average probability
of error at the fusion center.

2.1 From centralized to decentralized detection

Centralized detection. First we consider the configuration given in Figure 1. This
is a parallel configuration with a finite number of sensors and a data fusion center.
The sensors observe two hypotheses, H0 and H1, corresponding, for example, to the
normal state and an attack, respectively. Let Y1,Y2, . . . ,YN , the observations of the
sensors, be N discrete random variables that take values in finite setsY1,Y2, . . . ,YN ,
respectively. The observations are not assumed to be conditionally independent nor
identically distributed. In this model, we suppose that the fusion center has full
access to the observations of the sensors. It then fuses all the data to finally decide
whether H0 or H1 is true. From the result of centralized Bayesian hypothesis testing
[19], the rules can be stated as follows:

γ0(y1,y2, . . .yN) =

{

1 if P1(y1,y2,...yN)
P0(y1,y2,...yN) ≥

π0
π1

0 otherwise,
(1)

where P1(y1,y2, . . .yN) denotes the joint probability of the Yi’s under hypothesis H1,
i.e., P(Y1 = y1,Y2 = y2, . . .YN = yN |H1); P0(y1,y2, . . .yN) denotes the joint probabil-
ity of the Yi’s under hypothesis H0, i.e., P(Y1 = y1,Y2 = y2, . . .YN = yN |H0); π0 and
π1 are the prior probabilities of H0 and H1, respectively; and γ0 is the fusion rule at
the fusion center. Throughout this paper, we use the indices of the hypotheses (0,
1) to indicate the hypotheses (H0, H1) in the equations. Note that the fusion rule
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{H0,H1}

Sensor 1

Sensor 2

Sensor N

PY1,Y2,...,YN |Hi (y1,y2, . . . ,yn)

Y1

Y2

YN

Fusion Center, γ0

Fig. 1 Centralized detection, where the fusion center has full access to the observations of the
sensors.

involves a threshold which is the ratio of π0 to π1, and the likelihood ratio (ratio of
probabilities under the two hypotheses) is tested against that threshold.
Decentralized detection. In the decentralized detection model, instead of pro-

viding the full observation, each sensor only transmits 1 bit of information (which
is a local decision whether H0 or H1 is true) to the fusion center, which will fuse all
the bits to finally decide between H0 or H1. The communication channels between
the sensors and the fusion center are assumed to be perfect. We seek a joint opti-
mization of the quantization rules of all the sensors (γ1(.), . . . ,γN(.)) and the fusion
rule of the fusion center (γ0(.)) to minimize the average probability of error of the
system. The configuration of N sensors and the fusion center are shown in Figure 2.

{H0,H1}

γ1(.)

γ2(.)

γN(.)

PY1|Hi (y)

PYN |Hi (y)

l1

l2

lN

Fusion Center, γ0

Fig. 2 Decentralized detection model, where each sensor transmits 1 bit of information to the
fusion center, which will fuse all the bits to finally decide whether H0 or H1 is true.

Naturally, given the same a priori probabilities of the hypotheses and conditional
joint distributions of the observations, the decentralized configuration will yield an
average probability of error that is higher than or equal to that of the centralized
configuration. The reason is that we lose some information after the quantization
at the sensors [4]. Putting it another way, given the observations of the sensors and
assuming the use of a likelihood ratio test at the fusion center in the centralized
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configuration, the test in (1) will yield the minimum probability of error. The decen-
tralized configuration, however, can always be considered as a special setup of the
fusion center in the centralized case, where the observations from the sensors are
quantized before being fused together.
Under the assumption that the observations are conditionally independent, it has

been shown in [4] that there exists an optimal solution for the local sensors, which is
a deterministic (likelihood ratio) threshold strategy. When the observations are con-
ditionally dependent, however, the threshold rule is no longer necessarily optimal
[4]. In this case, obtaining the overall optimal non-threshold rule is a very challeng-
ing problem. In view of this, we restrict ourselves to threshold-type rules (which are
suboptimal) at the local sensors and seek optimality within that restricted class. The
optimal fusion rule, as shown next, will also be a likelihood ratio test.

