
ASTRA : A Security Analysis Method Based on
Asset Tracking

Daniel Le Métayer and Claire Loiseaux

Abstract ASTRA is a security analysis method based on the systematic collection
and analysis of security relevant information to detect inconsistencies and assess
residual risks. ASTRA can accommodate organizational as well as technical aspects
of security and it can be applied to innovative products for which no security data
(e.g. vulnerability or attack database) is available. In addition, ASTRA explicitly
deals with the notion of responsibility and naturally leads to an iterative refinement
approach. This paper provides an introduction to the method and comparison with
related work.

1 Context and motivations

A broad variety of methods and techniques have been proposed for IT security anal-
ysis, both by the academic world and by industry, with a number of differences in
terms of scope, objectives and approaches. Actually, even the perimeter of what is
called “security analysis” and the meaning of the basic terms used in this area are
subject to subtle variations [8]. In this paper, we refer to security analysis as a part
of a more general “security management” (or “risk management”) process, the goal
of the security analysis being to prepare the technical arguments for a subsequent
“decision making” phase, which typically involves business related considerations1.
The context in which the ASTRA method has been devised is the delivery of

security services for the design or certification of innovative IT products. Our ex-

Daniel Le Métayer
Inria Rhône-Alpes, 655 venue de l’Europe, Montbonnot e-mail: Daniel.Le-Metayer@inrialpes.fr ·
Claire Loiseaux
Trusted Labs, 5 rue du Bailliage, Versailles, e-mail: Claire.Loiseaux@trusted-labs.com
1 Possible outcomes of the decision phase being to accept the risks, to mitigate them (e.g. through
the implementation of additional countermeasures), to transfer them (e.g. to an insurance company)
or to avoid them (e.g. by deciding not to distribute a new product or functionality).

541



542 Daniel Le Métayer and Claire Loiseaux

perience is mostly with companies offering new solutions in the field of telecom-
munications, banking or e-administration. As far as technology is concerned, such
products and services are usually based on smart cards, mobile phones and/or secu-
rity modules. The needs of these companies in terms of security analysis typically
occur at two stages of the life cycle of the new products: before the design phase,
for example as part of a feasibility study, and during (or even after) development, to
prepare a subsequent certification procedure.
The first qualities of a security analysis method in this context are rigour, gener-

ality and incrementality:

• Rigour is obviously a virtue of any method, but it is a prerequisite for any method
to be used in a certification process (especially if the highest levels of assurance
are to be targeted). Rigour can be achieved through the application of systematic
rules. Systematization itself brings additional benefits: it improves the efficiency
of the process (and therefore reduces delays and costs, which are crucial factors
in the case of innovative products for which time-to-market is often decisive) and
enhances repeatability and maintenance.

• Generality is the ability to cope with all security aspects, including organiza-
tional, technical as well as management issues. The lack of generality, or the
inability to provide a complete view of all security aspects, may lead to overlook
significant issues or to spend too much energy and time on minor items when
other, more significant, aspects, are underestimated.

• Incrementality is also crucial because, in practice, security analyses can rarely be
one shot undertakings. Most companies prefer to start with a preliminary anal-
ysis, which should produce first conclusions as soon as possible at a moderate
cost, before deciding to embark on more extensive studies.

From our experience, one of the main challenges for the security analyst is to be
able to provide a representation of security which is both sufficiently complete and
sufficiently rigorous. Actually, rigour is necessary at two levels:

• At the descriptive level: in most cases (and not only in large organizations), secu-
rity information is spread over different groups of actors (architects, developers,
suppliers, managers, security experts, etc.). One of the main tasks of any secu-
rity analysis is therefore to gather all relevant information and build an overall
picture of the security of the system. Needless to say, one usually observes dif-
ferent views among different actors. In any complex system, inconsistencies may
also arise within individual representations of the system2. Such inconsistencies
are typical symptoms (if not the sources) of misconceptions and vulnerabilities:
detecting them is thus the first major outcome of a security analysis, which is
possible only through a rigorous approach.

• At the analysis level: one of the main goals of a security analysis is to provide
technical arguments for further decisions concerning the system (e.g. enhance-
ment, deployment, security certification level, etc.). The key issue to this respect

2 Typically, different assumptions can be made about the security features or available functional-
ities of a component at different design stages.



ASTRA : A Security Analysis Method Based on Asset Tracking 543

is to be able to justify such decisions: to this aim, the results of the security
analysis should come with sound rationales and tracing facilities. Traceability
and precise rationale, which are required by certification procedures such as the
Common Criteria [4], also facilitate the maintenance of the security of the sys-
tem.

