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Abstract The hiding of sensitive knowledge, mined from transactional databases, is
one of the primary goals of privacy preserving data mining. The increased storage
capabilities of modern databases and the necessity for hiding solutions of superior
quality, paved the way for parallelization of the hiding process. In this paper, we in-
troduce a novel framework for decomposition and parallel solving of a category of
hiding algorithms, known as exact. Exact algorithms hide the sensitive knowledge
without any critical compromises, such as the blocking of non-sensitive patterns or
the appearance of infrequent itemsets, among the frequent ones, in the sanitized out-
come. The proposed framework substantially improves the size of the problems that
the exact algorithms can efficiently handle, by significantly reducing their runtime.
Furthermore, the generality of the framework makes it appropriate for any hiding
algorithm that leads to a constraint satisfaction problem involving linear constraints
of binary variables. Through experiments, we demonstrate the effectiveness of our
solution on handling a large variety of hiding problem instances.

Key words: Exact knowledge hiding, Parallelization, Constraints satisfaction prob-
lems, Binary integer programming.

1 Introduction

The hiding of sensitive knowledge has attracted increasing interest over the last
decade, particularly due to two main reasons: (i) the protection of the privacy of the
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individuals to whom this knowledge may refer, and (ii) the protection of business’
secrets that would allow business’ competitors to gain advantage over their peers.
A motivating example for the latter case involves the sharing of knowledge among
competing parties. Consider, for instance, a set of organizations that want to gain
knowledge by collectively mining their datasets, involving a set of similar activities
that they typically conduct. First, each organization mines its own data and identifies
a set of knowledge patterns, some of which are classified by the data owners as
sensitive, since they reveal business’ secrets. Thus, prior to sharing their data, the
data owners want to prohibit the leakage of the sensitive knowledge to the other
parties. To accomplish that, a knowledge hiding algorithm has to be employed.
There are several categories of hiding algorithms, depending on (i) the type of

data they operate on, (ii) the type of knowledge they hide, and (iii) the hiding pro-
cess they enforce. Frequent itemset hiding algorithms operate on transactional data,
where the sensitive knowledge is depicted in the form of frequent patterns that lead
to the production of sensitive association rules. The goal of these methodologies is
to create a new - hereon called sanitized - dataset which achieves, when mined for
frequent patterns using the same (or a higher) threshold of support, to identify all the
frequent patterns except from the sensitive ones. When this goal is accomplished,
the attained solution is exact. Two exact hiding algorithms have been proposed so
far [7,8]. In both algorithms, the hiding process constructs aConstraints Satisfaction
Problem (CSP) and solves it by using Binary Integer Programming (BIP). However,
due to the large number of constraints that are typically involved in the CSP, even
for medium size problems, these algorithms suffer from scalability issues.
In this work, we introduce a novel framework that is suitable for decomposition

and parallelization of the approaches in [7, 8], and can be applied to substantially
improve the scalability of both algorithms. The proposed framework aims at the
decomposition of the CSP that is produced by the hiding algorithm, into a set of
smaller CSPs that can be solved in parallel. First, the original CSP is structurally de-
composed into a set of independent CSPs, each of which is assigned to a processor.
Second, each independent CSP can be further decomposed into a set of dependent
CSPs. In each step of the framework, a function is applied to question the gain of
any further decomposition and allow the algorithm to take the appropriate action.
Furthermore, the solutions of the various CSPs, produced as part of the decompo-
sition process, can be appropriately combined to provide the solution of the initial
CSP (prior to the decomposition). The generality of the proposed framework allows
it to efficiently handle any CSP that consists of linear constraints involving binary
variables and whose objective is to maximize (or minimize) the summation of these
variables .
The rest of this paper is organized as follows. Section 2 provides the related

work. In Section 3 we set out the problem of exact knowledge hiding and provide
the necessary background for the understanding of the methodologies that are imple-
mented as part of the proposed framework. The decomposition and parallelization
framework is presented in Section 4. Finally, Section 5 contains the experimental
evaluation, while Section 6 concludes this paper.
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2 Related work

Clifton et al. [5, 6] are among the first to discuss the security and privacy implica-
tions of data mining and propose data obscuring strategies to prohibit inference and
discovery of sensitive knowledge. Since then, several heuristics have been proposed
for the hiding of frequent patterns and the related association rules [3, 10, 14, 15].
Menon et al. [13] present an integer programming approach for hiding sensi-

tive itemsets. Their algorithm treats the hiding process as a Constraints Satisfaction
Problem CSP and identifies the minimum number of transactions to be sanitized.
The problem size is reduced to constraints involving only the sensitive itemsets. Af-
ter solving the CSP, a heuristic is used to identify the transactions to be sanitized
and perform the sanitization.
Sun and Yu [16] introduce a border based approach for frequent itemset hiding.

