Robbing Banks with Their Own Software —an
Exploit Against Norwegian Online Banks*

Yngve Espelid, Lars—Helge Netland, André N. Klingsheim, and Kjell J. Hole

Abstract The banking industry in Norway has developed a new security infrastruc-
ture for conducting commerce on the Internet. The initiative, called BankID, aims
to become a national ID infrastructure supporting services such as authentication
and digital signatures for the entire Norwegian population. This paper describes a
man-in-the-middle vulnerability in online banking applications using BankID. An
exploit has been implemented and successfully run against two randomly chosen
online banking systems to demonstrate the seriousness of the attack.

Key words: Public-key infrastructure, man-in-the-middle attack, online banking

1 Introduction

The Norwegian banking community has created a new infrastructure for secure e-
commerce, called BankID.! As of October 2007, BankID had more than 700,000
users. This number is expected to approach 2.5 million come 2009. At the time of
writing, the infrastructure is mainly used for authentication of Internet banking cus-
tomers, but BankID is extending into other markets, such as the government sector
and e-commerce in general. It has also been used in conjunction with e-voting in
some companies. BankID won a European prize, namely the eema Award for Ex-

Y. Espelid, L-H. Netland, A. N. Klingsheim, and K. J. Hole
NoWires Research Group

Department of Informatics

University of Bergen, Norway

e-mail: {yngvee, larshn,klings,kjellh}@ii.uib.no

* A short version of our work was presented at the conference Financial Cryptography and Data
Security 2008 (FC *08) [10].

! Not to be confused with the Swedish BankID initiative.

63

64 Yngve Espelid et al.

cellence in Secure Electronic Business in 2006. Within a few years, the Norwegian
banking industry wants BankID to become a nationwide identity system.

No detailed technical information about BankID has been released to the general
public. Our request to see in-depth descriptions of the architecture and design was
met with a non-disclosure signature prerequisite. Moreover, no publicly available
independent third party evaluation of the system confirms that BankID meets a min-
imum of security and privacy requirements. This is worrisome due to a number of
reasons: Firstly, a report by the US National Research Council [20] states that public
review is essential when developing a nationwide identity system. The social costs
of a poorly thought-out system are simply too high to justify.

Secondly, unlike in the US, liability has historically been assigned to the cus-
tomer in disputes with Norwegian banks. In a previously analyzed court case [16],
two expert witnesses turned the ruling in favor of a bank by claiming that the bank-
ing systems were very secure. No technical documentation was provided to support
this claim.

Thirdly, the banking industry both owns the BankID infrastructure and provides
financial services on top of the framework. It is not clear how potential conflicts of
interest, involving the bank as a service provider and operator, will be resolved. Un-
contested, the combination of no trusted third party and a security-through-secrecy
policy could undermine the legal protection of Norwegian bank customers.

Finally, BankID relies on two-factor authentication with One-Time Passwords
(OTPs), similar to earlier online banking systems. In 2005, Schneier warned that this
form of authentication failed to address recent security challenges, such as phishing,
identity theft, and fradulent transactions [23].

A previous paper [18] describes a risk analysis of the BankID infrastructure. In
that study, the authors give an overview of the architecture and design of BankID,
and pinpoint several weaknesses. Our work was done in parallel with the mentioned
evaluation, and examines the therein suggested Man-in-the-Middle (MitM) attack
in detail. A short paper on our work was presented at Financial Cryptography and
Data Security 2008 [10].

The remainder of this paper is organized as follows: Section 2 provides a short
overview of BankID; Section 3 looks at BankID from an adversary’s point of view;
Section 4 describes a MitM vulnerability in BankID that has been turned into an
exploit; Section 5 explains how to make the attack more effective by capitalizing
on a bank customer’s trust in BankID; Section 6 describes our disclosure process;
Section 7 suggests improvements to BankID; Section 8 presents related work; while
Sect. 9 concludes the paper.

1.1 Definitions

Individual authentication, referred to as authentication for simplicity, is the process
of establishing an understood level of confidence that an individual is who he or
she claims to be [21]. If the level of confidence is high, the authentication is said

Robbing Banks with Their Own Software 65

to be strong. Authorization is the process of deciding what an individual ought to
be allowed to do. A vulnerability is a weakness that violates the security goals of
an information system. An exploit is a practical attack—in the form of detailed
instructions or program code—utilizing a vulnerability. The attack must have been
implemented and successfully run to constitute an exploit.