Last but not least, a sufficient level of rigour is also necessary in order to estab-
lish the precise responsibilities of all actors and stakeholders. Responsibility can be
understood here both in the technical sense and the legal sense (liability). Indeed, a
large number of actors are usually involved in the design and operation of modern
IT products and systems3 and security issues may increasingly become a matter of
liability, especially when substantial valuables are at stake.
Evaluating existing security analysis methods by the above yardsticks leads us to

their classification into two main categories:

• In the first category, which includes most industrial methods and standards
[1, 11, 15, 16], some level of systematization is attained through the use of cat-
alogues or checklists. Checklists are a very effective way to capitalize on past
experience and reduce the dependency of an organization with respect to a small
group of experts. However, apart from systematization, they do not introduce by
themselves a high level of rigour. In addition, they are appropriate only for the
analysis of established (and relatively stable) categories of products such as oper-
ating systems or firewalls: they cannot be applied to the analysis of new products
in emerging markets for which, typically, no data base of vulnerabilities is yet
available.

• Methods in the second category provide a systematic approach based on semi-
formal or formal models of the system under study [2, 3, 7, 12, 13]. Different
levels of rigour can be attained depending on the formalism used to represent the
models and the tools available to analyse them. However theses methods, which
originate mostly from the academic world, usually focus on technical issues and
leave organizational aspects out of their scope.

The ASTRA method has been devised precisely to fill this gap and provide a
framework for the systematic security analysis of innovative products, addressing
in an incremental and uniform way both organizational and technical aspects. The
method is iterative and relies on the systematic collection and analysis of all security
relevant information to detect inconsistencies and assess residual risks. In this paper,
we present an introduction to the method and relate it with previous work. The
framework is introduced in Section 2, followed by a presentation of the method
itself in Section 3. Section 4 discusses related work and Section 5 summarizes the
benefits and limitations of the method.
3 For a device as small as a mobile phone, one can think of the device provider, operating systems
and software suppliers, content providers, the operator, not to mention the user himself who plays
an increasing role in the management of his device.



544 Daniel Le Métayer and Claire Loiseaux

2 The Framework

The core of the ASTRA method is the construction and analysis of functions rep-
resenting different views of the system (Security Views). Before entering into the
presentation of the method itself in Section 3, we first provide the basic notions in
Subsection 2.1 and introduce the three main components of the Security Views in the
following subsections: right functions in Subsection 2.2, responsibility functions in
Subsection 2.3 and dependency relations in Subsection 2.4.

2.1 Basic Notions

As its name suggests, ASTRA is based on the idea of asset tracking. In addition
to assets, the basic ingredients of the method are locations, subjects, access rights,
contexts, trust levels and sensitivity levels:

• An asset can be anything (part of the IT product or under its control) which has
a value and needs to be protected. Assets can be digital (e.g. health record, cryp-
tographic key, PIN, etc.) or physical (e.g. USB key, computer, network, official
authorization letter, etc.). In the following, A denotes the set of assets.

• In order to track assets, we use the notion of location: a location can be seen as
a container for assets; in other words, access to assets is possible only through
locations. Locations can take different forms: computer memory, compact disk,
network (cable or wireless), office cabinet, computer room, etc. The set of loca-
tions is denoted by L.

• As usual, subjects are the active entities in the system: subjects can have access
to assets and locations. Again subjects can be digital (software code) or physical
(developer, security officer, night-watchman, etc.). Note that the notion of subject
used here is different from the notion of legal entity which can be considered in
an extension of the method as set forth in Section 5.U denotes the set of subjects.

• Subjects may have access rights to assets and to locations. At first glance it could
seem that considering both types of access rights just introduces useless redun-
dancies. We believe that there are good reasons to include both of them though:
first, they do not convey exactly the same kind of information and, from our expe-
rience, some actors feel it more natural to reason in terms of assets and others in
terms of locations; also, one of the goals of security analysis is precisely to detect
inconsistencies: in this context, offering the possibility to introduce redundancies
is thus an advantage rather than a weakness.

• Access rights may depend of the current context. The context is a property of the
state of the system, it being understood that states can encompass technical as
well as procedural information (e.g. execution mode, security status, presence of
a security officer, official authorization letter, etc.). For the sake of uniformity,
we consider that the state ∆ is a set of designated assets.



