
Efficient Coalition Detection in Traitor Tracing

Hongxia Jin, Jeffery Lotspiech and Nimrod Megiddo

abstract In this paper we study the traitor tracing problem for re-broadcasting
attack. In this attack, instead of building a pirate clone device (or program) based on
their secret keys and sell the clone, the attackers want to stay anonymous by redis-
tributing the decrypted content or the actual encrypting keys for the content. To de-
fend against this type of re-broadcasting attack, the content and its actual encrypting
key must come with different versions. In our setting, content is divided into multi-
ple segments, each segment comes with multiple variations and each variation is dif-
ferently encrypted. Each user/device can only play back one variation per segment
through the content. A typical traitor tracing scheme for re-broadcasting attack in-
volves two basic steps, assigning the key/variation to devices (assignment step) and
detecting at least a traitor in the coalition when a series of pirated key/content are re-
covered (coalition detection step). We take into considerations of some realities that
have been overlooked in existing schemes. As a result, we have designed a proba-
bilistic coalition detection algorithm that is not only closer to real world scenarios
but also more efficient than existing approaches. The traceability is defined in terms
of the number of recovered pirate copies of the content needed to detect traitor(s) as
a function of the number of traitors involved in a coalition. While existing schemes
try to identify traitors one by one, our probabilistic algorithm can identify multiple
traitors simultaneously and deduce the coalition size during tracing. Therefore, for
the same number of total traitors in a coalition, our scheme allows the detection of
all the traitors using less number of recovered copies. The superior efficiency of the
our coalition detection algorithm made its adoption by AACS (Advanced Access

Hongxia Jin & Nimrod Megiddo
IBM Almaden Research Center
San Jose, CA, 95120
e-mail: {jin,megiddo}@us.ibm.com

Jeffery Lotspiech
Lotspiech.com, Henderson, Nevada
e-mail: jeff@lotspiech.com

365

366 Efficient Coalition Detection

Content System) content protection standards for next generation high-definition
video optical disc.

1 Introduction

This paper is concerned with the protection of copyrighted materials. A number of
business models has emerged whose success hinges on the ability to securely dis-
tribute digital content only to paying customers. Examples of these business models
include pay-TV systems (Cable companies) or movie rental companies like Netflix,
and massively distributing prerecorded and recordable media. These typical content
protection applications imply a one-way broadcast nature. A broadcast encryption
system [3] enables a broadcaster to encrypt the content so that only a privileged
subset of users (devices, set up boxes) can decrypt the content and exclude another
subset of users. When a broadcast encryption system is used for content protection,
the enabling building block is a structure called Media Key Block (MKB) which
is based on hybrid encryption. Each device is assigned a set of unique secret keys
called device keys. The media key, which is indirectly used to encrypt the content,
is encrypted by device keys again and again and put into MKB which is distributed
together with the content. Each compliant device using its device key processes the
MKB differently but gets the same correct media key to decrypt the content, while
the excluded (revoked) devices cannot decrypt the MKB and get the correct media
key.
Note that there can be different pirate attacks in the above content protection

system. In one attack, a set of users (device owners) attack their devices, extract
device keys out of the devices and use those keys collaboratively build a clone pirate
device that can decrypt the content. When a pirate device is found, a traitor tracing
scheme enables the broadcaster to find at least one of the users (called traitors)
who have donated their device keys into the pirate device. Most existing broadcast
encryption and traitor tracing schemes [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] targeted on
this type of ”pirate device attack”.
This paper’s focus is on a different attack, namely, the re-broadcasting attack as

defined in [15, 16]. When an attacker re-broadcasts the content in the clear, the only
forensic evidence is the unprotected copy of the content and the attackers can stay
anonymous. The attacker can also simply re-broadcast the media key to stay anony-
mous and avoid being identified. To defend against the re-broadcasting attack, for
different devices, not only the content needs to be in different versions, it also needs
to be differently encrypted. Of course sending different versions to different users
is oftentimes too costly in bandwidth or disc space needs. To reduce the cost, each
content is divided into n segments and each segment is augmented by q different
variations which are differently marked and encrypted. The underlying scene re-
mains identical. To save cost, this same augmented content is distributed to every
user. However, each user can only decrypt one of the variations at each segment.
In other words, each recipient would follow a different path through the variations

Efficient Coalition Detection 367

during playback time. In this way, even though each user does not receive a differ-
ently distributed content, it effectively creates different versions of the content for
different users.
A traitor tracing scheme in this category usually consists of two basic steps:

1. assignment step: Assign a version of the content to the device by assigning the
playback path, i.e., which variation to play for each augmented segment in the
content.