The approach focuses on preserving the quality of the border constructed by the non-
sensitive frequent itemsets in the lattice of itemsets. The authors use the positive
border, after the removal of the sensitive itemsets, to keep track of the impact of
altering transactions in the database.
Gkoulalas - Divanis and Verykios [7, 8] introduce two non-heuristic algorithms

for frequent itemset hiding. Both approaches use border revision to identify the
candidate itemsets for sanitization. The hiding process is performed by formulating
a CSP based on the itemsets of the borders and by solving it through Binary Integer
Programming (BIP). The attained solution leads to an exact hiding of the sensitive
patterns, while a heuristic approach is used when the constructed CSP is infeasible.
In this paper, we propose a framework that is suitable for parallelization of the

exact approaches in [7, 8], as well as on any hiding algorithm that is based on the
construction of a CSP involving linear constraints of binary variables. Unlike dis-
tributed approaches [17], where the search for the CSP solution is conducted in
parallel by multiple agents, our approach takes into consideration the binary nature
of the CSPs to achieve a direct decomposition. Together with existing approaches
for parallel mining of association rules, as in [2,9,18], our framework can be applied
to parallelize the most time consuming steps of the exact hiding algorithms.

3 Notation and problem formulation

This section provides the necessary background regarding sensitive itemset hiding
and allows us to proceed to our problem’s formulation.
Let I= {i1, i2, . . . , iM} be a finite set of literals, called items, whereM denotes the

cardinality of the set. Any subset I ⊆ I is called an itemset over I. A transaction T
over I is a pair T = (tid, I), where I is the itemset and tid is a unique identifier, used
to distinguish among transactions that correspond to the same itemset. Furthermore,
a transaction database D over I is a N×M table consisting of N transactions over
I carrying different identifiers, where entry Tnm = 1 if and only if the m-th item ap-
pears in the n-th transaction. Otherwise, Tnm = 0. A transaction T = (tid,J) supports
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an itemset I over I, if I ⊆ J. Given a set of items S, let℘(S) denote the powerset of
S, which is the set of all subsets of S.
Given an itemset I over I inD , we denote by sup(I,D) the number of transactions

T ∈D that support I. Moreover, we define the frequency of an itemset I in a database
D , denoted as freq(I,D), to be the fraction of transactions in D that support I. An
itemset I is large or frequent in database D , if and only if, its frequency in D is at
least equal to a minimum threshold minf. Equivalently, I is large in D , if and only
if sup(I,D)≥msup, where msup=minf×N. All itemsets with frequency less than
minf are infrequent.
LetFD = {I⊆ I : freq(I,D)≥minf} be the frequent itemsets inD and P=℘(I)

be the set of all patterns in the lattice of D . The positive and the negative borders of
FD are defined as B+(FD ) = {I ∈FD | for all J ∈ P with I ⊂ J we have that J /∈
FD} andB−(FD ) = {I ∈ P−FD | for all J ⊂ I we have that J ∈FD}.
Based on the notation presented above, we proceed to the problem statement for

the exact hiding algorithms. In what follows, we assume that we are provided with
a database DO , consisting of N transactions, and a threshold minf set by the owner
of the data. After performing frequent itemset mining in DO with minf, we yield a
set of frequent patterns, denoted asFDO

, among which a subset S contains patterns
which are considered to be sensitive from the owner’s perspective.

maximize
(

∑unm∈U unm
)

subject to

{

∑Tn∈D{X} ∏Im∈X unm < sup(I,D),∀X ∈ S
∑Tn∈D{R} ∏Im∈R unm ≥ sup(I,D),∀R ∈ V

Fig. 1 The Constraints Satisfaction Problem for the inline approach of [7].