ASTRA : A Security Analysis Method Based on Asset Tracking 545

• Each subject s is associated with a trust level T(s) and each asset a is associated
with a sensitivity level S(a). Trust and sensitivity levels play an instrumental role
in the evaluation of risk levels. They should thus be chosen with great care by the
security analyst. To remedy any potential misjudgement in their assessment, the
ASTRA method makes it easy to play what-if games, typically by making dif-
ferent assumptions about trust levels and analysing their consequences in terms
of risks. In addition, as further detailed below, trust levels can be used to place
different levels of constraints (whether technical, organizational or legal) on sub-
jects.

2.2 Right functions

The three main functions which form the core of the ASTRA method are the
Subject-Location function, the Subject-Asset function and the Asset-Location func-
tion:

• The Subject-Location function SLr(s, l) defines, for each subject s and each lo-
cation l, the context c in which subject s has access right r to location l. More
precisely, s may not have access right r to l, except when SLr(s, l) holds. The
access right r can be read or write.

• The Subject-Asset function SAr(s,a) defines, for each subject s and each asset a,
the context c in which subject s has access right r to asset a. More precisely, s
may not have any access to a, except when SAr(s,a) holds. The semantics of read
for assets is the possibility to obtain information about a while write includes the
modification, creation, deletion and copy of the asset (all operations modifying
the set of values of the asset in the system).

• The Asset-Location function AL(a, l) defines, for each asset a and each location
l, the context c in which location l may contain information about asset a. More
precisely, l may not contain any information about a, except when AL(a, l) holds.

2.3 Responsibility Functions

As set forth in the introduction, we believe that responsibilities should be dealt with
explicitly in a security analysis method. Responsibilities can be specified through
the following E (for Ensures) functions in ASTRA:

• E(SLr)(s, l) = {s′} specifies that subject s′ is responsible for ensuring that subject
s has access to location l only in context SLr(s, l). Obviously, we may have s= s′,
which means that the subject is responsible for its own access to l, but it is not
necessarily the case (and it should not be for subjects with low trust levels).

• E(SAr)(s,a) = {s′} specifies that subject s′ is responsible for ensuring that sub-
ject s has access to asset a only in context SAr(s,a). In contrast with E(SLr),



546 Daniel Le Métayer and Claire Loiseaux

which must return a non empty set of subjects, we may have E(SAr)(s,a) = /0,
which means that no subject is explicitly designated as responsible for this rule.
Instead, the rule has to be ensured indirectly, through conditions imposed by the
SLr and AL functions. Such under-specifications are often used for Subject-Asset
relations because their implementation can be indirect: typically, a subject may
have no access to a given asset because it has no access to a location which may
contain this asset. Note that this does not mean that such rule will be left without
any responsible subject: as shown in Section 3, responsibilities will instead be
derived by the method. In addition, we impose that ∀a ∈ ∆ ,E(SAwrite)(s,a) ̸= /0:
in other words, the subjects responsible for context changes must be explicitly
identified. This constraint is both reasonable, because of the instrumental role
played by contexts, and useful from a technical point of view (see Subsection
3.2).

• E(AL)(a, l) = {s} specifies that subject s is responsible for ensuring that infor-
mation about asset a can be found in location l only in context AL(a, l). For the
same reason as E(SAr),E(AL) can return /0, which means that the responsibilities
for the corresponding rule will be derived by the method.

To conclude this subsection, let us note that, for the sake of generality, responsi-
bility functions return sets of subjects. In most cases however, it is advised that this
set should be reduced to a singleton.

2.4 Dependency Relations

For better clarity and conciseness it is useful in practice to define dependencies
between assets and between locations: for example a message asset may be made of
several fields, each of them containing another asset; an asset (e.g. ciphered text) can
be derived from other assets (e.g. clear text and cryptographic key); a location can
be a memory zone containing several buffers, each of them considered as another
location. To address this need, we consider simple dependency relations between
locations and assets respectively:

• l ⊆ l′ specifies that location l is included into location l′.
• a1, . . . ,an→ a means that the knowledge of information about assets a1, . . . and
an may provide information about asset a.

The dependency relations are implicitly closed by transitivity. Note that a1, . . . ,an
→ a does not necessarily entails a→ ai for any ai because a may be obtained from
a1, . . . ,an through a one-way function.More sophisticated dependencies can be con-
sidered but we found the above relations sufficient in practice.



ASTRA : A Security Analysis Method Based on Asset Tracking 547

3 The Method

In the following, we introduce successively the two main phases of the method: the
collection of information and detection of inconsistencies in Subsection 3.1 and the
risk assessment in Subsection 3.2. Both phases are iterative. The first one constitutes
the initial phase of the analysis, whose goal is to build a consistent and comprehen-
sive view of the security of the system. The second one is repeated, possibly with
intermediate decision making steps (e.g. to decide the implementation of additional
countermeasures) until a stable state is reached. The two phases identify different
kinds of pathological situations: sheer contradictions for the first phase and high risk
levels for the second one.