2. traitor/coalition detection step: Based on the recovered pirated content/keys,
trace back to the traitors.

The focus of this paper is on the traitor/coalition detection step. In literatures a
traitor tracing scheme has been defined as a way to detect at least a traitor in the sys-
tem when forensic evidence is recovered. Therefore the goal of the traitor detection
step, as well as the design of a traitor tracing scheme, like [15, 16, 17, 18, 19], is to
identify a traitor. It is assumed that the identified traitor can be disconnected from the
system and the tracing continues after that. Indeed, for the coalition/traitor detec-
tion step existing schemes always use a highest-score approach, where each player is
scored based on the number of matching between the recovered pirate movies and
the versions assigned to the player, hoping the highest scored player is the guilty
traitor. We believe using the one-by-one detection scheme for re-broadcasting at-
tack is inefficient. We are motivated by the fact that in reality the ultimate goal is
to detect all traitors in the coalition. If possible, one should try to detect multiple
traitors simultaneously rather than detecting one by one. The efficiency of a tracing
scheme is measured by the total number of recovered movies it needs in order to
detect all traitors in a coalition of size T .
The second motivation of this work has to do with the fact that in reality the

coalition size is usually unknown. As a result, the answers a traitor tracing scheme
gets are always qualified in real applications. One cannot perform deterministic trac-
ing as those shown in existing work. In reality, tracing will have to be probabilistic.
Indeed, the real world question is how to accurately detect traitors without knowing
the coalition size and with what probabilities.
We have designed the first traitor/coalition detection algorithm that tried to detect

multiple traitors in the coalition together and also deduce the coalition size during
tracing. In our algorithm, firstly, with the recovered movies, using set-cover, we
try to detect which coalition of players may have involved in the attack, instead
of which one particular player may have been involved. Second, when we find a
suspect coalition, we cannot trivially incriminate all the players in the suspect coali-
tion. We have designed ways to identify and incriminate the guilty individuals in the
suspect coalition. As a result, we could incriminate more than one player at each
iteration of the algorithm. Our goal is to correctly identify the actual traitors with
high probability. In fact, our algorithm can identify traitors with any confidence the
license agency wishes.
The above idea may look simple. But one might have been concerned with the

theoretically exponential blow-up in computation time. Fortunately, in reality we
find not only computational time is very manageable, we also find the computa-

368 Efficient Coalition Detection

tional time is less an issue than the demand for large number of pirate movies need
to be recovered in order to detect traitors. After all, the tracing agency does not have
control on how often attackers pirate and re-distribute movies, maybe every week
or every month. Therefore, it is much more important to reduce the number of re-
covered movies that a traitor detection algorithm needs in order to detect traitors.
Indeed as pointed out earlier, in this paper we define the efficiency of a traitor detec-
tion algorithm to be the number of pirate movies needed in order to detect traitors
for a coalition of size T .
Furthermore, the efficiency of our algorithm derives from a very important but

maybe counter-intuitive observation, it is much faster to eliminate the completely
innocent coalitions than eliminating innocent individuals even though there exist a
lot more (i.e., exponential number of)coalitions than individuals. This is because
that it is much less likely that coalitions appear by random chance, than that indi-
vidual players randomly have high scores. This truism is the essence of the efficient
tracing underneath our new tracing algorithm.
The authors have been involved in what we believe is the first large-scale com-

mercialization of a tracing traitors system for re-broadcasting attack within the
AACS (Advanced Access Content System) content protection standards for next
generation of high-definition optical DVDs. AACS adopts the use of the scheme
in [20] as the assignment step to satisfy some practical restrictions for the assign-
ment step. But the detection step shown in [20] is not efficient and practical enough.
The algorithm we will show in this paper takes into considerations of those realities
shown above that have largely been overlooked in existing work. As a probabilistic
algorithm, it is not only more practical than deterministic tracing; it is also much
more efficient due to the fact that it detects multiple traitors together. Furthermore,
the entire tracing can be done in very reasonable time. As a result, AACS adopts the
use of the scheme in [20] as the assignment step and adopts the work presented in
this paper as the coalition detection step.
In rest of the paper, in Section 2, we will first provide more contextual back-

