An Integrity Lock Architecture for Supporting
Distributed Authorizations in Database
Federations

Wei Li, Lingyu Wang, Bo Zhu, and Lei Zhang

Abstract In many data integration applications, a loosely coupled database feder-
ation is the underlying data model. This paper studies two related security issues
unique to such a model, namely, how to support fine-grained access control of re-
mote data and how to ensure the integrity of such data while allowing legitimate
updates. For the first issue, we adapt the integrity lock architecture in multi-level
database systems to a database federation. For the second issue, we propose three-
stage procedure based on grids of Merkel Hash Trees. Finally, the performance of
the proposed architecture and scheme is evaluated through experiments.

1 Introduction

Data integration and information sharing have attracted significant interests lately.
Although web services play a key role in data integration as the main interface be-
tween autonomous systems, a loosely coupled database federation is usually the un-
derlying data model for the integrated system. Among various issues in establishing
such a database federation, the authorization of users requesting for resources that
are located in remote databases remains to be a challenging issue in spite of many
previous efforts. The autonomous nature of a loosely coupled federation makes it
difficult to directly apply most centralized authorization models, including those
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proposed for tightly coupled database federations. The subject and object in an ac-
cess request may belong to different participating databases that are unaware of each
other’s user accounts, roles, or authorization policies. Duplicating such information
among the members is generally not feasible due to the confidential nature of such
information. In addition, participating members in a database federation usually lack
full trust in each other, especially in terms of authorizations and data integrity.

In this paper, we propose to support the distributed authorization in database fed-
erations by adapting the integrity lock architecture, which is originally designed for
building multi-level database systems from un-trusted DBMS. Although intended
for a different purpose, the architecture has some properties that are particularly
suitable for database federations. First, the architecture does not require the DBMS
to be trusted for authorizations or data integrity. Instead, it supports end-fo-end secu-
rity between the creation of a record to the inquiry of the same record. This capabil-
ity is essential to a database federation where members do not fully trust each other
for authorizations or data integrity. Second, the architecture binds authorization po-
lices to the data itself, which can avoid duplicating data or policy across the federa-
tion, and also allows for fine-grained and data-dependent authorizations. A database
federation under the adapted integrity lock architecture has some similarity with
outsourced databases (ODB), such as the lack of trust in the remote database. How-
ever, a fundamental difference is that data in a federation of operational databases
is subject to constant updates. This difference brings a novel challenge for ensuring
integrity while allowing legitimate updates.

Motivating Example Consider the toy example depicted in Figure 1 (we shall
only consider two databases unless explicitly specified otherwise since extending
our solutions to a federation with more members is straightforward). Suppose a
fictitious university and its designated hospital employ an integrated application to
provide the university’s employees direct accesses to their medical records hosted
at the hospital. Bob and Eve are two users of the university-side application, and
Alice is a user of the hospital-side application (we do not show details of those
applications but instead focus on the interaction between the underlying databases).

In Figure 1, consider the two tables in the university and hospital’s database, re-
spectively. The two tables are both about employees of the university, and they have
two attributes /D and NAME in common. As a normal employee of the university,
Bob is not supposed to have free accesses to other employees’ DISEASE attribute
values hosted at the hospital. On the other hand, another user at the university side,
Eve, may be authorized to access records of a selected group of employees due to
her special job function (for example, as a staff working at the university clinic or as
a secretary in a department). At the hospital side, Alice is prohibited from accessing
the INCOME attribute of any university employee. However, as a doctor designated
by the university, Alice is authorized to modify (and access) the DISEASE attribute.

The above scenario demonstrates the need for a federation of databases. We can
certainly store the DISEASE attribute in the university-side database and thus com-
pletely eliminate the hospital-side table. However, such attribute (and other related
medical data) will most likely be accessed and updated more frequently from the
hospital side, so storing it at the hospital is a more natural choice. The above sce-
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BOB 6 & EVE University-Side Database
b1k