3.1 Collection of Information and Detection of Inconsistencies

Before starting the collection of information, the very first task of any security anal-
ysis should be to precisely fix the perimeter of the analysis and assumptions about
the actors involved. In ASTRA, the perimeter is defined by the sets of assets, loca-
tions and subjects, with the associated assumptions about levels of trust and levels
of sensitivity and the dependency relations. This task is crucial because it defines
the objectives and limitations of the analysis. The assessment of trust and sensitivity
levels is especially delicate and should take account of technical as well as busi-
ness considerations. This issue is further analysed in Subsection 3.2 where trust and
sensitivity levels are used to derive risk levels.
As set forth in the introduction, various pieces of information about the security

of a system are usually spread over several groups of actors. In addition, different
actors may have different views about the functionalities and the security of the sys-
tem. Such differences sometimes reveal serious misconceptions about the system
which may lead to major security holes. To tackle this issue, the first task in AS-
TRA is to consolidate all relevant information in the form of Security Views: each
Security View consists of SLr, SAr, AL and E functions representing the view of
one actor or group of actors (e.g. requirements team, security expert, architect, de-
veloper team, integrator, etc.). Two types of inconsistencies may occur in Security
Views, inconsistencies between different views and inconsistencies within a single
view, which are defined in the following subsections.

3.1.1 Inter-view inconsistencies

Inter-views inconsistencies occur when F1(x,y) ̸= F2(x,y) where F1 and F2 stand
for the versions of one of the SLr, SAr, AL and E functions in Security Views 1
and 2 respectively. From our experience, the two most common cases of inter-view
inconsistencies are the following:



548 Daniel Le Métayer and Claire Loiseaux

• For SLr, SAr and AL functions, one of the two conditions (or state properties)
may be strictly weaker than the other one, that is F1(x,y)⇒ F2(x,y) or F2(x,y)⇒
F1(x,y), which means that one category of actors has placed stronger security
requirements on a component than the other one.

• For E functions, F1(x,y) ̸= F2(x,y) reveals different assumptions about the sub-
jects responsible for ensuring a security rule.

If not simple oversights, both kinds of inconsistencies may be the symptoms of seri-
ous discrepancies about security issues among different teams and have to be solved
through discussions between these teams. As a result, one Security View at least has
to be modified. The impact is sometimes confined to the presentation of the require-
ments or share of responsibilities but it may also happen that the implementation
itself is affected.

3.1.2 Intra-view inconsistencies

We distinguish two kinds of intra-views inconsistencies: right inconsistencies and
responsibility inconsistencies, which are defined in Definitions 1 and 2 respectively.

Definition 1. A right inconsistency occurs within a view if one of the following
conditions holds:
(1) l ⊆ l′ and ¬(SLr(s, l)⇒ SLr(s, l′))
(2) a1, . . . ,an→ a and ¬(SAr(s,a1)∧ . . .∧SAr(s,an)⇒ SAr(s,a))
(3) l ⊆ l′ and ¬(AL(a, l)⇒ AL(a, l′))
(4) a1, . . . ,an→ a and ¬(AL(a1, l)∧ . . .∧AL(an, l)⇒ AL(a, l))

Definition 2. A responsibility inconsistency occurs within a view if the following
two conditions holds:
(5) E(SAr)(s,a) = /0
(6) ∃l ∈ L,¬(AL(a, l)∧SLr(s, l)⇒ SAr(s,a))

Right inconsistencies occur when the rights defined through the SLr, SAr and AL
functions are in contradiction with the dependencies between locations or assets. A
contradiction derives from (1) in Definition 1 in a situation where, for example, a
memory zone l′ contains a block l (thus l ⊆ l′), subject s has unconditional access
rights to l (thus SLr(s, l) = True), but no access right on l′ (thus SLr(s, l′) = False).
Note that the opposite condition is not imposed, which means that access rights to a
location can be restricted to certain subsets of this location4.
The second condition in Definition 1 identifies situations where access is allowed

to intermediate assets a1, . . . ,an which, together, can be used to get information
about an asset a which should not be accessible.
Condition (3) mirrors Condition (1) for Asset-Location rights: if a memory zone

l′ contains a block l (thus l ⊆ l′), which can contain information about an asset a
4 This is consistent with the semantics of SLr(s, l) presented above : subject s may not have any
access right r to l, except when SLr(s, l) holds