Given the set of sensitive itemsets S, we define the set Smin = {I ∈ S| for all J ⊂
I, J /∈ S} that contains all the minimal sensitive itemsets from S, and the set
Smax = {I ∈FDO

|∃J ∈ Smin,J ⊆ I} that contains all the itemsets of Smin along with
their frequent supersets. The goal of an exact hiding algorithm is to construct a
new, sanitized database D , which achieves to protect the sensitive itemsets from
disclosure, while leaving intact the non-sensitive itemsets existing in FDO

. Thus,
when the sanitized dataset D is mined, the frequent patterns that are discovered
are exactly those in F ′

D
= FDO

− Smax. This set is called ideal, as it pertains to
an optimal hiding solution. When constructed, database D can be safely released
since it protects sensitive knowledge. In the case of the inline approach, an ex-
act solution is attained when the status (frequent vs infrequent) of the itemsets in
C = {I ∈B+(F ′

D
) : I ∩ IS ̸= ∅}∪S is properly controlled. This, is achieved by

solving the CSP of Fig. 1, where V= {I ∈B+(F ′
D

) : I∩ IS ̸= ∅}, D{I} denotes the
set of supporting transactions for an itemset I and unm corresponds to the m-th item
of the n-th transaction, while in the sanitization process.
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4 A parallelization framework for exact knowledge hiding

Performing knowledge hiding by using the inline or the hybrid approach allows for
the identification of exact solutions, whenever such solutions exist. However, the
cost of identifying an exact solution is high due to the solving of the involved CSPs.
In this section, we propose a framework for decomposition and parallel solving

that can be applied as part of the sanitization process of exact hiding algorithms. Our
proposed framework operates in three phases, namely (i) the structural decomposi-
tion phase, (ii) the decomposition of large individual components phase, and (iii) the
parallel solving of the produced CSPs. In what follows, we present the details that
involve each phase of the framework.

4.1 Structural decomposition of the original CSP

The number of constraints in a CSP can be very large depending on the database
properties, the minimum support threshold used, and the number of sensitive item-
sets. Moreover, the fact that various initial constraints may incorporate products of
unm variables, thus have a need to be replaced by numerous linear inequalities (using
the CDR approach of [7]), makes the whole BIP problem tougher to solve. There
is, however, a nice property in the CSPs that we can use to our benefit. That is,
decomposition.
Based on the divide and conquer paradigm, a decomposition approach allows us

to divide a large problem into numerous smaller ones, solve these new subproblems
independently, and combine the partial solutions to attain the exact same overall so-
lution. The property of the CSPs which allows us to consider such a strategy lies
behind the optimization criterion that is used. Indeed, one can easily notice that the
criterion of maximizing (equiv. minimizing) the summation of the binary unm vari-
ables is satisfied when as many unm variables as possible are set to one (equiv. zero).
This, can be established independently, provided that the constraints that partici-
pate in the CSP allow for an appropriate decomposition. The approach we follow
for the initial decomposition of the CSP is similar to the decomposition structure
identification algorithm presented in [13], although applied in a “constraints” rather
than a “transactions” level. As demonstrated on Fig. 2, the output of structural de-
composition, when applied on the original CSP, is a set of smaller CSPs that can
be solved independently. An example will allow us to better demonstrate how this
process works.
Consider database DO of Fig. 3(a). Performing frequent itemset mining in DO

using frequency threshold minf = 0.3, we compute the following set of large item-
sets:FDO

= {A,B,C,D,AB,CD}. Suppose that we want to hide the sensitive item-
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CSP

U1...U1000

CSP

U1...U100

CSP

U101...U500

CSP

U501...U700

CSP

U950...U1000...

Independent components

Original CSP

Fig. 2 Decomposing large CSPs to numerous independent components.

A B C D
1 1 0 0
1 1 0 0
1 0 0 0
1 1 0 0
0 1 0 1
1 0 1 1
0 0 1 1
0 0 1 1
1 0 0 0
0 0 0 1
(a) Original database DO .

