HoneylID : Unveiling Hidden Spywares by
Generating Bogus Events

Jeheon Han, Jonghoon Kwon, Heejo Lee

Abstract A particular type of spyware which uses the user’s events covertly, such
as keyloggers and password stealers, has become a big threat to Internet users. Due
to the prevalence of spywares, the user’s private information can easily be exposed
to an attacker. Conventional anti-spyware programs have used signatures to defend
against spywares. Unfortunately, this mechanism cannot detect unknown spywares.
In this paper, we propose a spyware detection mechanism, called HoneyID, which
can detect unknown spywares using an enticement strategy. HoneyID generates bo-
gus events to trigger the spyware’s actions and then detects hidden spywares among
running processes which operate abnormally. We implemented the HoneyID mech-
anism as a windows based, and evaluated it’s effectiveness against 6 different known
spywares(3 keyloggers and 3 ftp password sniffers). From this study, we show that
the HoneyID can be effective to detect unknown spywares with high accuracy.

1 Introduction

Spyware has become one of the most serious Internet phenomena. A recent report
stated that 9 out of 10 computers connected to the Internet are infected [6]. However,
most users are unaware of the presence of spywares due to the evasive behavior. This
makes it difficult for the user to prevent it from causing damage.

Today, many signature based anti-spyware solutions have been used to defence
from spyware. However, these solutions cannot detect unknown spywares. There-
fore, the users are exposed to the threat of spyware before the corresponding signa-
ture update. Behavior-based spyware detection has been studied in several ways
such as Gatekeeper [5], Behavior-based Spyware Detection [3]. Although these
behavior-based approaches provide good detection results for particular behavior,

J. Han, J. Kwon and H. Lee are with the Division of Computer and Communication Engineering,
Korea University, Seoul 136-713, Korea. e-mail: {getroot, signalnine, heejo} @korea.ac kr. This
work was supported in part by the ITRC program of the Korea Ministry of Knowledge Economy.

669

670 Jeheon Han, Jonghoon Kwon, Heejo Lee

they have less eppectiveness against spywares which are triggered by a user’s activ-
ity. In addition, there are also flow based approaches to detect spywares which use
a honeytoken. For example, Siren [1], SpyCon [2] were proposed, which induce a
spyware to make additional network request. Unfortunately, these approaches can-
not detect spywares which do not send the stolen user’s information to a remote
server and cannot obtain infected spywares information. For solving these problems,
in this paper, we propose a novel spyware detection mechanism called HoneyID.

2 Detection Mechanism

HoneyID is a mechanism that detects dialog spyware processes actively in a local
machine. The dialog spyware is one of the most significant spyware, since it works
using specific user activity. To steal and handle the user’s activities, it uses gener-
ated events. Thus, HoneyID causes dialog spywares to fall into a trap by generating
specific bogus events.

HoneyID consists of the trap and bogus events, as shown in Fig. 1. The trap
is a component which monitors the changes of each process and the bogus event
is a mimic user event which can make the dialog spyware operate. To detect spy-
ware processes, HoneylID sets up a trap in the operating system and generates bogus
events. When these events induce a dialog spyware behavior, HoneyID can detect
dialog spyware processes by checking the changes of the processes.

HoneyID
T f f 1
Bogus Bogus Bogus Bogus
Keystroke Mouse Network
Event Event Event Event
T T T T
(Hooking)
[T J J

‘ Dialog Spyware ‘

el el [mel [mel [we(

File Network Process
API API API

Message

Fig. 1 The basic concept of HoneyID to detect dialog spywares.

If a process responds to bogus events whenever they are generated, HoneyID
classifies it as a dialog spyware. Hence, dialog spyware can be classified by Eq. (1),
where E is the number of bogus events generated per second, N is the period dur-
ing which the bogus events occur continuously and T is the number of jobs of the
process used for transacting bogus events. The job is a set of operations required for
the target process.

HoneyID : Unveiling Hidden Spywares by Generating Bogus Events 671

T=E-N (1

A dialog spyware steals and processes generated events immediately before the
next event generation. Otherwise, it will fail to steal the next events. Therefore, the
number of jobs of a dialog spyware process invoked by the bogus events and the
number of generated bogus events is the same. So satisfying Eq. (1) means that the
process can be regarded as a dialog spyware.

Timer

Honey Normal Honey Normal
Section Section Section Section

Fig. 2 Divided two sections with variables

In order to classify the jobs of normal processes and dialog spyware processes,
HoneyID separates them into two sections. The first one is honey section with bogus
event and other one is normal section. If HoneyID begins to generate bogus events
and pauses repeatedly, and a process operates only in the honey section, HoneyID
can check that the process operates as a result of the bogus events. If this method is
repeated k times, the probability that a normal process runs in each honey section is

%k. Hence, the probability of a false alarm is very low.

Fig. 2 shows the two sections with three variables. The trap counter counts the
number of jobs in both sections, the bogus event counter counts the number of bogus
events per second, and the timer measures the time of each section. Eq. (1) can be
represented by the divided section as the process reaction degree defined by Eq. (2).

_ LT}
T E N2

Eq. (2) measures the number of jobs induced by the bogus event. 7} include
the number of malicious jobs and normal jobs while 7} includes only normal jobs.
T — T/ becomes the number of malicious operations because the normal jobs are
distributed both sections. In the case of a dialog spyware process, Ry will become
one and normal process. From this distinctiveness, HoneyID can determine the
threshold to distinguish between normal processes and spywares to be 0.5.