ground for designing a traitor tracing scheme for AACS for re-broadcasting attack,
including some practical restrictions on the assignment step. Many schemes shown
in literatures do not have those restrictions in mind and thus do not satisfy those
restrictions. We will summarize the result in [20] to show how it can satisfy some
of AACS’ restrictions on assignment step. Then we will show our traitor/coalition
detection algorithm in Section 3. We will analyze its false positive rate in Section 4
and its performance/efficiency in Section 5. We show simulation results in Section
6 and conclude in Section 7. For concreteness, we use movie as a sample content
in this paper.

2 Background for traitor tracing in AACS

AACS founders find it acceptable to makes the following marking assumption on the
pirate model. Given two variants v1 and v2 of a segment, the pirate can only use v1

Efficient Coalition Detection 369

or v2, not any other valid variant vi. In a key-rebroadcasting attack, this assumption
says if attackers have two valid random cryptographic keys, it is probable they will
simply redistribute them instead of calculating a valid random key from the known
two random keys since it is difficult if not impossible to do so. For content re-
broadcasting attack, while watermarking is a common way to build variations, there
are other better ways to exploit and satisfy the marking assumption. It is outside the
scope of this paper to discuss why AACS adopts this attack model.
When a movie is divided into multiple segments and each segment is augmented

with multiple (q) variations, as one can imagine, those variations take extra space
on the disc. For content owners, a practical traitor tracing scheme on a prerecorded
optical movie disc should take no more than 10% of the space on the disc to store
the variations. This puts practical restriction on the number of variations one can
put into a movie. The market for such discs is huge, involving literally a billion
playing devices or more. This means a tracing scheme needs to be able to accom-
modate large number of devices. While these restrictions are inherently conflicting,
a practical traitor tracing scheme must meet these requirements first. After meeting
these requirements, it is also important to detect the coalition of traitors using as few
recovered movies as possible.
In summary, a traitor tracing scheme for AACS needs to meet all the following

requirements:

1. the number of variations for each movie cannot be big
2. the number of devices/users must be big
3. after the above two requirements are met, the number of movies necessary to
detect a coalition of should be as small as possible

It is very important to notice that much of the literature on traceability codes has
taken the approach of fixing the number of colluders and the number of recovered
movies and trying to find codes to support an optimal number of devices/users for
a given number of variations of each movie. For example, the code shown in [17]
either has too few codewords (accommodates a small number of devices) or the
number of variations is too large (requires too much space on the disc). In the AACS
context, a traitor tracing scheme must first meet the two requirements on the number
of variations and the number of devices, then its goal is to minimize the number of
recovered movies to detect unknown number of colluders.
In existing literatures, the scheme shown in [20] can meet the first two require-

ments. In this scheme, basically for each movie, there is an ”inner code” used to
assign the different variations at the chosen points of the movie; it effectively cre-
ates different movie versions. Over a sequence of movies, there is an ”outer code”
used to assign movie versions to different players. Both assignments can be random
or systematic. For example, one can use a Reed-Solomon code for both the inner
and outer code. Suppose there are 16 variations created at each of the 15 points in
the movie. Their scheme will create 256 versions in which any two versions will be
guaranteed to differ at least 14 points. Once the ”inner code” creates the multiple
movie versions (e.g., 256), each player is assigned one of the 256 versions for each
movie in a sequence of 255 movies. A Reed-Solomon code can create 2564 code-

370 Efficient Coalition Detection

words (thus billions players) with any two players differ at least 252 movies. By
concatenating the two levels of codes, the assignments managed to avoid having a
big number of variations at any chosen point but can still accommodate the billions
of devices. These parameters can be good choices for AACS.
As mentioned above, the ”outer code” is used to assign the movie versions to each

player. For real use, the ”outer code” can be used to assign the movie version keys
to each player. Those keys will be burned into the player at manufacturer time and
will not get updated afterwards. These keys are called “sequence keys” in the AACS
specification. For example, each device is assigned a set of 255 keys, corresponding
to the 255 movies in the sequence. Each key comes with 256 versions corresponding
to the 256 movie versions created from the ”inner code”. During playback time, the
device can use the sequence key for a movie to obtain the actual variation encrypting
keys for each segment. More details are referred to [20].
The first two requirements have to do with the assignment step in a traitor tracing