ID NAME GENDER | INCOME
001 ALICE FEMALE | 29,000
002 BOB MALE 18,000
Local 003 CARL MALE 24,000
databases 004 DAVID MALE 20,000
005 ELAINE FEMALE | 22,000
ID NAME DISEASE | POLICY | SIGNATURE
001 ALICE AIDS P Y,
Remote
002 BOB . COLD P, Y,
database
003 CARL COLD Py Y;
004 DAVID . AIDS P, Y,
005 ELAINE . COLD Ps Ys
X X, X3 X4 Xs

Fig.1 An Example Database Federation

nario also shows the need for fine-grained and data-dependent access control of re-
mote data. Row-level (or attribute-level) access control is clearly needed since Bob
should normally only access his own records. Eve’s job function may entitle her to
only access records that satisfy certain conditions, such as DISEASE not equal to
AIDS. That is, the access control policy may depend on actual data. Finally, the sce-
nario shows the need for verifying the legitimacy of updates of remote data, such as
that only a doctor designated by the university can modify the DISEASE attribute.

In the special setting of a database federation, we assume the university still
owns, and is responsible for, its employees’ medical records, even though the
records are stored in the hospital. This is different from the case of two separate or-
ganizations where the university has no responsibility for its employees’ interaction
with a hospital. From this point of view, we can regard the university as outsourcing
their employees’ medical records to the hospital. However, different from the out-
sourced database (ODB) architecture where outsourced data are relatively static, the
database federation we consider comprises of operational databases in which data
are constantly being updated. As we shall show, existing solutions for ensuring the
integrity of outsourced data in ODB are not sufficient for database federations.

The rest of the paper is organized as follows. Section 2 adapts the integrity lock
architecture to database federations for fine-grained access control of remote data.
Section 3 proposes a three-stage procedure for supporting legitimate updates of re-
mote data while ensuring their integrity. Section 4 shows experimental results to
evaluate different caching schemes. Section 5 reviews previous work. Section 6 con-
cludes the paper.
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2 Adapting The Integrity Lock Architecture to Database
Federations

The Integrity Lock architecture is one of the Woods Hole architectures originally
proposed for multi-level databases [19]. The integrity lock architecture depends on
a trusted front end (also called a filter) to mediate accesses between users and the
un-trusted DBMS (the original model also has an un-trusted front end, which is
omitted here for simplicity) [5, 6, 8, 15]. Each tuple in tables has two additional
attributes, namely, a security level and a cryptographic stamp. The stamp is basically
a message authentication code (MAC) computed over the whole tuple excluding the
stamp itself using a cryptographic key known to the trusted front end only.

The trusted front end determines the security level of the new tuple and computes
the stamp to append it to the query when a tuple is to be inserted or updated. The
query is then forwarded to the DBMS for execution. When users submit a legitimate
selection query, the trusted front end will simply forward the query to the DBMS.
Upon receiving the query result from the latter, the trusted front end will verify
all tuples in the result and their security levels by recomputing and matching the
cryptographic stamps. If all the data check out, the trusted front end will then filter
out prohibited tuples based on their security levels, the user’s security level, and
the security policy. The remaining tuples are then returned to the user as the query
result. The main objective of the integrity lock architecture is to reduce costs by
building secure databases from un-trusted off-the-shelf DBMS components.

As described above, the cryptographic stamps provide end-to-end integrity from
the time a record is created (or modified) to the time it is returned in a query re-
sult. The un-trusted DBMS cannot alter the record or its associated security level
without being detected. Such a capability naturally fits in the requirements of a
database federation illustrated before. More specifically, in Figure 1, we can regard
the university-side database as the trusted front end, and the hospital-side database
as an un-trusted DBMS in the integrity lock architecture. Suppose a user Eve of the
university-side database wants to insert or update some records in the table stored at
the hospital The university-side database will compute and append a cryptographic
stamp to the tuple to be inserted or updated. When a user of the university-side
database wants to select tuples in the hospital-side database, the university database
will enforce any policy that is locally stored through either rejecting or modifying
the original query posed by the user. Upon receiving query results from the latter,
the university database will then verify the integrity of each returned tuple in the
results through the cryptographic stamp in the tuple. It then filters out any tuple that
Bob is not allowed to access according to the access control policy.