ASTRA : A Security Analysis Method Based on Asset Tracking 549

(thus AL(a, l) = True), then l′ should also be allowed to contain information about
a (thus AL(a, l′) = True).
Finally, Condition (4) mirrors Condition (2): if location l is allowed to contain

intermediate assets a1, . . . ,an which, together, can be used to get information about
an asset a, then l should be allowed to contain information about asset a.
Right inconsistencies thus stem from overlooked dependencies: sometimes they

can be corrected without deep impact on the design of the product (e.g. through the
extension of unduly restricted access rights in the Security View) but there are also
cases where they call for more drastic modifications to some components or even
to the architecture of the product (e.g. when the current design does not allow for
sufficient protection of intermediate assets).
A responsibility inconsistency occurs when the Security View does not spec-

ify any responsible subject for a Subject-Asset access rule and does no provide
any way to ensure this access rule indirectly. As set forth in Subsection 2.3,
E(SAr)(s,a) = /0 means that the condition SAr(s,a) = c is to be ensured indirectly,
through conditions imposed by SLr and AL. The property to be checked is thus
∀l ∈ L,SLr(s, l)∧AL(a, l)⇒ SAr(s,a), which expresses the fact that if subject s can
get access to a location l which may contain asset a, then such access is permitted
only in the context specified by SAr(s,a). If this property is not satisfied, a contra-
diction occurs in the Security View because the responsibility to ensure SAr(s,a)
cannot be assigned to any subject.
Information collection and detection of inconsistencies is an iterative and inter-

active process: when inconsistencies are discovered, either intra-view or inter-view,
discussions are organized with the concerned teams to further study the conflicting
rules and strengthen the overall understanding of security issues. In the most seri-
ous cases, it may even be necessary to set up global project meetings to converge
towards a common view. From our experience, this first phase goes much further
than a simple collection of information: the elucidation of the expectations and as-
sumptions of the different actors already makes it possible to uncover major gaps or
misconceptions about security issues.

3.2 Risk Assessment

The result of the first phase is a single consolidated Security View consisting of
SLr, SAr, AL and E functions. Trust and sensitivity levels are also attached to sub-
jects and assets during this first phase. The second phase consists in identifying and
classifying risks based on the consistent set of information resulting from the first
phase. In contrast with the inconsistencies identified in the first phase, risks are not
sheer contradictions: they represent potentialities of attacks which can be classified
on a severity scale.
In ASTRA, risks are identified and assessed based on a ternary relationship be-

tween the rights, the subject responsible for those rights and the assets at stake. More
precisely, for each right specified by a function F in SLr, SAr or AL, we derive:



550 Daniel Le Métayer and Claire Loiseaux

• The set C(F) of assets concerned by the right and
• The set R(F) of subjects responsible for enforcing the right.

The risk level associated with the right is then derived from the sensitivity level
of the most sensitive asset inC(F) and the trust level of the less trustable subject in
R(F). Different scales can be used to express sensitivity and trust levels, depending
on the complexity of the system under study and the types of actors involved (autho-
rized as well as malicious). Similarly, different algorithms can be used to derive risk
levels. For the sake of illustration, we use very simple scales and algorithm here,
that we found sufficient in most situations:

• Trust levels take integer values in a range from 1 to 4 (4 corresponding to the less
trustable subjects).

• Sensitivity levels take integer values in a range from 1 to 4 (4 corresponding to
the most sensitive values).

• The risk level associated with a right specified by F is the sum of the sensitivity
level of the most sensitive asset inC(F) and trust level of the less trustable subject
in R(F).

A risk level of 8 corresponds to the worst situation (the less trustable subjects
being responsible for the security of the most sensitive assets), 7 corresponds to an
unacceptable risk and 6 to a significant risk. Risks from level 5 to 2 are considered
as “tolerable” (5 being the minimum level of risk for assets of sensitivity 4). Ob-
viously, this interpretation depends very much on the interpretation of the trust and
sensitivity levels themselves, and can be adapted to fit the needs of each project.
We proceed now with the definition of the risk levels, which are computed from

the sets of responsible subjects and concerned assets.