scheme. While AACS adopts [20] for its assignment step, the third requirement on
the traceability cannot be met with the scheme [20], measured by the number of re-
covered movies needed in order to detect traitors involved in a coalition. In fact, the
solution to the traceability problem has more to do with the actual traitor/coalition
detection step.
As we mentioned earlier, there is one thing common with all the existing schemes

including [16][17] and [20] on the tracing step. For each device, they calculate the
number of matching that the observed pirate copies have in common with the ver-
sions assigned to that device. When the traitors in a coalition collude together in
the pirate attack, these schemes are defined to detect and incriminate the one traitor
who has the most matching. In fact if we use the highest score tracing approach on
the above assignment, as shown in [20], for a coalition of 10 traitors one of them
can be detected after 255 movies. This is not enough for practical use. In fact, the
authors for [20] called for a more efficient probabilistic tracing approach.

3 Our traitor/coalition detection algorithm

Our algorithm works with both random and systematic assignment of the keys to
devices. In this paper, for the sake of simplicity, we will just assume that the licens-
ing agency assign the keys uniformly at random instead of using a Reed-Solomon
code.
First of all, we want to make clearer of what we mean by ”coalition”. To our

coalition detection algorithm, a coalition exists if illicit movies are coming from
many players and we cannot otherwise determine which movies are coming from
which players. For example, we recover re-broadcasted movies in a file sharing
network. It does not mean that the people in the coalition are organized. It does not
even mean that they know about each other’s existence.
As mentioned earlier, traitor tracing schemes in literatures have been mostly fo-

cused on the assignment step. The actual detection algorithm is simple and straight-

Efficient Coalition Detection 371

forward: you take your sequence of recovered movies, and simply score all the de-
vices based on how many movies match with what each device has been assigned.
You incriminate the highest scoring device. Traitors are therefore detected one by
one. But why not detect every member in the coalition all together? The classic
one-by-one method has some obvious advantages:

1. It seems easier.
2. The number of coalitions of a certain size is exponential in the number of users in
the system. For example, if there are 1,000,000,000 devices/users in the world,
there are roughly 500,000,000,000,000,000 pairs of devices (i.e., coalitions of
size 2).

3. It seems essential against the “scapegoat” strategy. In this strategy, the coalition
sacrifices a few devices and uses them heavily while using the others lightly,
to keep some in reserve. Note that even without the scapegoat strategy, simula-
tion results usually show some unlucky innocent devices intermixed with guilty
players when the devices are scored in the classic way.

It may seem counter-intuitive, but we believe it is easier to find the entire coalition
than to sequentially find one individual traitor, disable him and find another one. It
turns out that it is much less likely that coalitions appear by random chance, than
that individual player randomly has high score. An example can informally illustrate
the underlying idea. Suppose there are 4 people involved in a colluding attack, and
we have a random sequence of 20 recovered movies. Each movie originally has
256 variations of which a given player only plays 1. The attackers wish to see that
high scoring device can happen by chance. If the four attackers are using round
robin, each guilty player will evenly score 5. Can we incriminate any player that
share 5 movies with the recovered sequence? No, there will be about 15 completely
innocent players scoring 5 or greater due to chance alone. What can you do then?
You have to recover more movies before you can incriminate any player. In general,
with N players and q variations for each movie, the expected number of individuals
who can score x among m movies are:

N ∗ (1/q)x ∗
(

m
x

)

(1)

However, the above 4 guilty players together can explain all the movies in the
sequence. What is the chance that a coalition of size 4 might have all the variations
in the sequence? The answer is roughly 0.04. In other words, while there are plenty
of players that can explain 5 movies, it is unlikely that any four of them can “cover”
all twenty movies. If we find four players that do cover the sequence, it is unlikely
that this could have happened by chance. It is more likely that that some devices in
the coalition are indeed guilty.
On the other hand, the attackers may use scapegoat strategy. Some player is used

heavily, for example, score 9 or 10. The traditional approach can correctly identify
him, but it is hard to find the lightly used player and the true coalition size. Our new
tracing algorithm can nonetheless find the other members in the coalitions and find
out the coalition size.