A B C D
1 u12 0 0
1 u22 0 0
1 0 0 0
1 u42 0 0
0 u52 0 1
1 0 u63 u64
0 0 u73 u74
0 0 u83 u84
1 0 0 0
0 0 0 1
(b) Intermediate form of DO .

Fig. 3 The original and the intermediate form of database DO used in the example.

sets in S = {B,CD} using, for instance, the inline approach 1. Then, we have that:
Smax = {B,AB,CD},B+(F ′

D
) = {A,C,D}, and V= {C,D}⊂B+(F ′

D
).

The intermediate form of this CSP is shown in Fig. 3(b) and its CSP formulation
in Fig. 4 (left). Table 1 presents the various constraints cr along with the variables
that they control. As we can observe, we can cluster the various constraints into dis-
joint sets based on the variables that they involve. In our example, we can identify
two such clusters of constraints, namelyM1 = {c1}, andM2 = {c2,c3,c4}. Notice
that none of the variables in each cluster of constraints is contained in any other clus-
ter. Thus, instead of solving the entire problem, we can solve the two sub-problems
shown in Fig. 4 (right), yielding, when combined, the same solution as the one of the
initial CSP: u12 = u22 = u42 = u63 = u64 = u73 = u74 = u83 = 1 and u52 = u84 = 0.

1 We need to mention that it is of no importance which methodology will be used to produce
the CSP, apart from the obvious fact that some methodologies may produce CSPs that are better
decomposable than those constructed by other approaches. However, the structure of the CSP also
depends on the problem instance and thus it is difficult to know in advance which algorithm is
bound to produce a better decomposable CSP.
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maximize ( u12+u22+u42+u52+u63+

u64+u73+u74+u83+u84)

subject to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u12+u22+u42+u52 < 3
u63u64+u73u74+u83u84 < 3
u63+u73+u83 ≥ 3
u64+u74+u84 ≥ 1

maximize(u12+u22+u42+u52)

subject to u12+u22+u42+u52 < 3
and

maximize(u63+u64+u73+u74+u83+u84)

subject to

⎧

⎨

⎩

u63u64+u73u74+u83u84 < 3
u63+u73+u83 ≥ 3
u64+u74+u84 ≥ 1

Fig. 4 The original CSP (left) and its structural decomposition (right).

Table 1 The constraints matrix for the produced CSP.
c1 c2 c3 c4

u12 X
u22 X
u42 X
u52 X
u63 X X
u64 X X
u73 X X
u74 X X
u83 X X
u84 X X

4.2 Decomposition of large independent components

The structural decomposition of the original CSP allows one to divide the origi-
nal large problem into a number of smaller subproblems which can be solved in-
dependently, thus highly reduce the runtime needed to attain the overall solution.
However, as it can be noticed, both (i) the number of subproblems, and (ii) the size
of each subproblem, are totally dependent on the underlying CSP and the struc-
ture of the constraints matrix. This fact means that there exist problem instances
which are not decomposable and other instances which experience a notable imbal-
ance in the size of the produced components. Thus, in what follows, we present two
methodologies which allow us to decompose large individual components that are
non-separable through the structural decomposition approach. In both schemes, our
goal is to minimize the number of variables that are shared among the newly pro-
duced components, which are now dependent. What allows us to proceed in such a
decomposition is the binary nature of the variables involved in the CSPs, a fact that
we can use to our benefit to minimize the different problem instances that need to
be solved to produce the overall solution of the initial problem.
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Fig. 5 An example of decomposition using articulation points.

4.2.1 Decomposition using articulation points

To further decompose an independent component we need to identify the least
amount of unm variables which, when discarded from the various inequalities of this
CSP, produce a CSP that is structurally decomposable. To find these unms we pro-
ceed as follows. First, we create an undirected graph G (V,E) in which each vertex
v∈V corresponds to a unm variable, and each edge e∈ E connects vertexes that par-
ticipate in the same constraint. Graph G can be built in linear time and provides us
with an easy way to model the network of constraints and involved variables in our
input CSP. Since we assume that our input CSP is not structurally decomposable,
graph G will be connected.
After creating the constraints graph G , we identify all its articulation points