2.2 The fusion rule and the average probability of error

For each combination of the thresholds at the sensors {τ1,τ2, . . . ,τN}, the fusion
rule (γ0) is determined based on the likelihood ratio test at the fusion center:

γ0(l1, l2, . . . , lN) =

{

1 if P1(l1,l2,...,lN)
P0(l1,l2,...,lN) ≥

π0
π1

0 otherwise.
(2)

Here Pi(l1, l2, . . . , lN) is the conditional joint probability mass function (pmf ) given
Hi, i= 0,1.
This result can be derived from the solution of the one-sensor Bayesian detec-

tion problem [19], where the fusion center is considered as a sensor with the local
decisions (from the connected sensors) as its observations [4].
The average probability of error at the fusion center is then given by:

Pe = π0P0
(

P1(l1, l2, . . . , lN)

P0(l1, l2, . . . , lN)
≥
π0
π1

)

+π1P1
(

P1(l1, l2, . . . , lN)

P0(l1, l2, . . . , lN)
<

π0
π1

)

= π0 ∑
l1,l2,...,lN :La≥

π0
π1

P0(l1, l2, . . . , lN)+π1 ∑
l1,l2,...,lN :La<

π0
π1

P1(l1, l2, . . . , lN)

where La =
P1(l1, l2, . . . , lN)

P0(l1, l2, . . . , lN)
. (3)

As we are considering the discrete case, where the conditional joint distributions
are given as pmf s, the conditional joint distributions of the local decisions can be
written as:

Pi(l1, l2, . . . , lN) = ∑
YN∈RNiN

. . . ∑
Y1∈R1i1

Pi(Y1,Y2, . . . ,YN) (4)

where in = 0,1, and Rnin is the region where Sensor n decides to send bit in, n =
1, . . . ,N:
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Rn1 =

{

Yn ∈ Yn : LYn =
P1(Yn)
P0(Yn)

≥ τn

}

(5)

Rn0 =

{

Yn ∈ Yn : LYn =
P1(Yn)
P0(Yn)

< τn

}

. (6)

where LYn = P1(Yn)/P0(Yn) is the likelihood ratio at Sensor n.
Our goal is to find the combination {τ1,τ2, . . . ,τN} that yields the minimum prob-

ability of error at the fusion center. If the number of threshold candidates for every
sensor is finite, the number of combinations of thresholds will also be finite. Then
there is an optimal solution, i.e., a combination of thresholds {τ1,τ2, . . . ,τN} that
yields the minimum probability of error. In Section 4, we show how to pick the
threshold candidates for each sensor.

3 The majority vote versus the likelihood ratio test

In this section, we first show that if the observations of the sensors are conditionally
independent, given the set of thresholds at the local sensors, any sensor switching
from decision 0 to decision 1 will increase the likelihood ratio at the fusion center.
Furthermore, if the observations are conditionally i.i.d. and the sensors all use the
same threshold for the likelihood ratio test, the likelihood ratio test at the fusion
center becomes equivalent to a majority vote. In the general case, where the obser-
vations are not i.i.d., this property no longer holds; we provide towards the end of
the section an example where the likelihood ratio test and the majority vote yield
different results.
Recall that the fusion rule at the fusion center is given by (2). If the observations

of the sensors are conditionally independent, the likelihood ratio at the fusion center
becomes:

P1(l1, l2, . . . , lN)

P0(l1, l2, . . . , lN)
=
∏N
n=1P1(ln)

∏N
n=1P0(ln)

=
N

∏
n=1

P1(ln)
P0(ln)

.