The adapted architecture also faces other issues. First, the original architecture
requires a whole tuple to be returned by the un-trusted DBMS [8, 5], because the
cryptographic stamp is computed over the whole tuple (excluding the stamp itself).
This limitation may cause unnecessary communication overhead between databases
in the federation. A natural solution to remove this limitation is to use a Merkle
Hash Tree (MHT) [16]. Second, the integrity lock architecture can only detect mod-
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ified tuples but cannot detect the omission of tuples in a query result. That is, the
completeness of query results is not guaranteed. A similar issue has recently been
addressed in outsourced databases (ODB) [7, 20, 14]. Two approaches can address
this issue. A signature can be created on every pair of adjacent tuples (assuming the
tuples are sorted in the desired order), and this chain of signatures is sufficient to
prove that all tuples in the query result are contiguous and no tuple has been omit-
ted. To reduce communication overhead and verification efforts, the signatures can
be aggregated using techniques like the Condensed RSA [18]. Another approach is
to build a MHT on the stamps of all tuples based on a desired order, so omitting
tuples from query results will be detected when comparing the signature of the root
to the stamp. However, applying the above solutions in ODB to the integrity lock
architecture in database federations is not practical. A fundamental difference be-
tween ODB and database federations is that the former usually assumes a relatively
static database with no or infrequent updates '. Data updates usually imply signif-
icant computational and communication costs. Such an overhead is not acceptable
to database federations, because the members of such a federation are operational
databases and data are constantly updated. We shall address such issues in the rest
of this paper.

3 Supporting Frequent Updates While Ensuring Data Integrity

3.1 Overview

The previous section left open the issue of ensuring the integrity of data in remote
databases while allowing for updates made by authorized users. First of all, we
describe what we mean by authorized users. For simplicity, we shall refer to the
database hosting data as remote database and the other database local database.
We assume the federation provides each member the capability of authenticating
users of a remote database. Such a capability should be independent of the remote
database since we assume it to be un-trusted for authorizations. Our solutions will
not depend on specific ways of authenticating remote users, although we shall con-
sider a concrete case where a remote user possesses a public/private key pair and
(queries issued by) the user is authenticated through digital signatures created using
his/her private key.

Two seemingly viable approaches are either to verify the update queries, or to
verify the state of remote data immediately after each update. First, in Figure 1,
whenever Alice attempts to update a record, the hospital-side database can send the
query and records to be updated, which are both digitally signed by Alice, to the
university-side database for verification. The latter will verify the legitimacy of the
update by comparing Alice’s credential to the access control policies stored in the

! One exception is the recent work on accommodating updates while ensuring data confidential-
ity [4], which is parallel to our work since we focus more on data integrity.
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records. However, this approach is not valid because the hospital-side database must
be trusted in forwarding all update queries for verification and in incorporating all
and only those legitimate updates after they are verified. Second, the university-side
database can choose to verify the state of remote data after every update made to
the data. However, this approach faces two difficulties. First of all, it is difficult to
know about every update, if the remote database is not trusted (it may delay or omit
reporting an update). Moreover, the approach may incur unnecessary performance
overhead. For example, during a diagnosis, a doctor may need to continuously make
temporary updates to a medical record before a final diagnosis conclusion can be
reached. The university-side database should not be required to verify all those tem-
porary updates.

We take a three-stage approach, as outlined below and elaborated in following
sections.

e First, referring to the example in Figure 1, the university-side database will adopt
a lazy approach in detecting modifications. More precisely, when Bob or Eve
issues a selection query and the hospital-side database returns the query result,
the university-side database will attempt to detect and localize any modifications
related to tuples in the query result based on a two-dimensional grid of MHTs.

e Second, if a modification is detected and localized, then the local database will
request the remote database for proofs of the legitimacy of such updates. The
remote database then submits necessary log entries containing digitally signed
update queries corresponding to those updates. The local database will check
whether the queries are made by those users who are authorized for such updates
and whether those queries indeed correspond to the modified data.

e Third, the local database will then disregard any tuples in the query result for
which no valid proof can be provided by the remote database. To accommodate
legitimate updates, the local database will incrementally compute the new MHTs
and send them back to the remote database who will incorporate those new MHT's
into the table.