(a.k.a. cut-vertexes). The rationale here is that removal of a cut-vertex will discon-
nect graph G and the best cut-vertex unm will be the one that leads to the largest
number of connected components in G . Each of these components will then itself
constitute a new subproblem to be solved independently from the others. To identify
the best articulation point we proceed as follows. As is already known, a fast way to
compute the articulation points of a graph is to traverse it by using DFS. By adding
a counter to a table of vertexes each time we visit a node, we can easily keep track
of the number of components that were identified so far. In the end of the algorithm,
along with the identified articulation points we can have knowledge of the number
of components that each of these articulation points decomposes the initial graph.
This operation can proceed in linear time O(V +E).
After identifying the best articulation point, our next step is to remove the corre-

sponding unm variable from graph G . Then, each component of the resulting graph
corresponds to a new subproblem (i.e. a new CSP) that can be derived in linear time
and be solved independently. To provide the same solution as the original CSP, the
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solutions of the various created subproblems need to be cross-examined, a procedure
that is further explained in Section 4.3.
A final step to be addressed involves the situation in which no single cut-vertex

can be identified in the graph. If such a case appears, we choose to proceed heuris-
tically in order to experience low runtime of the algorithm. Our empirical approach
is based on the premises that nodes having high degrees in graph G are more likely
than others to correspond to cut-vertexes. For this reason, we choose to compute
the degree of each vertex u ∈ V in graph G (V,E) and identify the one having the
maximum degree. Let v = maxu∈V (degree(u)) be the vertex whose degree is the
maximum among all other vertexes in the graph. Then, among all neighbors of v we
identify the one having the maximum degree and proceed to remove both vertexes
from the graph. As a final step we use DFS to traverse the resultant graph to ex-
amine if it is disconnected. The runtime of this approach is linear in the number of
vertexes and edges of graph G . If the resultant graph remains connected, we choose
to leave the original CSP as-is and make no further attempt to decompose it. Figure
5 demonstrates an example of decomposition using articulation points. In this graph,
we denote as “cut-vertex”, the vertex which, when removed, leads to a disconnected
graph having the maximum number of connected components (here 3).

4.2.2 Decomposition using weighted graph partitioning

One of the primary disadvantages of decomposition using articulation points is the
fact that we have limited control over (i) the number of components in which our
initial CSP will eventually split, and (ii) the size of each of these components. This
fact may lead to low CPUs utilization in a parallel solving environment. For this rea-
son, we present an alternative decomposition strategy which can break the original
problem into as many subproblems as we can concurrently solve, based on our un-
derlying system architecture. The problem formulation is once more tightly related
to the graph modeling paradigm but instead of using articulation points, we rely on
graph partitioning algorithms to provide us with the optimal split.
By assigning each unm variable of the initial CSP to a vertex in our undirected

graph, and each constraint c to a number of edges ec formulating a clique in the
graph (while denoting the dependence of the unm variables involved), we proceed to
construct a weighted version of the graph G presented in the previous section. This
weighted graph, hereon denoted as GW , has two types of weights: one associated
with each vertex u ∈ VW , and one associated with each edge e ∈ EW . The weight
of each vertex corresponds to the number of constraints in which it participates
in the CSP formulation. On the other hand, the weight of each edge in the graph
denotes the number of constraints in which the two vertexes (it connects) appear
together. Using a weighted graph partitioning algorithm, such as the one provided
by METIS [11], one can decompose the graph into as many parts as the number
of available processors that can be used to concurrently solve them. The rationale
behind the applied weighted scheme is to ensure that the connectivity between ver-
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Fig. 6 An example of a three-way decomposition using weighted graph partitioning.

texes belonging in different parts is minimal. Figure 6 demonstrates a three-way
decomposition of the original CSP, using weighted graph partitioning.