Let us denote by N the set of all local sensors (represented by their indices). We
divide N into two partitions: N0, the set of local sensors that send 0 to the fusion
center, and N1, the set of local sensors that send 1 to the fusion center. Then we
have N0

⋃

N1 = N and N0
⋂

N1 = /0. Note that, given the conditional joint prob-
abilities of the observations, N0 and N1 are set-valued functions of the thresholds
{τ1,τ2, . . . ,τN}. Let N0 and N1 denote the cardinalities ofN0 andN1, respectively.
Obviously, N0,N1 ∈ Z (where Z is the set of all integers), 0 ≤ N0,N1 ≤ N, and
N0+N1 = N. Now the likelihood ratio can be written as:

P1(l1, l2, . . . , lN)

P0(l1, l2, . . . , lN)
= ∏

n∈N0

P1(ln = 0)
P0(ln = 0) ∏m∈N1

P1(lm = 1)
P0(lm = 1)

. (7)
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From the definitions of the decision regions in (5), (6) we have that

P1(ln = 1) = ∑
Yn:LYn≥τn

P1(Yn) and P0(ln = 1) = ∑
Yn:LYn≥τn

P0(Yn).

Consider the region where Sensor n decides 1 (defined in (5)), {Rn1 :Yn ∈Yn : LYn =
P1(Yn)/P0(Yn)≥ τn}. We have that

P1(ln = 1) = ∑
Yn:LYn≥τn

P1(Yn)≥ τn ∑
Yn:LYn≥τn

P0(Yn)≥ τnP0(ln = 1),

or
P1(ln = 1)
P0(ln = 1)

≥ τn. (8)

Similarly, summing over the region where Sensor n decides 0 (defined in (6)), {Rn0 :
Yn ∈ Yn : LYn = P1(Yn)/P0(Yn) < τn} , we have that

P1(ln = 0)
P0(ln = 0)

< τn. (9)

From (7), (8) and (9), we can see that any sensor switching from decision 0 to
decision 1 will increase the likelihood ratio at the fusion center.
Now, if the observations are conditionally i.i.d. and all the sensors use the same

threshold then

Pi(ln = 1) = ∑
Yn:LYn≥τ

Pi(Yn) = Pi(lm = 1)

where i= 0,1; 0≤ m,n≤ N. Thus we can write (7) as follows:

P1(l1, l2, . . . , lN)

P0(l1, l2, . . . , lN)
=

(

P1(l = 0)
P0(l = 0)

)N−N1 (P1(l = 1)
P0(l = 1)

)N1
. (10)

The fusion rule compares the likelihood ratio in (10) with the ratio π0/π1. Again,
using (8) and (9), it can be seen that the likelihood ratio is a non-decreasing function
of N1. Therefore the likelihood ratio test becomes equivalent to a majority vote rule
in this case.
In what follows, we give an example where L(001) > L(110) for the case of

three sensors. The observations are supposed to be conditionally independent but not
conditionally identically distributed. If we use the majority vote, the fusion center
will output H1 if it receives (1,1,0) and H0 if it receives (0,0,1). On the contrary,
we will show that, if the likelihood ratio test is used, the fusion center will pick
(0,0,1) against (1,1,0) for H1. Using the independence assumption, we have that:

L(110) =
P1(110)
P0(110)

=
P1(l1 = 1)
P0(l1 = 1)

P1(l2 = 1)
P0(l2 = 1)

P1(l3 = 0)
P0(l3 = 0)

,
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L(001) =
P1(001)
P0(001)

=
P1(l1 = 0)
P0(l1 = 0)

P1(l2 = 0)
P0(l2 = 0)

P1(l3 = 1)
P0(l3 = 1)

.

Consider the ratio

L(001)
L(110)

=
P1(l1 = 0)P0(l1 = 1)
P1(l1 = 1)P0(l1 = 0)

P1(l2 = 0)P0(l2 = 1)
P1(l2 = 1)P0(l2 = 0)

P1(l3 = 1)P0(l3 = 0)
P1(l3 = 0)P0(l3 = 1)

=
[1−P1(l1 = 1)][1−P0(l1 = 0)]

P1(l1 = 1)P0(l1 = 0)
[1−P1(l2 = 1)][1−P0(l2 = 0)]

P1(l2 = 1)P0(l2 = 0)
P1(l3 = 1)P0(l3 = 0)

[1−P1(l3 = 1)][1−P0(l3 = 0)]
. (11)

As l1, l2, and l3 are conditionally independent given each hypothesis, we can choose
their conditional probabilities such that the ratio in (11) is larger than 1. For example,
we can choose the conditional probabilities as follows:

P1(l1 = 1) = P0(l1 = 0) = P1(l2 = 1) = P0(l2 = 0) = 0.6,
P1(l3 = 1) = P0(l3 = 0) = 0.9.