2 BankID Overview

BankID is modeled after an X.509 Public-Key Infrastructure (PKI), where the banks
themselves own and operate the central infrastructure. PKIs have been studied ex-
tensively by the computer security community. In addition, many vendors provide
PKI solutions in the commercial marketplace. Hence, there is a strong theoretical
foundation for important PKI principles as well as extensive practical experience
gained from implementing and running PKIs. A good introduction to PKIs can be
found in [1].

Infrastructure Customer N Merchant
Storage of customers' Birth number Locally stored keys
keys and certificates and certificate
OTP generator
OTP validation service BankID server
Signing service Fixed password
Verification service <
C
b €

Fig. 1 Entities in BankID

Useful insights into BankID can be obtained from a white paper released by
the BankID project [25], and by enrolling as a customer of the PKI. The system
is built around three general entities: a central infrastructure, customers, and on-
line merchants. The individual parties, their credentials, and duties are summarized
in Fig. 1. An Internet bank is one example of a BankID merchant. In one of the
participating banks, new customers sign up for BankID on the Web. Shortly after
becoming a member, the customer receives an OTP generator and a fixed password
by unregistered mail. When logging into the bank with BankID, customers use their
Norwegian birth number? for identification, and an OTP in combination with the
fixed password for authentication. People who sign up with more than one bank can
choose freely among their OTP tools when using BankID. The PKI functionality
provided by BankID is transparent to customers, as their private-public key pairs

2 Norwegian birth numbers uniquely identify Norwegian citizens. These are similar to the US
Social Security numbers.

66 Yngve Espelid et al.

are stored and controlled by the infrastructure. PKI services, such as creating and
verifying digital signatures, are performed centrally on behalf of the users. Mer-
chants store and control their own cryptographic keys and rely on server software
distributed by the BankID project.

Customer

Two-factor authentication
procedure

Challenge-response
protocol

[Merchant] [Infrastructure]

Fig. 2 BankID authentication procedure from the customer’s point of view

The BankID design differs from a typical X.509 PKI, which requires private keys
to be solely available to the entity identified in the matching public-key certificate
[1]. Compared to textbook PKIs, BankID offers lower operational costs as the ser-
vice providers don’t have to roll out and maintain relatively expensive cryptographic
hardware, but the design makes it harder to argue convincingly that a given private
key can only be accessed by its rightful owner. The decision to store the customers’
private and public keys on the infrastructure also results in an untraditional authen-
tication protocol, that appears to be a hybrid of previous Internet banking schemes
in Norway and X.509 PKI based authentication. Prior to BankID, authentication
typically involved bank clients presenting the three customer credentials given in
Fig. 1 to the banking system. The new design, depicted in Fig. 2, involves a longer
protocol:

o The customer presents her birth number, OTP, and fixed password to the central
infrastructure. This action unlocks PKI functionality on the infrastructure.

e The customer engages in a challenge-response protocol with the merchant. The
infrastructure handles all PKI operations on behalf of the user.

A closer look at BankID’s architecture and design can be found in [18].

2.1 The BankID Applet

A Java applet [24] is central in the authentication procedure depicted in Fig. 2. The
applet is readily available from the central infrastructure.

The following scenario describes a typical BankID session involving bill pay-
ment for Internet banking customers. First, the client visits her bank’s log-in page,
which instructs her browser to download the applet from the central infrastructure.

Robbing Banks with Their Own Software 67

The applet initiates the previously described authentication procedure. Upon suc-
cessful authentication, an HTTPS session loads in the customer’s browser. Now, the
client can fill out payment details. Upon submitting the bill, the applet is reinitial-
ized in the customer’s browser, prompting her for credentials to sign the transaction.
After submitting a fresh OTP and the private-key password, the transaction is pro-
cessed. Next, the customer can continue the HTTPS session or terminate the bank
session by logging out.

3 An Adverserial View into BankID

Attackers use a variety of tactics to break the security of software systems. A com-
mon strategy is to start by gathering information about the target. A detailed profile
on an application allows attackers to apply their resources in the potentially most
rewarding places. Upon mapping out the target, adversaries are wise to consider
common vulnerabilities, as studies show that systems often fail for the same rea-
sons. Common techniques used by attackers have been documented at length by the
software security community, e.g. [4, 15, 19].

In terms of BankID, an interesting observation is the centralized key storage
that contradicts advice given in the security literature. The resulting authentication
protocol should draw the attention of attackers, because the development of new
secure cryptographic protocols is a difficult undertaking. So much so that security
experts strongly discourage the practice of “rolling your own” cryptography [26].

3.1 Reverse Engineering the Authentication Protocol

An inspection of merchant web pages reveals that the BankID applet is initialized by
HTML parameters. One parameter specifies the address to the infrastructure server
running the two-factor authentication procedure. Another parameter controls the
location of the merchant server carrying out the challenge-response protocol. Con-
sequently, all merchants can use the same applet by configuring these initialization
parameters.