372 Efficient Coalition Detection

In section 3.1, we will show how we find a coalition to explain the recovered
movies. After we find the suspect coalition, in section 3.2 we will show how we
identify the actual guilty players in the suspect coalition and filter out the innocent
ones.

3.1 Finding a coalition

Let us formalize the above intuition a bit more. If there areN players, and a sequence
of m movies are selected, each movie having one random variation out of q, the
expected number of coalitions of size T are:

(

N
T

)

∗ (1− (1−1/q)T)m (2)

If the expected number of coalitions is less than 1, this formula also gives an
upper bound on the probability that a random sequence of m movie variations is
covered by a coalition of size T .
In AACS context, as a sample parameter, q = 1024 and a reasonable T = 40. If

T is in fact noticeably less than q, a simplification of this is a close upper bound:
(

N
T

)

∗ (T/q)m (3)

The problem of finding a coalition of players that covers a sequence of movies is
equivalent to a well-known problem in computer science called Set Cover. It is NP
hard. Any set cover algorithm can be used here. But we find there is even no need to
use a much elaborated set cover algorithm. Not only that computational time is not
much an issue for AACS, but also in reality the calculation time is very reasonable
for the parameters that AACS is concerned with. For example, using the simple
set cover shown below, to detect coalitions that cover 20 movies, it takes about 5
seconds on a Thinkpad T30.
Assume the licensing agency has observed a sequence of movies and determined

the particular variation (the “symbol”) in use for each. We also introduce the param-
eter k, the number of symbols that would probabilistically identify a single player.
For example, k could be set to logqN, where N is the total number of players.
The following recursive procedure COVER, if given a suspected number of

traitors T and a list of the m encoded symbols discovered, returns true if and only if
there is at least one coalition of size T that can explain the observed symbols:

1. If T ∗ k is greater than the number of symbols, print “many” and return true.
2. Calculate the minimum number of symbols that the largest-scoring traitor must
have:

min= ⌈
m
T
⌉

Efficient Coalition Detection 373

3. For each possible combination of k symbols, calculate whether the single player
assigned to that combination covers ’min’ number of symbols. If it does, perform
the following:

a. If T = 1, print the player ID and return true.
b. If T > 1, recursively call COVER passing the symbol list after removing all
the symbols from the suspect player and with T = T −1.
i. If the recursive call returns false, continue to loop through the other com-
binations.

ii. If the recursive call returns true, print the player ID and return true.
c. If all combinations have been checked, return false.

The tracing algorithm assumes that the size of the coalition is unknown, and
proceeds to calculate both the size of the coalition as well as the actual players
involved. Below is the method that uses the above procedure COVER (or any other
Set Cover procedure):

1. Set T = 1.
2. Run COVER.
3. If COVER returns true, exit.
4. Otherwise set T = T +1 and loop to step 2.

Eventually the procedure must exit at step 3. Why? Once the number of movies
is less than T ∗ k, COVER is guaranteed to return true (see step 1 in COVER). But
the interesting thing happens if you exit “early”. In this case, you have found a
coalition, and you can calculate the probability that a larger completely different
coalition could have incriminated this coalition of size T, as explained in Lemma 1.

3.2 Identify guilty individuals in the found suspect coalition

Once we have found a coalition, who in the coalition should we incriminate? What
is the chance that some of the players in the purported coalition of size T might
be actually innocent, being victimized by a scapegoat strategy that is hiding a few
lightly used guilty players? We calculate this as follows:
For each combination of T players, perform the following steps:

1. Temporarily assume that the players in the particular combination are guilty.
2. If the number of players in this combination is c, subtract c from T
3. Temporarily subtract from the list of movies all the movies that can be explained
by this combination of players.

4. Use the formula 2 above using the new number of movies m and T , to evaluate
the probability that the remaining players are completely innocent. If the formula
yields a number greater than 1, assume the probability is 1.