3.2 Detecting and Localizing Modifications

We compute a two-dimensional grid of MHTSs on a table to detect and localize any
update to tuple or attribute level (a grid of watermarks is proposed for similar pur-
poses in [10]). In Figure 2, A;(1 <i < n+ 1) are the attributes, among which we
assume A; is the primary key and A, the access control policy for each tuple. The
MHT is built with a collision-free hash function 4() and sig() stands for a public
key signature algorithm. Each y;(1 <i < m) is the signature of the root w; of a MHT
built on the tuple (v 1,vi2,...,vi,). Similarly, each x; is a signature of the root ;
of the MHT built on the column (vy,v2;,...,vm;). Referring to Figure 1, for the
hospital-side table, the signatures will be created by the university-side database us-
ing its private key. If a table includes tuples that are owned by multiple databases,
then multiple signatures can be created and then aggregated (for example, using the
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Condensed RSA scheme [18]) as one attribute value, so any involved database can
verify the signature.
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Fig. 2 A Grid of Merkel Hash Trees on Tables

Suppose Bob poses a selection-projection query whose result includes a set of
values V. C {v; j | 1 <i<m,1 < j<n—1}.Then the hospital-side database needs
to return the set V, the policy v;, and the signatures x; and y; for each v; ; € V.
Moreover, the siblings needed for computing the root of the MHTs from which the
signatures have been computed should also be returned. Upon receiving the query
result, the university-side database will first verify the signatures and the values in
V by re-computing the root of the corresponding MHTs. If all the signatures are
valid, then university database is ensured about the integrity of the query result. It
will then examine the access control policies and filter out those tuples that are not
allowed to be accessed by the user, and check the completeness of the query result
based on the MHTSs using techniques in [7, 20, 14]. If everything checks out, the
query will be answered.

If some of the recomputed signatures do not match the ones included in the
query result, then modified data must first be localized based on following observa-
tions [10].If a value v; ; is updated, then the signatures y; and x; will both mismatch.
The insertion of a new tuple (v;1,vi2,...,vi,) Will cause the signature x,x2,...,X,
and y; to mismatch, while all the y;(;j # i) will still match. The deletion of a tu-
ple (vi1,vi2,...,vin) will cause the signature x,xz,...,x, to mismatch, while all
the y;(1 <i <n—1) will still match. The localization of modifications helps to re-
duce the amount of proofs that need to be provided (and thus the communication
and computational costs) in the later verification phase. However, this mechanism
does not guarantee the precise identification of every update made to the data. For-
tunately, as we shall show, the verification phase does not rely on this localization
mechanism.
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3.3 Verifying the Legitimacy of Updates

Before we discuss the protocol for verifying updates, we need to describe how a re-
mote database is supposed to handle updates. A remote database will need to record
all the following into a log file: The update query, the signature of the query created
with the user’s private key, the current time, the current value before the update for
deletion, and the current signatures involved by the update. Such information in the
log file will allow the remote database to be rolled back to the last valid state. The
information will thus act as proofs for the legitimacy of updates. When updates are
detected and localized, the local and remote databases will both follow the protocol
shown in Figure 3 to automatically verify the legitimacy of those updates and to
accommodate legitimate updates by updating signatures stored in the table.

1. Detect and T T T TTT T T T T TS o m o mmm—mo—mmmm e \
localize updates. ! 2. Local database sends to remote database: !

1 ¢ The original selection query. 1
| *  Asetof values that have potentially been modified. H
1 1
\ 1

5. Verify the e A request for proofs of the legitimacy of the updates. 3. Collect p “?Ofs
updates by Tt from log files.
reconstructing 7
MHTs from the T T TS TS T T s T m T T T m e mE e A E T E T m T
received proofs 1 4. Remote database sends to local database:
’ \ * The digitally signed queries corresponding to the updates.
| *  Hash values necessary for re-constructing MHTSs before updates.
D et
Local - Remote
Database T T T T T T T T T T T T TS mm e m e m e m— - Database

: 7. Local database sends to remote database: :
1 (For updates without valid proofs) The updated signatures with the |
6. Update \ updated values excluded from the table. !
1
! i
\ 1

signatures based ¢ (For updates with valid proofs) The updated signatures with the 8_- Update
on reconstructed updated values including in the table. signatures.

___________________________________________

MHTs.