The applet initialization parameters can be altered so that the applet communi-
cates with BankID software through a proxy controlled by an attacker. This allows
adversaries to produce a blueprint of the BankID authentication procedure.

A walk-through of the customer authentication is provided by Fig. 3. The bro-
ken vertical lines represent the three main entities’ lifelines. When entities interact,
activation bars overlay their lifelines. The customer’s activation bar represents the
browser running on her computer. The grey and partially overlapping activation bar
symbolizes the applet running in her browser.

Steps 1 through 4 in the figure show how merchants bootstrap the authentica-
tion process. The customer downloads an HTML page from the merchant, which

68 Yngve Espelid et al.

Merchant Infrastructure

== 1: Visit merchant log-in page |

1
1
1
2: HTML code containing applet tag '
i
1

3: Retrieve BankID applet

4: Signed applet
. “Sgnedapplet

5: Applet initialization

&

6: Customer challenge

7: Signed customer challenge,
merchant challenge, and merchant name

é _____________________________________
8: Customer birth number |
h -
Il Ll gl
9: List of customer bank affiliations !
i B mmm -
. ot 4 | 1
BankiD 10: Selected bank affiliation and one-time password ! . H
session 11: Customer name and last time used i
B lmmmmmmmmm oo
12: Fixed password, signed customer challenge, i i
merchant challenge, and merchant name i |
| - .
X >
13: Signed merchant challenge | D
_____________________________________ | E R
i
1

14: Signed merchant challenge
15:?
16: Merchant URL < >

17: Forward browser to merchant URL

1

1

1

1

:

1

18: Visit merchant URL '
1

19: Customer account page E
5y iy J !
1

1

1

HTTPS ———> ——— HTTPS + ENC — b

<------- HTTPS ------ <<~ HTTPS+ENC ----

Fig.3 Authentication process

instructs the customer’s browser to retrieve the signed applet from the central infras-
tructure. These interactions run over HTTPS. The browser automatically verifies the
applet signature, and prompts the user to trust the applet.

On customer acceptance, the applet is initialized in step 5. The applet is the
catalyst for the authentication protocol and manages the BankID session, depicted
as steps 6 through 16. Two stages, numbered in accordance with Fig. 3, initiate the
challenge-response protocol:

Robbing Banks with Their Own Software 69

6. The applet generates and sends a challenge to the merchant.
7. The merchant signs the customer challenge and generates a challenge to the cus-
tomer. These challenges, along with the merchant name, are sent to the customer.

Steps 8 through 13 make up the two-factor authentication procedure necessary
to unlock the customer’s PKI credentials on the central infrastructure and sign the
challenge. This communication has an additional layer of encryption, denoted ENC
in Fig. 3, which denies the proxy the possibility to determine the content of that
part of the protocol. Hence, the following dialogue is partially guesswork based on
observations of network activity and the applet’s response to customer input:

8. The customer inputs her birth number for identification.
9. The infrastructure returns a list of her BankID affiliations.
10. The customer chooses a bank and enters an OTP.
11. On valid OTP, the infrastructure returns the customer’s name and the time when
BankID was last used.
12. The signed customer challenge, the merchant challenge to sign, the name of the
merchant, and the fixed customer password, are sent to the infrastructure.
13. The infrastructure verifies the merchant signature and uses the customer’s private
key to sign the merchant challenge, which it returns to the customer.

This concludes our guesswork. The applet now completes the challenge-response
protocol with the merchant:

14. The signed merchant challenge is returned to the merchant.

15. We assume that the merchant and the infrastructure communicate to determine
the customer’s identity and verify the signature.

16. If the challenge-response protocol is successful, the merchant sends a URL to the
customer.

Step 16 completes the authentication protocol, and the customer continues an
HTTPS session with the merchant as illustrated by steps 17 through 19.

3.2 Reverse Code Engineering

Java byte code is easily reverse engineered and can reveal a program’s inner work-
ings to an attacker. When reverse engineering the BankID applet, we found the
additional layer of encryption in steps 8—13 in Fig. 3 intriguing and made some in-
teresting observations. As it turns out, three public keys belonging to the infrastruc-
ture are hardcoded in the applet. These are linked to different infrastructure services,
namely OTP validation, signing, and verification.

In a customer request to the infrastructure, the applet generates a symmetric key
used to encrypt the query. This key is encrypted with the service’s public key and
appended to the request. Using its private key, the service can decrypt the symmetric

70 Yngve Espelid et al.

L Customer

i i

I

! HTTP(S) !