There is some possibility of errors in R; because a dialog spyware could use
delayed processing. This error can be reduced by obtaining the average value of Ry
after z times iterations of Ci. Therefore, HoneyID can detect the dialog spyware
process with less error by calculating the reaction degree(®) using Eq. (3).

R @)

672 Jeheon Han, Jonghoon Kwon, Heejo Lee

_ Sizo Rk

ReactionDegree(D)
z

3)

3 Evaluation

The HoneyID architecture is composed of three modules, the trap manager, the bo-
gus event generator and the spyware detector. The trap manager sets up traps in
the operating system and gathers the number of jobs of processes. The bogus event
generator generates bogus events in response to commands from the spyware detec-
tor. The spyware detector controls the other two modules and measures the process
condition used to distinguish between normal processes and spyware processes.

We developed two types of bogus events, the virtual keystroke event using the
SendInput API function and the virtual ftp login event modifying the ClnternetSes-
sion of MFC, respectively. The trap is implemented by means of the Win32 hook
and Paladin Hook technique [4], for monitoring at the kernel level.

Ftp bogus events Keystroke bogus events

—+— PMMODE L U S SO USRS S o
—— ActualSpy | | | | “ | [| “ |
6 F| o Acesniffer | !

[| | | ‘ | | | ‘ |

s |

sqof Jo soquinyg
5
B

. S [— |
SRS U SO T v l
5 l | {
T T A A R T A A A A T AR R AR AR AR IR AR
o LA SN

Fig. 3 The number of jobs of processes according to bogus events in a second

We collected three keyloggers and three ftp password stealers. Fig. 3 shows the
fluctuations in the number of jobs of three processes : the normal process(PMMODE),
the keylogger(ActualSpy) and the password stealer(AceSniffer). HoneyID generates
ftp connection bogus events for the initial 100 seconds, and then generates keystroke
events for the next 100 seconds. We can see that the PMMODE works irrespective
of the bogus events, whereas the AceSniffer and the ActualSpy only works when
relational bogus events are generated.

Table 1 show the results obtained from the experiment designed to detect key-
loggers and password stealers, respectively. HoneyID operated for 100 seconds and
was repeated five times. Bogus events for keyloggers are generated 10 times per sec-
ond. The three keyloggers were identified. Bogus events for the password stealer are
generated 3.6 times per second. Since an ftp connection event needs more resources,
we generate ftp connection events as often as possible. The password stealers were
also correctly identified.

When HoneyID was running, there were 36 processes. HoneyID found the three
keyloggers that were installed and there were no false positives. One of the Internet
messenger program is in close proximity to the threshold 0.5. This process may

HoneyID : Unveiling Hidden Spywares by Generating Bogus Events 673

Table 1 Password stealer detection (E=3.6 & N=100) and keylogger detection(E=10 & N=100).

Process R Rhb R3 Ry Rs @ — Process R Rb Rz R4 Rs @

Winsniffer 0.83 0.94 1 1 094 094 — Family r1r 1 1 1 1
Sniffpass 1 0.89 0.89 0.89 0.78 089 — ActualSpy 1 0971 1 1 099
AceSniffer 0.94 1 0.89 0.78 0.78 0.88 — BPK 1 1 1 1 1

make use of keystroke events to notify friends of the user’s status. When password
stealers were found, the alg process is identified as the password stealer with no
false negatives. However, the alg process is a core process for Windows. Since the
alg process monitors ftp packets, HoneyID identifies the alg process as a password
stealer. However these false positives can be solved by means of a white list filter.

4 Conclusion and Future Work

In this paper, we present a novel mechanism that detects spyware actively in a lo-
cal machine. It causes spywares to exhibit malicious behavior by generating bogus
events and it can detect dialog spyware processes by checking response to these bo-
gus events. This approach is a powerful method of detecting dialog spywares that
use the information of a user or PC. Future work will focus on extending our ap-
proach. We also plan to experiment on a large scale with a large number of spywares
and normal applications installed.

References

1. Borders, K., Zhao, X., Prakash, A.: Siren: Catching evasive malware (short paper). In: Proceed-
ings of IEEE Symposium on Security and Privacy (2006)

2. Chandrasekaran, M., Vidyaraman, S., Upadhyaya, S.: Spycon: Emulating user activities to de-
tect evasive spyware. In: Proceedings of IEEE Int’l Conf. on Performance, Computing and
Communications (IPCCC) (2007)

3. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior-based spyware detec-
tion. In: Proceedings of the 15th USENIX Security Symposium (2006)

4. pudn.com: HookAPI Source Code (2005). http://www.codeproject.com/system/Paladin.asp

5. Wang, Y.M., Roussev, R., Verbowski, C., Johnson, A., Wu, M.W., Huang, Y., Kuo, S.Y.: Gate-
keeper: Monitoring auto-start extensibility points (aseps) for spyware management. In: Pro-
ceedings of Usenix Large Installation System Administration Conference(LISA) (2004)

6. Webroot Software, Inc.: Spyware info and facts that all internet users must know (2006).
http://www.webroot.com/resources/spywareinfo