Such conditional probabilities can be obtained if we choose P0 and P1 as in Figure
3 with k= 2.5 for Sensor 1 and Sensor 2, and k= 10 for Sensor 3; and the thresholds
for all three quantizers satisfy 1/(k−1) < τ < k−1.

Fig. 3 The majority vote ver-
sus the likelihood ratio test:
If P0 and P1 of each sensor
is as shown, the thresholds
for all three quantizers satisfy
1/(k− 1) < τ < k− 1 with
k = 2.5 for Sensor 1 and Sen-
sor 2 and k = 10 for Sensor
3, then L(001) > L(110). A
majority vote will output H1
if it receives (1,1,0) and H0
if it receives (0,0,1), while
the likelihood ratio test favors
(0,0,1) for H1.

L= P1/P0

Y

Y

Y

P0

P1

−1

−1

−1

0

0

0

1

1

1

1
k

1
k

k−1
k

k−1
k

1
k−1

k−1
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4 An algorithm to compute the optimal thresholds

As mentioned in the introduction, the binary decentralized detection problem with
two sensors, binary messages, and the fusion rule fixed a priori is NP-complete
[20]. We thus propose in this section a brute-force search algorithm to solve the op-
timization problem. (For a discussion on the complexity of this kind of algorithms,
see [4], [20].) This algorithm is suitable for small sensor networks. Suppose that we
are given a training dataset each record of which has been labeled with either “Nor-
mal” or “Attack”. Suppose further that each record consists of N parameters, each
of which takes values in a finite set. We do not assume that the observations of the
sensors (the parameters) are conditionally independent nor identically distributed.
The a priori probabilities and the conditional joint pmf s given each hypothesis then
can be learnt from the training dataset. The search algorithm for the optimal thresh-
olds is as follows.

The algorithm to compute the optimal thresholds at the sensors:

1. Group all possible values of each parameter into equally spaced bins with the
number of bins for the n-th parameter denoted by bn. In general, bn’s do not have
to be equal. This operation is done for both “Normal” and “Attack” modes.

2. Compute the a priori probabilities of “Normal” and “Attack”, π0 and π1.
3. Compute the conditional joint pmf s and the conditional marginal pmf s for each
hypothesis.

4. Compute the likelihood ratio for each parameter. There are bn possible values of
likelihood ratio for the n-th parameter, 0≤ τ1n ≤ τ2n . . .≤ τbnn ≤ ∞.

5. The threshold candidates for the local likelihood ratio test of each parameter are

τ0n = 0< τ1n < τ2n . . . < τb
′
nn < τb

′
n+1n = ∞, (12)

where τ1n ,τ2n , . . . ,τ
b′nn are the b′n values of likelihood ratio of the n-th parameter

from Step 4, where duplications have been removed (b′n ≤ bn).
6. For each combination {τ1,τ2, . . . ,τN} where τn takes a value in {τ0n ,τ1n , . . . ,

τb
′
n+1n }, determine the fusion rule (γ0) based on the likelihood ratio test at the

fusion center given in (2).
7. For each combination {τ1,τ2, . . . ,τN}, evaluate the average probability of error

Pe using (3) and (4).
8. Choose the combination that minimizes Pe.

Once the optimal thresholds for the sensors have been computed (off-line), we can
carry out the following steps to detect attacks in the system.

Using the optimal thresholds for attack detection:

1. For each record, each local sensor quantizes the parameter into a single bit (indi-
cating whether an attack exists or not).