:' HTTP(S) +ENC E

: y |

[} W I

Challenge- ! MitM proxy ! Two-factor

response ! ! authentication
protocol 1 procedure

I I

! HTTPS !

I HTTPS + !

' ENC I

} I

L ' i

[Merchant][Infrastructure }

Fig. 4 The MitM proxy in the authentication protocol

key, and in turn decrypt the query. The same symmetric key is used to encrypt the
response to the customer. A new key is created for each request.

Another observation from the code study is the use of the core Java class
SecureRandom. This class provides a pseudo-random number generator. A study
of the code segment generating symmetric encryption keys revealed a possible vul-
nerability. The running Java version affects whether the SecureRandom instance
seeds itself or by an algorithm in the applet. Given Java version prior to 1.4, current
time, amount of free memory, and loop counters are used to compute the seed. A
cryptanalysis can determine the strength of both the seeding technique and the en-
cryption algorithm. However, we chose to focus on session management issues in
BankID.

4 An Exploit Against BankID

As mentioned in Sect. 3, by changing two initialization parameters, the applet will-
ingly communicates —over either HTTP or HTTPS — with the MitM proxy depicted
in Fig. 4. The proxy learns the communication between the applet and the merchant,
which is sufficient to obtain an authorized session to the merchant. The attack is car-
ried out through the following steps:

1. Trick the user into initializing the applet with malicious parameters.
2. Start the HTTPS session between the MitM proxy and the merchant to obtain a
session ID (this identifier is not shown in Fig. 3.)

Robbing Banks with Their Own Software 71

3. Relay the BankID session until the authentication completes.
4. Seize the HTTPS session to the merchant after the authentication is completed
(step 16, Fig. 3.)

The attack can be explained in terms of session management. Conceptually, two
sessions exist; a regular HTTPS session between the customer and the merchant, and
the BankID session involving the infrastructure, the merchant, and the customer, as
shown in Fig. 3. A discrepancy between these sessions enables the MitM attack.
First, only the merchant server is authenticated in the HTTPS session, enabling the
MitM proxy to initiate a session on behalf of the customer. Then the customer and
the merchant are mutually authenticated through the BankID session, which is sim-
ply relayed by the MitM proxy. Finally, the authorization granted to the customer
in the BankID session is transferred to the HTTPS session controlled by the MitM
proxy, and the attack is successful (step 16, Fig. 3).

Note that the attack uses the signed applet from the infrastructure, turning it into
an attack tool against BankID.

4.1 Proof of Concept

The previously described vulnerability was turned into an exploit against two ran-
domly chosen Norwegian online banking systems in March 2007. Both attempts
gave access to a customer account in these banks. The BankID community claimed
to have fixed the problem in November 2007. A slightly modified version of the
first exploit was successfully launched against BankID again in December 2007,
using a version rollback attack. In short, an old version of the BankID applet was
used to sidestep the countermeasures implemented in November 2007. The BankID
community then introduced additional security measures in January 2008, thereby
stopping our rollback attack.

5 Attack Considerations

The MitM attack can be bootstrapped in multiple ways, using well known attack
strategies. Phishing attacks are already plaguing the banking industry, and can be
used to trick some users into opening a webpage from the MitM proxy.

Nordic banks have been pestered over the last year by man-in-the-browser attacks
[13]—trojan horses installed in web browsers. A trojan could change the parameters
to the applet when the customer visits her online bank. This would be extremely
difficult to detect for the average user.

72 Yngve Espelid et al.

5.1 Trust Management Capitalization

Trust can be defined as a positive expectation regarding the behavior of someone or
something in a situation that entails risk to the trusting party [9, p. 77]. Risk is simply
the possibility of suffering harm or loss. It is important to note that, unlike in the
X.509 PKI specification [1], trust in this context is not a binary concept but involves
many levels of trust. For any given user, there is a certain amount of trust that is
needed to be willing to transact. Let this level be denoted the cooperation threshold
[22]. In order to get the most out of the attack against BankID, an adversary wants as
many customers as possible to reach the cooperation threshold. The BankID design
helps achieve this goal.

Assume that an attacker decides to bootstrap the BankID attack with an e-mail
phishing scheme. A press release from Gartner indicates that approximately 19% of
phishing targets click on a link in a malicious e-mail, and that 3% give financial or
personal information to phishers [11]. The numbers illustrate that the success rate
relies firstly on the cleverness of the phishing e-mail, and secondly on the trustwor-
thiness of the phishing site. We discuss our attack in conjunction with the latter.