Definition 3. The sets of responsible subjects R, the set of assets concernedC, and
the derived risk level Risk are defined as follows for, espectively, SLr, SAr and AL:
(1) R(SLr)(s, l) = E(SLr)(s, l)
(2) C(SLr)(s, l) = D({a | AL(a, l) ̸= False})
(3) Risk(SLr)(s, l) =

Max({T (s′) | s′ ∈ R(SLr)(s, l)}) +
Max({S(a) | a ∈C(SLr)(s, l)})

(4) R(SAr)(s,a) =
i f E(SAr)(s,a) ̸= /0
then E(SAr)(s,a)
else

⋃

{R(SLr)(s, l) | l ∈ L}
⋃

{R(AL)(a, l) | l ∈ L,SLr(s, l) ̸= False}
(5) C(SAr)(s,a) = D({a})
(6) Risk(SAr)(s,a) =

Max({T (s′) | s′ ∈ R(SAr)(s,a)}) +
Max({S(a) | a ∈C(SAr)(s,a)})

(7) R(AL)(a, l) =
i f E(AL)(a, l) ̸= /0
then E(AL)(a, l)



ASTRA : A Security Analysis Method Based on Asset Tracking 551

else
⋃

{R(SLr)(s, l) | s ∈U}
⋃

{E(SAwrite)(s,a′) | s ∈U,a′ ∈ ∆}
(8) C(AL)(a, l) = D({a})
(9) Risk(AL)(a, l) =

Max({T (s′) | s′ ∈ R(AL)(a, l)}) +
Max({S(a) | a ∈C(AL)(a, l)})

Definition 4. D(A) is defined as the minimal superset of A such that
∀a1 ∈D(A), . . . ,∀an ∈ D(A), a1, . . . ,an→ a⇒ a ∈ D(A)

Generally speaking, when specified in the Security View through the E function,
the responsible subject is as defined by E ((1) and (4) in Definition 3).
When no responsible subject is specified for a Subject-Asset right SAr(s,a),

then a subject is considered responsible for this right either if ((4) in Definition
3) it is responsible for the access right to a location by s (and thus it belongs to
R(SLr)(s, l)) or if it is responsible for the right for a location to contain a (and thus
it belongs to R(AL)(a, l)). The motivation is that, as set forth in Subsection 3.1.2,
the Subject-Asset right is ensured indirectly in such case, through Subject-Location
and Location-Asset rights.
As far as Asset-Location rights are concerned, AL(a, l) is an invariant property

which can be breached by two kinds of actions: accesses to location l resulting in
information about asset a being available in location l in an unauthorized context
or changes of context. Responsible subjects are thus members of R(SLr)(s, l) and
E(SAwrite)(s,a′), as set forth in (7) above5.
The set of concerned assets is straightforward in the cases of SAr(s,a) and

AL(a, l) which apply directly to asset a ((5) and (8) in Definition 3). Note how-
ever that asset dependencies are taken into account through function D: if assets
a1, . . . ,an are concerned by a rule and information about asset a can be derived from
a1, . . . ,an then a is also concerned (Definition 4). The assets concerned by SLr(s, l)
are all the assets which can reside in location l ((2) in Definition 3). Finally risk
levels are defined for each function as set forth above, based on the trust levels of
responsible subjects and the sensitivity levels of the concerned assets (lines (3), (6)
and (9) in Definition 3).
To conclude this subsection on risk assessment, let us stress the fact that the

above definitions allow us to separate the issues of defining the set of responsible
subjects and evaluating of the risk level. Whereas the risk level depends on the ini-
tial assumptions about trust and sensitivity of subjects and assets, the definition of
responsible subjects does not rely on such assessments. An interesting property of
the definition of R above is that it leads to a confinement of responsibilities which
can stated as follows:

Confinement Property:

1. If all the subjects in R(SLr)(s, l) comply with their responsibilities, as defined by
R, then SLr(s, l) will be guaranteed by the system.

5 Note that, as set forth in Subsection 2.3, ∀a′ ∈ ∆ ,E(SAwrite)(s,a′) ̸= /0.



552 Daniel Le Métayer and Claire Loiseaux

2. If all the subjects in R(SAr)(s,a) comply with their responsibilities, as defined
by R, then SAr(s,a) will be guaranteed by the system.

3. If all the subjects in R(AL)(a, l) comply with their responsibilities, as defined by
R, then AL(a, l) will be guaranteed by the system.

The proof of this property, which is omitted here for space considerations, is
based on a case analysis of Definitions 3 and 4. The significance of this confinement
property is that it holds disregarding the behaviour of the other subjects, that is to
say even if they do not comply with their own responsibilities. This confinement
property shows that Definitions 3 and 4 form a sound basis for risk assessment,
independently of the validity of the assumptions about trust and sensitivity levels.
Actually different assumptions about these levels can be made during the analysis
to study their impact on the resulting risk based on the above definition of R.