422 Kien C. Nguyen, Tansu Alpcan, and Tamer Başar

2. The fusion center collects all the bits from the local sensors and computes the
likelihood ratio using (4) (the joint conditional pmf s are drawn from the training
data).

3. The fusion center makes the final decision using (2).

If we have a labeled dataset where each record has been marked as “Normal” or
“Attack”, we can compute the error probabilities as follows:

Computing the probabilities of error:

1. Compute the actual a priori probabilities (π0 and π1), the false alarm probability
(Pf = P0(γ0(.) = 1) and the misdetection probability (Pm = P1(γ0(.) = 0).

2. Compute the average probability of error using the equation:

Pe = π0×Pf +π1×Pm. (13)

5 KDD Cup 1999 data and simulation results

In this section, we first introduce the KDDCup 1999 data and discuss the application
of decentralized detection to these data. We then present the results of the simulation
of the algorithm proposed in the previous section using the KDD data.

5.1 KDD Cup 1999 data

As mentioned in the introduction, KDD Cup 1999 [18] is a dataset extracted from
the TCP dump data of a LAN. The network was set up to simulate a U.S. Air Force
LAN and was speckled with different types of attacks. Each connection (record)
consists of 41 parameters and is labeled with either “Normal” or some type of at-
tack. Table 1 describes some parameters of a TCP connection. To apply hypothesis

Feature name Description Type
duration length (number of seconds) of the connection continuous
protocol type type of the protocol, e.g. tcp, udp, etc. discrete
service network service on the destination, e.g., http, telnet, etc. discrete
src bytes number of data bytes from source to destination continuous
dst bytes number of data bytes from destination to source continuous
flag normal or error status of the connection discrete
land 1 if connection is from/to the same host/port; 0 otherwise discrete
wrong fragment number of “wrong” fragments continuous
urgent number of urgent packets continuous

Table 1 Basic features of individual TCP connections [18].
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testing for network intrusion systems, we can consider the state “Normal” as hy-
pothesis H0 and a particular type of attack as hypothesis H1. (For a more general
setting, we can group all types of attack into one hypothesis “Attacks” or deal with
“Normal” and all types of attacks separately as a multiple hypothesis testing prob-
lem with the number of hypotheses,M> 2.) We can use the labeled data to learn the
conditional distributions of the parameters given each hypothesis. These conditional
distributions will then be used to decide the rules for the “sensors” (each of which
represents a parameter) and the fusion center. Here, instead of observing the same
event, each sensor looks at an aspect of the same event.
For example, we extracted all the records labeled with “Normal” and “Smurf”

(which means the connection is a Smurf attack) in the 10% portion of the data
given in [18]. We examined the following parameters of all the normal and Smurf
connections:

• duration: Length (in seconds) of the connection (Table 1).
• src bytes: Number of data bytes from source to destination (Table 1).
• dst bytes: Number of data bytes from destination to source (Table 1).
• count: Number of connections to the same host as the current connection in the
past two seconds.

• srv count: Number of connections to the same service as the current connection
in the past two seconds.
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Normal − log10 − duration

0 50 100 150
0

1

2

3

4

5
Normal − log10 − src_bytes

0 50 100 150
0

1

2

3

4

5
Normal − log10 − dst_bytes

0 50 100 150
0

1

2

3

4

5
Normal − log10 − count

0 50 100 150
0

1

2

3

4

5
Normal − log10 − srv_count

Fig. 4 Probability distributions of some parameters when the LAN is normal. A base-10 logarith-
mic scale is used for the Y-axis.
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Fig. 5 Probability distributions of some parameters when there are Smurf attacks. A base-10 log-
arithmic scale is used for the Y-axis.

Figures 4 and 5 show that the conditional distributions of the parameters given
either hypothesis can be very different. Also, some parameters are strongly corre-
lated (for example, count and srv count given a Smurf attack). Thus, as mentioned
earlier, the asymptotic results for large values of N will not be applicable.