Fig. 3 The Protocol for the Verification of Updates

In step 1, the local database detects mismatches in signatures and localizes the
updates to a set of values that may have been updated (recall that the localization
does not guarantee the precise set of modified values). The local database will then
send to the remote database the potentially updated values and related information,
such as the original selection query in step 2. In step 3, the remote database examines
its log files to find each update query that involves the received values. For each such
query, the remote database will attempt to reconstruct the mismatched signatures
using values and signatures found in the log file, which are supposed to be before
the update. If a state is found in which all the mismatched signatures match again,
then the involved queries will be collected as proofs and sent to the local database
in step 4. Otherwise, the remote database will send to the local database a response
indicating no proof for the updates is found.

In step 5, the local database will verify the signatures of the received update
queries and ensure those queries are made by users who are authorized for such
updates. The local database then attempts to reconstruct from the received queries a
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previous valid state in which all mismatched signatures match again. If such a state
is found and all the update queries until that state are made by authorized users,
then the detected updates are legitimate so the local database will create signatures
by including the updated values (the details will be given in the next section) in step
6. Otherwise, the updates are unauthorized, so signatures are created by excluding
the updated values in step 6. Upon receiving the updated signatures in step 7, the
remote database will then update the received signatures in the table in step 8. The
local database will only answer the original selection query if all the involved values
are successfully verified.

3.4 Accommodating Legitimate Updates

To accommodate updates that are successfully verified to be made by authorized
users, the local database needs to compute new signatures by including the updated
values so the remote database can update the signatures in the table. Similarly, up-
dates of signatures are also required for newly inserted tuples. Recomputing sig-
natures for each record does not incur a significant performance overhead because
the number of attributes in a table is limited. However, the signature of a column
may be computed over a large number of records, and its computation is thus costly.
Moreover, any insertion or update of a record will cause at least one of the signa-
tures of columns to be updated. To reduce the computational cost of such updates,
an obvious solution is to divide the table into smaller sub-tables with fewer records,
and then apply the aforementioned grid of MHTs to each sub-table independently
(instead of actually dividing the table, it is more convenient to simply change the
way the grid of MHTs is computed).

However, upon a closer look, dividing the table does not solve all the problems.
First, the table may need to be divided differently based on the ordering of tuples
by different attributes. For example, in Figure 1, suppose we divide the table based
on ID, then a query asking for tuples with a certain age may involve all the sub-
tables, which essentially diminishes the value of dividing the table (diving the table
will also cause more storage cost due to more signatures). Second, a more severe
issue lies in the fact that even for a smaller sub-table, the local database cannot
recompute signatures from all the values stored in the table simply because it does
not have such values. Sending those values from the remote database will incur too
much communication cost. Even to let the remote database compute the root will
still incur high computational cost, considering that each insertion of a new tuple
will cause the whole sub-table to be sent over.

Fortunately, a MHT can be incrementally updated. As illustrated in Fig 4, to
update the hash value 3, the local database only needs the hash values 1, 2 in the
MHT of each column, instead of all the leaves. To balance the MHT over time, for
insertion of new tuples, we should choose to insert each value at an existing hash
value that has the shortest path to the root (this may not be feasible for ordered
attributes where the order of MHT leaves is used for ensuring the completeness of
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query results). The next question, however, is where to obtain the required hash
values 1 and 2, given that recomputing them from the leaves is not an option. One
possibility is to keep a cache of all or part of the non-leaf hash values in the MHT.
If we keep all the non-leaf values in a cache, then a direct lookup in the cache
will be sufficient for computing the root, which has a logarithm complexity in the
cardinality of the table (or sub-table).

Fig. 4 Update the Root of a MHT

Considering the fact that the number of all non-leaf values is comparable to the
number of leaves, the storage overhead is prohibitive. Instead, we can choose to
cache only part of the MHT based on available storage. Two approaches are possi-
ble. First, we can use a static cache for a fixed portion of the MHT. If we assume a
query will uniformly select any tuple, then clearly the higher a hash value is in the
MHT, the more chance it will have to be useful in recomputing the new root of the
MHT. For example, in Fig 4, the value 1 will be needed in the update of twice as
much values as the value 2 will. Given a limited storage, we thus fill the cache in a
top-down manner (excluding the root).