4 Related Work

The security analysis methods used in industry fall essentially into two categories
[10]: commercial methods and standards. As far as standards are concerned, [5] is
essentially a code of good practices: it offers guidelines and very general princi-
ples, with strong emphasis on management and organizational issues while [4] as
an international standard for the evaluation of IT products. [1] puts forward a gen-
eral three phases approach based on (1) the establishment of an asset-based threat
profile, (2) the identification infrastructure vulnerabilities and (3) the development
of security strategy and plans. [15] is also very generic but more technical than
[1]; it puts emphasis on the integration of risk management into the software de-
velopment life cycle and proposes a decomposition of the analysis into a series of
predetermined phases split into a number of steps with specified inputs, outputs and
guidance (checklists, definitions, questionnaires, interview outline, etc.).
Turning to commercial methods, [11] is consistent with the recommendations

in [15]; its main emphasis is cost-effectiveness and it provides organizational rules
for conducting the analysis process based on brain storming meetings (people in-
volved, roles, responsibilities, required material, meeting preparation, duration, ob-
jectives, checklists, etc.). The methods put forward byMicrosoft [16, 6] are based on
a range of information representation patterns (tables), classification lists (e.g. the
STRIDE checklist for threats: Spoofing, Tampering, Repudiation, Information dis-
closure, Denial of service, Elevation of privilege) and semi-formal representations
(data flow diagrams, attack trees).
Attack trees [14] are a natural way to represent security attacks which is used

by several methods. The root of an attack tree represents the goal of the attack and
the nodes correspond to subgoals linked by AND and OR relations. Most interest-
ingly, different kinds of attributes can be assigned to the leaves (cost, risk for the
attacker, required equipment or expertise, etc.) and propagated to the root. Attack
trees are rather popular in industry because they can be used in a pragmatic, incre-
mental process in which leaves requiring deeper investigation can be progressively



ASTRA : A Security Analysis Method Based on Asset Tracking 553

decomposed into subtrees. Attack trees have limitations though; in particular, they
provide a convenient framework for presenting, categorizing and analyzing attacks
but they offer little help for the discovery of these attacks, which still relies on the
expertise of the analyst.
Attack trees were originally presented in an informal way. Two main approaches

have been followed to provide a formal framework for attack trees:

• The first approach consists in enhancing the attack tree notation with statements
expressed in an attack specification language: the attack tree notation is then used
as a structuring framework or glue syntax for the formal statements [17].

• The second approach is to endow the attack tree notation itself with a mathe-
matical semantics, which makes it possible to study attack trees as mathematical
objects of their own [9]. This approach can be used to define a class of “reason-
able attributes” which can correctly be propagated bottom-up.

The attack tree approach has also been extended to attack graphs and techniques
have been proposed for the automatic generation of attack graphs (based on attack
templates) and their analysis (based on graph algorithms) [2, 7, 12], which is espe-
cially useful for the network security analysis.
A more detailed introduction to existing security analysis methods can be found

in [8]. This quick review reveals several gaps in the security analysis landscape:
first, most methods fall into one of the following two categories: they are either
(1) general purpose with, usually, much emphasis on organizational issues or (2)
based on a formalism with, usually, strong emphasis on systematization (or even
automation) and rigour. As set forth in the introduction, attaining high levels of both
generality and rigour (or systematization) remains a challenge. Attack trees and
attack graphs go in the right direction but, as mentioned above, they offer little help
to discover attacks in the first place. It remains necessary to rely on the expertise
of the analyst or on the existence of catalogues or checklists which are usually not
available for new, innovative products.

5 Conclusion

The method presented in this paper was devised precisely to fill the gaps identified
in the previous section. The framework provided by ASTRA is:

• Rigorous : it can serve as a basis for inconsistency detection.
• General: it can accommodate organizational as well as technical aspects of secu-
rity.

• Suited to innovative products for which no security data (e.g. vulnerability or
attack database) is available.