4.3 Parallel solving of the produced CSPs

Breaking a dependent CSP into a number of components (using one of the strategies
mentioned earlier) is a procedure that should incur only if the CSP is large enough to
worth the cost of decomposition. For this reason, it is necessary to define a function
FS to calculate the size of a CSP and a threshold, above which the CSP should be
decomposed. We choose function FS to be a weighted sum of the number of binary
variables involved in the CSP and the associated constraints C. The weights are
problem-dependent. Thus, FS = w1× |unm|+w2× |C|.
Our problem solving strategy proceeds as follows. First, we apply structural de-

composition on the original CSP and we distribute each component to an available
processor. These components can be solved independently of each other. The final
solution (i.e. the value of the objective for the original CSP) will equal the sum of
the values of the individual objectives; thus, the master node that holds the original
CSP should wait to accumulate the solutions returned by the servicing nodes.
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Each servicing node applies the function FS to its assigned CSP and decides
whether to further decompose it. To decompose the CSP, it uses one of schemes
presented earlier and then assigns each of the newly created CSPs to an available
processor. A mechanism that keeps track of the jobs distribution to processors and
their status (i.e. idle vs occupied) is essential to allow for the best possible CPUs
utilization. The same process continues until all CSPs are below the size threshold
and therefore do not need further decomposition.
The handling of dependent CSPs by the servicing nodes, is complex. Let border

unm be a variable that appears in two or more dependent CSPs. This means that
this variable was either the best articulation point selected by the first strategy, or a
vertex that was at the boundary of two different components, identified by using the
graph partitioning algorithm. Border variables need to be checked for all possible
values they can attain in order to provide us with the exact same solution as the
one of solving the independent CSP. Suppose that p such variables exist. Then, we
have 2p possible value assignments. For each possible assignment, we solve the
corresponding CSPs. In the objective functions of these CSPs, apart from the unm
variables for the non-border cases, we include the values of the currently tested
assignment for the p variables. After solving the CSPs for each assignment, we sum
up the resulting objective values. The final solution will correspond to the maximum
value among the different summations produced by the possible assignments2.
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C1

C2

C3

Solving the 3 CSPs for h = 0 Solving the 3 CSPs for h = 1

Objective = max (O1, O2)

O1 O2

Fig. 7 An example of parallel solving after the application of a decomposition technique.

To make matters clearer, assume that an independent CSP is decomposed into
two dependent CSPs,CA andCB, based on two border variables: u1 and u2. Since all
possible assignments of u1, u2 should be tested, we have four different instances,
namely: C00,C01,C10,C11. Cxy indicates the problem instance where u1 = x and
u2 = y; the rest variables’ assignments remain unknown. Given two processors, the

2 The proof of this statement was skipped due to the size limitations of the paper.
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first solves the four instances for CA, whereas the second one solves them for CB.
Suppose that the objective values forCA,00 andCB,00 are found. The objective value
for C00 will then be the summation of these two objectives. To calculate the overall
objective value and identify the solution of the initial CSP, we need to identify the
maximum among the objective values of all problem instances. An example of par-
allel solving, after the application of decomposition, is depicted in Fig. 7. As one
can notice, the solution of the initial CSP is provided by examining, for all involved
CSPs, the two potential values of the selected cut-vertex h (i.e. solving each CSP
for h = 0 and h = 1). The overall objective is the maximum of the two objectives,
an argument that is justified by the binary nature of variable h.

5 Computational experiments and results

In this section, we provide the results of a set of experiments that we conducted
to test our proposed framework. In what follows, we present the datasets we used
and the different parameters involved in the testing process (such as the minimum
support threshold and the number/size of the sensitive itemsets to hide), and we
provide experimental results involving the structural decomposition process, where
we demonstrate the major gain in the runtime of the hiding algorithm.
To test our framework, we encompassed the inline approach to hide knowledge

in three real datasets. All these datasets are publicly available through the FIMI
repository3. Datasets BMS-WebView-1 and BMS-WebView-2 both contain click
stream data from the Blue Martini Software, Inc. and were used for the KDD Cup
2000 [12]. The mushroom dataset was prepared by Roberto Bayardo (University of
California, Irvine) [4]. These datasets demonstrate varying characteristics in terms
of the number of transactions and items and the average transaction lengths. Table
2 summarizes them.

Table 2 The characteristics of the three real datasets.
Dataset N M Avg tlen msup
BMS-1 59,602 497 2.50 30-70
BMS-2 77,512 3,340 5.60 2-10
Mushroom 8,124 119 23.00 10-50

In all tested settings, the thresholds of minimum support were properly selected
to ensure an adequate amount of frequent itemsets and the sensitive itemsets to be
hidden were selected randomly among the frequent ones. We conducted several ex-
periments trying to hide sensitive 2-itemsets, 3-itemsets, and 4-itemsets. Our source
code was implemented in Perl and C and we conducted all our experiments on a
PC running Linux on an Intel Pentium D, 3.2 Ghz processor equipped with 4 GB of
main memory. All integer programs were solved using ILOG CPLEX 9.0 [1].
3 Available at: http://fimi.cs.helsinki.fi/.
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Fig. 8 Performance gain through parallel solving, when omitting the V part of the CSP.