5.2 Simulation results

In these simulations, we employ the algorithm and procedures given in Section 4 to
detect Smurf attacks against Normal connections in the KDD data ([18])2.
We use the 10% portion of the dataset (given in [18]) as the training data. The

proportion of Normal connections is π0 = 0.2573, and the proportion of Smurf con-
nections is π1 = 0.7427. Four parameters (duration, src bytes, dst bytes, and count)
are used. The number of bins for each of the parameters is 8.
The threshold candidates for the four parameters duration, src bytes, dst bytes,

and count are given in Table 2. The minimum probability of error computed us-
ing the algorithm is 9.3369E − 4. The results show that this probability of error
is obtained at different combinations of thresholds, one of which, for example, is
{1.0082,1.0003,1.0004,1.67}.

2 A Smurf attack can be detected using rule-based detection [21], however, here we just use the
dataset as a demonstrative example to illustrate our approach.
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duration 0 1.0082 ∞
src bytes 0 1.0003 ∞
dst bytes 0 1.0004 ∞
count 0 2.81E-4 3.88E-2 9.60E-2 2.04E-1 2.65E-1 1.67 2.21E2 1.37E4 ∞

Table 2 The threshold candidates computed for each parameter. The threshold duplications in the
first three parameters have been removed.

The detection procedures are then applied to the whole KDD dataset, which is
divided into 10 files for ease of handling. Table 3 provides the simulation results.
The probabilities of misdetection, probabilities of false alarm, and the average prob-
abilities of error are plotted in Figures 6 and 7.

File No Normal No Smurf π0 π1 Pm Pf Pe
1 379669 105556 0.7825 0.2175 0.0061 1.1326E-4 0.0014
2 182718 86493 0.6787 0.3213 0.0028 5.4729E-6 9.1007E-4
3 149880 117038 0.5615 0.4385 0.0035 8.0064E-5 0.0016
4 0 489843 0 1 0.0013 n/a 0.0013
5 0 489843 0 1 0 n/a 0
6 0 489843 0 1 0 n/a 0
7 31046 456829 0.0636 0.9364 0 0 0
8 36798 8189 0.8180 0.1820 0.1260 0 0.0229
9 4061 478090 0.0084 0.9916 6.6724E-4 0 6.6162E-4
10 188609 86162 0.6864 0.3136 0.0037 9.7026E-4 0.0018

Table 3 Probabilities of error for 10 portions (files) of the KDD dataset. We only consider Normal
and Smurf connections. No Normal: Number of Normal connections in the file; No Smurf: Number
of Smurf connections in the file. We use n/a (not available) for the entries of Pf corresponding to
the files with no Normal connections.
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Fig. 6 Misdetection probabilities (left) and false alarm probabilities (right) against file indices
(data from Table 3).
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Fig. 7 Average probabilities
of error against file indices
(data from Table 3).
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From the simulation results, we can see that, as expected, the probabilities of
error change from file to file, depending on how close the a priori probabilities and
the conditional joint probabilities of each file are to those of the training data (the
simulation of detection using the training data provides exactly the error probability
computed from the algorithm, which is 9.3369E−4). Also, it can be noted that the
minimum probability of error should also depend on the number of bins and the way
of binning for each parameter. The overall results of the simulation are good, which
shows that the algorithm performs well with this dataset.

6 Concluding remarks

In this paper, we have considered the problem of decentralized hypothesis testing
with non-i.i.d. observations. We have presented the theoretical background for the
joint optimization of the likelihood ratio thresholds at the sensors and the fusion rule
at the fusion center. We have also derived some relationships between the majority
vote and the likelihood ratio test at the fusion center. Building on the theoretical
background, we have proposed a search algorithm to compute the optimal thresholds
for the sensors. Simulations carried out using the KDD’99 dataset have shown that
the algorithm performs well as expected.
Some possible extensions are as follows. First, we can consider the case where

the sensors send multiple-bit summaries to the fusion center. Second, multiple-
hypotheses testing (M > 2) can be used to detect more types of attack. Next, when
more parameters are used in detection, PCA can be used to reduce the number of
dimensions of the problem. Finally, the tree structure with non-i.i.d. observations is
an intriguing research direction.
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