When this procedure has ended, there will be a list of all possible combinations
of players together with the chance that the remaining players are innocent. If some

374 Efficient Coalition Detection

of these combinations indicate that there is a good chance that a player is innocent
under those circumstances, the licensing agency would be well advised not to take
action against the player (yet). On the other hand, some players will seem guilty
under all combinations. In other words, the license agency can use the minimum
guilty probability of the each player under all combinations as the probability of
guilt of the player. In general, players that score higher in terms of the number of
movies they could have encoded are also more likely to show up as guilty after the
procedure. It is also reassuring that after this procedure any player that is identified
only as “many” in the COVER procedure will show up as likely innocent.
Note it is possible that two of the players in the coalition may have a high overlap

in movies. In this case, the procedure above might reveal that if player A is guilty,
there is a good chance that player B is innocent, and vice versa. In this case, the
licensing agency would be well advised to avoid making a decision about either
of them until more movies have pointed to one or the other. Note that using the
“min” probability rule, both players show up as likely innocent for the time being.
However, the policy used by the licensing agency is outside of the scope of this
paper. This algorithm provides the necessary tool to the licensing agency: a short
list of potentially guilty players and probability of their actual innocence or guilt.
We now discuss a few optimizations. Before calling COVER the first time, it is

usually faster to pre-calculate the
(m
k
)

potential players. Then, in step 3 of cover, you
simply iterate through the pre-calculated list, seeing if each player is still a candidate
under the current circumstances. Determining which player corresponds to partic-
ular list of k symbols can often be optimized. It is always possible to exhaustively
search through all the players to see which one is indicated, but this can be obviously
sped up by well-known techniques like table look-up and hashing. Furthermore, if
the encoding method used is a linear code, as it was shown in our previous paper
[20], it is possible to identify the player by algebraic means. For example, each list
of k symbols defines k equations in k unknowns, which can be solved by Gaussian
elimination.

4 False positive

Our tracing algorithm assumes that the size of the coalition is unknown, and pro-
ceeds to calculate both the size of the coalition as well as the actual players involved.
If the size of the coalition is known from other sources, the answers may be exact;
otherwise, the answer is always probabilistic. The problem is, from the attackers
side, they do not know what sequence would incriminate an innocent player, so they
are just guessing. We can make the probability they guess correctly arbitrarily small
by just collecting more movies. The following lemma shows the false positive rate
in our detection.

Lemma 1. Assume that a coalition of guilty players cannot deduce the movie as-
signment of any other player in the world, for a coalition C, |C| = T , found by
algorithm COVER, the probability that every member in coalition C is innocent is

Efficient Coalition Detection 375

bounded by formula 2. In other words, the formula gives the false positive probabil-
ity in the detection.

Proof: Imagine that the process of assignment is the opposite of the way it works
in real life: instead of starting with the assignment of variations to the population,
the coalition randomly picks their assignment and then picks the particular varia-
tions of m movies in any way they choose. Only then does the licensing agency, not
knowing what the coalition has picked, assign the variations for the remaining inno-
cent players randomly. The chance that this assignment would result in a coalition
of size T amongst the innocent players is clearly bounded by equation 2. And since
there is no way to distinguish the “real life” case from the “thought experiment”
case based on the player assignment (they are both equally random), the equation
does represent the best that the attackers can do. ⊓"
The licensing agency can choose any acceptable value for the false positive rate.

The smaller the false positive rate, the more pirate movies it needs to recover. We
can get any kind of confidence level desired, but it will just take us more recovered
movies to achieve. If the attack is ongoing, we always have the option of increasing
our confidence by recovering more movies. In general, for each movie recovered,
our confidence that the guilty players are, in fact, guilty is increased by roughly q/T.
Since our entire tracing is probabilistic, we can factor in some false positives from
the underlying watermarking technology (that is determining which variations were
recovered) as well.

5 Tracing efficiency

From formula 3, we can calculate the number of movies m it takes for a coalition of
size T to achieve any level of confidence (or false positive rate), for example, λ . We
obtained a superlinear relationship between m and T .

(

N
T

)

∗ (T/q)m = λ (4)

Because N is much larger than T ,
(N
T
)

can be approximated to be NT . Solving
the above equation gives us:

m=
T ∗ lnN− lnλ
lnq− lnT

(5)

For the parameters of our choice for AACS, it is easy enough to use a spreadsheet
on the formula 3 to show the relationship among these numbers. The two graphs
below show this relationship when the number of device is 1 billion.
Interestingly, it takes almost the same number of movies (roughly 6T) to achieve

a super high confidence (below 0.0001%) as it does to achieve a moderately high
confidence (below 0.1%)

376 Efficient Coalition Detection

Now let us do some comparison with existing approaches. Of course in AACS
context it is difficult to deploy a dynamic traitor tracing scheme like [15] because
AACS has to assign the sequence keys to burn into devices during manufacture
time and cannot easily update them afterwards. Among static schemes, a traceability
codes is one of the traditional approaches that incriminates the highest score device,
i.e. the device whose codeword is at the smallest Hamming distance from the pirated
copy. Indeed a traceability code enables one to decode to the nearest neighbor of a
pirate code and the nearest neighbor is deterministically a traitor.