CPLEX provides us the option of pre-solving the binary integer program, a very
useful feature that allows the reduction of the BIP’s size, the improvement of its
numeric properties (for example, by removing some inactive constraints or by fixing
some non-basic variables), and also enables us to early detect infeasibility in the
BIP’s solution. We used these beneficial properties of pre-solving to allow for early
actions when solving the CSPs.
To conduct the experiments, we assume that we have all the necessary resources

to proceed to a full-scale parallelization of the initial CSP. This means that if our
original CSP can potentially break into P independent parts, then we assume the
existence of P available processors that can run independently, each one solving
one resultant CSP. Thus, the overall runtime of the hiding algorithm will equal the
summation of (i) the runtime of the serial algorithm that produced the original CSP,
(ii) the runtime of the Structure Identification Algorithm (SIA) that decomposed
the original CSP into numerous independent parts, (iii) the time that is needed to
communicate each of the resulting CSPs to an available processor, (iv) the time
needed to solve the largest of these CSPs, (v) the communication time needed to
return the attained solutions to the original processor (hereon called “master”) that
held the whole problem, and finally (vi) the time needed by the master processor
to calculate the summation of the objective values returned in order to compute the
overall solution of the problem. That is:

Toverall = THA+TSIA+Tspread+Tsolve+Tgather+Taggregate

In the following experiments, we capture the runtime of (ii) and (iv), namely
TSIA and Tsolve, since we consider both the communication overhead (Tspread+

Tgather) and the overall solution calculation overhead (Taggregate) to be negligible
when compared to these run times. Moreover, the runtime of (i) does not change in
the case of parallelization and therefore its measurement in these experiments is of
no importance. To allow us compute the benefit of parallelization, we include in the
results the runtime Tserial of solving the entire CSP without prior decomposition.
In our first set of experiments (presented in Fig. 8), we ensure the breaking of the

original CSP into a controllable number of components by excluding all the con-
straints involving itemsets from set V (see Fig. 1). Thus, to break the original CSP
into P parts, one needs to identify P mutually exclusive (in the universe of items)
itemsets to hide. However, based on the number of supporting transactions for each
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Fig. 9 Performance gain through parallel solving of the entire CSP.

of these itemsets in DO , the size of each produced component may vary signifi-
cantly. As one can observe in Fig. 8, the time that was needed for the execution of
the SIA algorithm and the identification of the independent components is low when
compared to the time needed for solving the largest of the resulting CPSs. More-
over, by comparing the time needed for the serial and the one needed for the parallel
solving of the CSP, one can notice how beneficial is the decomposition strategy in
reducing the runtime that is required by the hiding algorithm. For example, in the
2× 2 hiding scenario for BMS-1, serial solving of the CSP requires 218 seconds,
while parallel solving requires 165 seconds. This means that by solving the CSP in
parallel using two processors, we reduce the solution time by 53 seconds.
In our second set of experiments, shown in Fig. 9, we included the V part of the

CSP, produced by the inline algorithm. As one can observe, there are certain situa-
tions in which the original CSP cannot be decomposed (Tsolve = 0). In such cases,
one has to apply either the decomposition approach using articulation points or the
weighed graph partitioning algorithm, in order to parallelize the hiding process.

6 Conclusions

In this paper, we introduced a framework for decomposition and parallel solving
that is suitable for exact knowledge hiding. The proposed framework uses structural
decomposition to partition the original CSP into independent components. Then, it
offers two novel approaches for further breaking of these components into a set of
dependent CSPs. By exploiting the features of the objective function, we provided
a way of joining the partial solutions of the CSPs and deriving the overall hiding
solution. Finally, through experimental evaluation on three real datasets, we demon-
strated the benefit of decomposition towards speeding up the hiding process.
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