In addition, the method naturally leads to an iterative refinement approach: incon-
sistencies or high risk levels can be solved through different kinds of refinements:
decomposition of a subject (or code) into several subjects (for a more appropriate



554 Daniel Le Métayer and Claire Loiseaux

allocation of responsibilities), decomposition of a context into more precise state
conditions (to refine access rights), decomposition of a location into different sublo-
cations (which should be associated with different access rights).
An important aspect of ASTRA is that organizational rules can be handled in

exactly the same way as technical rules: individual actors such as security officers
or a night-watchers can be represented as subjects, physical goods or authorization
documents can be represented as assets, rooms or premises are represented as lo-
cations, etc. Actually malicious actors can also be included in the Security Views
(with an extended trust level range to take into account the very low, or negative,
level of trust associated with such subjects) and possibilities such as monitoring the
electrical activity of a device to perform a DPA (Differential Power Analysis) at-
tack can be represented as a form of location access (access to the room and access
to the device, possibly in specific contexts such as the absence of security officer
and night-watcher, etc.). Another possibility of the framework which has not been
presented here is the use of sensitivity levels depending on rights: for example, for
some assets read is a more sensitive type of access thanwrite, for others the opposite
holds.
Among the benefits of the method let us also stress the significance of the notion

of responsibility: in practice, it turns out to be very useful to be able to separate the
specification of the behaviour of a subject from the definition of the responsibilities
for this behaviour. Indeed, many security holes in a system come from misunder-
standings or conflicting views about responsibilities. The next step in this direction
will be the introduction of legal entities associated with subjects, which will allow
us to encompass legal liability.
As far as limitations are concerned, the method, in its current state, is targeted to-

wards the study of invariant security properties such as confidentiality and integrity.
More work is needed to extend it to denial of service or liveness properties (such as
agreement properties). Last but not least, the application of a method like ASTRA
should obviously be supported by a tool because the amount of available informa-
tion is usually so large that its analysis by human beings would be cumbersome
and error prone. The two main features of such a tool are its interface and its rule
based engine. The role of the engine is to implement the rules set forth in Section
3 and to sort access rules according to associated the risk levels. The most chal-
lenging part of the tool is actually the user interface, which should be easy to use
both by analysts (to enter security information, e.g. through dedicated text process-
ing and spreadsheet functionalities and to trace the risk level calculation in order to
understand how to improve the situation) and by decision makers (with simplified
presentations of the results and alternative options). Dedicated graphical features are
necessary, especially to support “what-if games” (changing assumptions about trust
and studying the consequences in terms of risk levels) and to provide user-friendly
representations of access rights.

Acknowledgements This work has been partially funded by the ANR (Agence Nationale de la
Recherche) under the grant ANR-07-SESU-007 (project LISE: Liability Issues in Software Engi-
neering).



ASTRA : A Security Analysis Method Based on Asset Tracking 555

References

1. Alberts, C., Dorofee, A., Stevens, J., Woody, C.: Introduction to the OCTAVE approach.
Carnegie Mellon, SEI (2003).

2. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability anal-
ysis. Proceedings of the 9th ACM conference on Computer and Communications Security
CCS’02(2002).

3. Besson, F., Jensen, T., Le Métayer, D., Thorn, T.: Model checking security properties of con-
trol flow graphs. Journal of Computer Security, Vol. 9 (2001).

4. Common Criteria for Information Technology Security evaluation.
http://www.commoncriteriaportal.org/, CC V3.1 (2006).

5. ISO/IEC 17799:2005, Information technology - security techniques - code of practice for
information security management (2005).

6. Howard, M., LeBlanc, D.: Writing secure code. Microsoft Press (2003).
7. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. Proceedings of the 15th
Computer Security Foundations Workshop, IEEE Computer Society (2002).

8. Le Métayer, D.: IT Security analysis: best practices and formal approaches. Proceedings of
FOSAD Summer School (Formal Security Analysis and Design), Springer Verlag LNCS 4677
(2007).

9. Maw, S., Oostdijk, M.: Foundations of attack trees. International Conference on Information
Security and Cryptology, Springer Verlag LNCS 3935 (2005).

10. McGraw, G.: Software security: building security in. Addison Wesley Professional (2006).
11. Peltier, T. R.: Information Security Risk Analysis. Auerbach Publications (2005).
12. Phillips, C., Swiler, L. P.: A graph-based system for network-vulnerability analysis. Proceed-

ings of the 1998 Workshop on New Security Paradigms, ACM Press (1998).
13. Ramakrishan, C. R., Sekar, R.: Model-based vulnerability analysis of computer systems, Sec-

ond International Workshop on Verification, Model Checking and Abstract Interpretation,
(VMCAI’98) (1998).

14. Schneier, B.: Attack trees, modeling security threats. Dr Dobbs Journal (1999).
15. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information technology

systems. NIST Special Publication 800-30 (2002).
16. Swiderski, F., Snyder, W.: Threat modeling. Microsoft Press (2004).
17. Tidwell, T., Larson, R., Fitch, K., Hale, J.: Modeling internet attacks. Proceedings of the 2001

IEEE Workshop on Information Assurance and Security (2001).