Lemma 2. [5] Assume that a code C with length n and distance d is used to assign
the symbols for each segment to each user and that there are t traitors. If code C

satisfies

d > (1−1/t2)n, (6)

then C is an t-traceability-code.

In [20], it showed the tracing results based on the above formula when using
the parameters of choice for AACS. It can deterministically identify traitors in a
coalition of nine after recovering 256 movies. In contrast, for the same coalition size,
our algorithm takes 56 movies and the false positive rate can be low at 0.0001%.
Indeed [20] called for probabilistic tracing to improve efficiency as well as fit more
with the reality that coalition size is unknown in advance.
As another one-by-one detection scheme, the static sequential traitor tracing

scheme shown in [16] can detect T traitors with T 2 + T movies. For the reason-
able coalition size that AACS is concerned with, for example, a dozen to several
dozens traitors, our superlinear results shown in Formula 5 is much more efficient.
Please also note that the probabilistic tracing we have is also different from the

probabilistic tracing in [4, 5]. Their goal is to make the probability of exposing an

Efficient Coalition Detection 377

innocent user as small as possible, while we try to make the probability of catching
the actual traitor to be reasonably high.

6 Simulation results

We have also performed simple simulations to confirm the above analysis. Because
of the nature of the probabilistic detection, it means some false positive. For a coali-
tion of size 4, we know it takes about 22 movies to detect the traitors with very
high confidence. Of course, to confirm a very low probability like that would take
an unreasonably large number of simulations. Instead, we used a test with a larger
false positive rate, namely a 20 movie sequence. We randomly picked a coalition of
size 4, and create 20 pirate movies out of the chosen 4 traitors. We tried both ran-
dom and round robin methods for the traitors’ strategy. We confirmed (at the 95%
confidence level) that equation 2 holds. Similarly, for a coalition size of 6, from
the formula we know it takes about 34 movies to reach a confidence 0.005% false
positive. We simulated using only 32 movies. After 100 simulations we tested, we
found 6 cases that involve a completely innocent coalition, which is consistent with
the bound from equation 2, which is 9.5%.
We also notice a slight difference of the behavior when we use round robin to

create the pirate movies than when we use random selection. In the case of random
selection, one player often contributes a lot. This partially explains why traditional
score ranking could work to some extent against the random selection attacker strat-
egy. But with our new tracing scheme, the other coalition members are nonetheless
found, unless they made a negligible contribution to the attack.
On the other hand, in the case of round robin, the movies are contributed evenly

from the attackers. It is hard to incriminate the highest scoring player in this case.
For example, in the case of a coalition of size 4 and with 20 movies, all 4 play-
ers explain 5 movies. In our simulation, in most cases, the new tracing algorithm
found the exact one coalition that together can explain all 20 movies. Once again,
this explains why our new tracing algorithm is more efficient than the traditional
approach.

7 Conclusions

In this paper, we study the problem of traitor tracing for re-broadcasting attack
where the legitimate users (traitors) who instrument their devices and illegally resell
the pirated copies by redistributing the content or the decryption keys on the Inter-
net. We have designed an efficient traitor detection algorithm for AACS (Advanced
Access Content System) copy protection standard for the next generation of high-
definition DVDs. The efficiency is measured by the number of recovered movies it
takes to identify all the traitors in the coalition.