The assumption that queries uniformly select tuples may not hold in many cases.
Instead, subsequent queries may actually select adjacent tuples in the table. In this
case, it will lead to better performance to let the queries to drive the caching of
hash values. We consider the following dynamic caching scheme. We start with the
cache of a top portion of the MHT. Each time we update one tuple, we recompute the
new root with the updated value using as much values as possible from the cache.
However, for each non-leaf value we need to recompute due to its absence in the
cache, we insert this value into the cache by replacing a value that is least recently
used (other standard caching schemes can certainly be used). Among those that have
the same timestamp for last use, we replace the value that has the longest path from
the root.

3.5 Security Analysis

We briefly describe how the proposed scheme prevent various attacks using the
previous example. Suppose in the hospital-side database, a malicious user in-
serts/deletes medical records or modifies some values. Such modifications will cause
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mismatches between recomputed MHT roots and those stored in the table, by which
the university-side database will detect modifications. The hospital-side database,
controlled by the malicious user, cannot avoid such a detection due to the security
of MHT. The malicious user may attempt to modify the log entries to hide his ac-
tivities by masquerading as users authorized for the updates. However, we assume
the university-side database can authenticate remote users’ queries through their
signatures, so such signatures cannot be created by the malicious user without the
private key of an authorized user. The malicious user can prevent the hospital-side
database from sending proofs or reporting the absence of proofs, but this does not
help him/her to avoid detection (a timeout scheme can be used for the case of not
receiving proofs in a timely fashion). The malicious user can also reorder or mix up
updates made by authorized users with his/her unauthorized updates. However, this
will also be detected when the university-side database attempts to rebuild a previ-
ous valid state of data but fails. The only damage that can be caused by malicious
users is a denial of service when too many tuples are excluded due to unauthorized
modifications. However, as mentioned before, a database member may request the
remote database to initiate an investigation when the number of such tuples exceeds
a threshold. Ultimately, the use of signatures computed over the grid of MHTSs pro-
vides the end-to-end integrity guarantee between the time of creating or updating
(by both authorized users from the university or at the hospital) to the time of in-

quiry.

4 Experimental Results

We have implemented the proposed techniques in Java running on systems equipped
with the Intel Pentium M 1.80GHz processor, 1024G RAM, Windows, and Oracle
10g DBMS. The main objective of the experiments is to compare the performance
of different caching schemes, namely, a static cache of all the non-leaf values of
each MHT, a static caches of partial MHTs of different sizes, and a dynamic cache
of fixed size based on queries.

The left-hand side chart in Figure 5 shows the computation cost of updating a tu-
ple in different size of databases when all non-leaf values are cached. We can see that
at the cost of storage, there is only a relatively small difference between updating tu-
ples without recomputing signatures (that is, ignoring the security requirement) and
re-computing signatures from static cache. On the other hand, recomputing MHT's
from scratch is very costly. The right-hand side chart in Figure 5 shows both the
storage requirement and the performance of static caches of different sizes, which
all hold a top portion of the MHT. We update one tuple in a database with 15,000
records. We reduce the cache size by removing each level of the MHT in a bottom-
up fashion. The curve with square dots shows the number of values in the cache,
that is, the storage requirement for caching. The other curve shows the computa-
tional cost. We can see that the overall performance is good in the range of (the hash
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tree height) -3 and -10 where both the storage requirement and the computational

cost are acceptably low.
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Fig.5 The Performance of Static Cache

Figure 6 compares the computational cost of dynamic caching with that of the
static caching under the same storage limitation. The database size is 15,000 records,
and the cache is limited to store only 500 hash values in the MHT. To simulate
queries that select adjacent tuples, we uniformly pick tuples within a window of
different sizes. In Figure 6, n is the size of the window, m is the number of records
involved by a query, the horizontal axis is the percentage of updated values within
the window. We can see that as more and more values are updated, the performance
of dynamic caching will improve since the cache hit rate will increase. The window
size has a small effect on this result, which indicates that the dynamic cache is
generally helpful as long as subsequent queries focus on adjacent tuples.
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5 Related Work

A Federated Database System (FDBS) is a collection of cooperating yet autonomous
member database systems[21]. Member databases are usually heterogeneous in
many aspects such as data models, query languages, authorization policies, and se-
mantics (which refers to the fact that the same or similar data items may have differ-
ent meanings or distinct intended usages among member databases). According to
the degree of integration, FDBSs are mainly classified as loosely coupled FDBS and
tightly coupled FDBS. A loosely coupled FDBS is rather like a collection of inter-
operable database systems. Most research efforts have focused on a tightly coupled
FDBS, where the federation is created at design time and actively controls accesses
through the federation. Although designing a tightly coupled FDBS from scratches
has obvious advantages, in many cases it may not be feasible due to the implied
costs. Our study assumes the loosely coupled FDBS model, and we do not require
major modifications to existing DBMSs. This makes our approach more attractive
to data integration applications. Metadirectories and virtual directories technology
have similarity with our studied problem. They both can access data from different
repositories by using directory mechanisms such as Lightweight Directory Access
Protocol (LDAP). When data in source directories changes frequently, it is a big
headache to keep data updated. Which will have much more storage and compu-
tation cost when updating. However, our approach is based on the assumption that
the remote database is untrusted to the local database, there is no authentication
between the two databases.

Access control in FDBS is more complicated than in centralized databases due
to the autonomy in authorization [2, 3, 9, 13, 23], which allows member databases
to have certain control over shared data. Depending on the degree of such control,
access control can be divided into three classes. For full authorization autonomy,
member databases authenticate and authorize federation users as if they are access-
ing member databases directly. In the other extreme, low authorization autonomy
fully trusts and relies on the federation to authenticate and authorize federation
users. The compromise between the two, namely medium authorization autonomy,
provides member databases with partial control on shared resources. Existing tech-
niques, such as subject switching, usually requires members to agree on a loose
mapping between user accounts and privileges in both databases such that one can
help the other on making authorization decisions. Our approach does not require
such a predefined mapping between databases but instead filters the result before
giving it to the user. Several database recovery mechanisms based on trusted repair
algorithms are adopted in commercial database systems. Each repair algorithm has
static and dynamic version. There are various possibilities when maintaining read-
from dependency information [1]. The survivability model extended from the class
availability model is developed by using a state transition graph to model a ITDB
(Intrusion Tolerant Database system), and it can provide essential services in the
presence of attacks [22]. These works are similar to our approach in that they both
need to isolate and recover from modified tuples. However, we focus more on the
interaction between local and remote databases.
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Multilevel databases have received enormous interests in the past, as surveyed
in [19, 11, 12]. Various architectures have been proposed for building multilevel
databases from un-trusted components [19]. The polyinstantiation issue arises when
a relation contains records with identical primary key but different security lev-
els [11]. A solution was given to the polyinstantiation problem based on the distinc-
tion between users and subjects [12]. The next section will review one of the archi-
tectures for multilevel databases in more details. More recently, outsourced database
security has attracted significant interests [7, 18,20, 17, 14]. One of the major issues
in outsourced databases is to allow clients to verify the integrity of query results, be-
cause the database service provider in this model is usually not trusted. Various tech-
niques based on cryptographic signatures and Merkle hash trees [16] have been pro-
posed to address the integrity and completeness of query results. We have discussed
the limitations in directly applying existing techniques in outsourced databases to
the federation of operational databases in the paper. Parallel to our work, a recent ef-
fort is on accommodating updates while ensuring data confidentiality in ODB, The
over-encryption model presents a solution for outsourced database to enforce access
control and evolving polices using keys and tokens without the need for decrypting
the resource to retrieve the original data and re-encryption [4].

6 Conclusion

We have addressed the issue of distributed authorization in a loosely coupled
database federation. We revisited the integrity lock architecture for multi-level
databases and showed that the architecture provides a solution to the authoriza-
tion of accesses to remote data in database federations. We then proposed a novel
three-stage scheme for the integrity lock architecture to ensure data integrity while
allowing for legitimate updates to the data. We also devised a procedure for mem-
bers of a database federation to update integrity stamps for legitimate updates. Our
future work include the study of more efficient ways for handling concurrent updates
made by multiple databases and the implementation and evaluation of a prototype
based on the proposed techniques.
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