378 Efficient Coalition Detection

We take into considerations of some realities that have been overlooked in exist-
ing work. We designed a probabilistic tracing scheme that is closer to the real world
situation more than deterministic tracing. It also achieves super linear traceability,
much more efficient than existing approaches. Different from existing approaches
which try to detect traitors one by one, we detect multiple traitors in the coalition
together. This idea enables faster tracing with less recovered content, at the cost of
higher computational overhead. We take advantage of the fact in reality this tradeoff
is gladly made.
The superior traceability achieved by the algorithm described in this paper made

its commercial adoption by AACS to protect the next generation DVDs. In the fu-
ture, we will continue to improve its traceability, not only theoretically, but also by
taking into consideration of real implementations. Technically we are interested in
improving the filtering algorithm. We would also like to consider the case when
the coalition size is large to anticipate new types of attacks enabled by future new
technologies.

References

1. http://www.aacsla.com
2. D. Naor, M. Naor and J. Lotspiech, ”Revocation and Tracing Schemes for Stateless Re-
ceivers”, Crypto 2001, Lecture Notes in computer science, Vol. 2139, pp 41-62, 2001.

3. A. Fiat and M. Naor, “Broadcast Encryption,” Crypto’93, Lecture Notes in computer science,
Vol. 773, pp480-491. Springer-Verlag, Berlin, Heidelberg, New York, 1993.

4. B. Chor, A, Fiat and M. Naor, “Tracing traitors,” Crypto’94, Lecture Notes in computer sci-
ence, Vol. 839, pp480-491. Springer-Verlag, Berlin, Heidelberg, New York, 1994.

5. B. Chor, A, Fiat, M. Naor and B. Pinkas, “Tracing traitors,” IEEE Transactions on Information
Theory, Vol 46(2000), 893-910.

6. M. Naor and B. Pinkas, ”Efficient Trace and Revoke Schemes”, Financial Cryptography’2000,
Lecture Notes in Computer Science, Vol. 1962, pp. 1-20.

7. D. boneh, C. Gentry and B. Waters, ”Collusion Resistant Broadcast Encryption With Short
Ciphertexts and Private Keys”, Crypto’05. pp.258-275.

8. D. Boneh, A. Sahai and B.Waters, ”Fully Collusion Resistant Traitor Tracing With Short Ci-
phertexts and Private Keys”, EuroCrypt’06, pp.573-592.

9. D. Boneh and M. Franklin, ”An efficient public key traitor tracing scheme”, Crypto’99. LNCS
1666, pp.338-353.

10. D. Boneh and B. Waters, ”A collusion resistant broadcast, trace and revoke system”, ACM
Communication and Computer Security, 2006.

11. K. Kurosawa and Y. Desmedt, ”Optimum traitor tracing and asymmetric schemes”, Euro-
Crypt’98, pp.145-157.

12. H. Chabanne, DH. Phan and D. Pointcheval, ”Public traceability in traitor tracing schemes”,
Eurocrypt, 2005, pp.542-558.

13. D.R.Stinson and R. Wei, ”Key preassigned traceability schemes for broadcast encryption”,
ACM SAC’98, 1998.

14. E. Gafni, J. Staddon and Y.L.Yin, ”Efficient methods for integrating traceability and broadcast
encryption”, CRYPTO’99, Lecture Notes in computer Science, Vol. 1666, 1999, pp. 537-554

15. A. Fiat and T. Tassa, “Dynamic traitor tracing,” Crypto’99, Lecture Notes in computer science,
Vol. 1666, pp354-371. Springer-Verlag, Berlin, Heidelberg, New York, 1999.

16. R. Safani-Naini and Y. Wang, “Sequential Traitor tracing,” IEEE Transactions on Information
Theory, 49, 2003.

Efficient Coalition Detection 379

17. Tran van Trung and Sosina Martirosyan, ”On a class of Traceability Codes”, Design, code and
cryptography, 31(2004), pp 125-132.

18. J. N. Staddon, D.R. Stinson and R. Wei, “Combinatorial properties of frameproof and trace-
ability codes,” IEEE Transactions on Information Theory, 47 (2001), 1042-1049.

19. D.R.Stinson and R. Wei, “Combinatorial properties and constructions of traceability schemes
and frameproof codes,” SIAM Journal on Discrete Mathematics, 11:41-53, 1998.

20. H. Jin, J.Lotspiech and S.Nusser, ”Traitor tracing for prerecorded and recordable media”,
ACM DRM workshop, Oct. 2004.

21. G. Tardos, ”Optimal Probabilistic fingerprint codes”, in proceedings of the Theory of Comput-
ing, pp. 116-125, June 9-11, 2003, San Diego, CA.