Recall that the signed BankID applet is loaded unmodified from the BankID
infrastructure. Hence, the user carries out a seemingly regular authentication pro-
cedure. The browser successfully validates the applet signature and displays a cer-
tificate belonging to the BankID infrastructure. This is ideal in winning the trust
of customers, as they are carefully instructed to look for this when using BankID
[5]. Furthermore, the user is presented with this information before the webpage is
rendered. The user’s attention is drawn to the applet—not to the webpage or the
MitM proxy’s URL in the address bar. Hence, the important first step towards the
cooperation threshold is taken before the malicious webpage is shown to the user.

The next step is to present a webpage visually indistinguishable from the mer-
chant’s authentic webpage. The only indication of an attack will then be in the ad-
dress bar of the victim’s browser. Phishers use a variety of tactics to manipulate this
bar. If a merchant website has a cross-site scripting vulnerability [19], the success
rate of the attack could rise further by capitalizing on the customer’s trust in the
merchant’s own website. Upon completing the authentication, the attacker assumes
control of the real BankID session. The information sent to the customer after this
point can be crafted so that the he still believes that the attack was a legitimate log-in
attempt.

Norwegian banks currently use OTPs and fixed passwords to authorize transac-
tions. Therefore, the attacker must collect at least one OTP and the password to
transfer money out of the account. This can be achieved by alerting the user at the
end of the log-in procedure that the previously entered fixed password and OTP
were incorrect, after which the attacker asks for them again. Upon receiving the cre-
dentials, the attacker sends the customer one of the bank’s standard error messages.
This last step is a standard phishing technique. However, the customer has already
reached the cooperation threshold and should take the bait.

Robbing Banks with Their Own Software 73

6 The Disclosure Process

The discovery of the BankID MitM vulnerability and the subsequent exploit ur-
gently called for countermeasures from the BankID community. Building on in-
sights from the BankID risk analysis [18], our team needed less than a month to
break into Norwegian Internet banks using BankID. Taking into account that the
attack relies on techniques well-known to malicious hackers, it was reasonable to
conclude that our attack posed a significant risk for BankID customers.

According to a survey [7], the world’s largest software companies encourage
some variant of responsible disclosure [8] when independent researchers find vul-
nerabilities in their products. Inspired by responsible disclosure, we informed major
stakeholders in the BankID community, namely Bankenes Standardiseringskontor
(BSK) and The Norwegian Banks Payment and Clearing Centre (BBS), about the
MitM vulnerability in March *07. The Financial Supervisory Authority of Norway
(FSAN) was also informed about the problem at this point. On request, BSK also re-
ceived a technical description of how the BankID vulnerability could be turned into
an exploit. They later responded that the vulnerability had been removed in January,
i.e. before we developed the proof of concept code.

Unable to convince the system owners about the dangers posed by the exploit,
we released the interim report “Next Generation Internet Banking in Norway” on
May 16th [18]. This work points out weaknesses in BankID, and explicitly states
that we had developed a proof of concept attack against BankID. Our discovery
was reported by several media outlets, but did not spark a broad discussion around
BankID as a nationwide identity system candidate.

In September and October *07 we demonstrated the MitM exploit for FSAN and
a group of security experts with influence on the Norwegian banking industry, hop-
ing that this would get the attention of the BankID community. A month later we
distributed an early version of this paper to BSK, BBS, and the BankID coordina-
tor. In November ’07 we again told of the exploit in a large Norwegian newspaper
[12]. In the subsequent debate, the banks claimed to have addressed our attack in
a November patch, and questioned the lawfulness of our security testing. In early
December *07 our attack caught the attention of members of the Norwegian Parlia-
ment, and was scheduled for a Question Time session.

By using a version rollback attack, the exploit was again successfully run against
the previously vulnerable Internet banks on December 18th. Hence, the BankID
community had spent eight months coming up with a fix that did not work. During
this time period the banks neither seeked our counsel nor asked for another test.
Having failed to establish a productive dialogue with the system owners, we decided
to look at other alternatives for improving the situation.

Full disclosure of an exploit on a live banking system with close to one million
users seemed drastic. Still, banking customers had for at least nine months believed
BankID to be secure, while our exploit showed that the user community had been
and continued to be exposed to an unnecessary high risk. In the end, we chose to
revisit responsible disclosure, but this time with FSAN as a coordinator. In January

74 Yngve Espelid et al.

’08 we were informed that new countermeasures had been introduced in BankID to
prevent our rollback attack. We have not analyzed these security measures in detail.

7 Possible BankID Improvements

Due to lack of complete information on the BankID system we can only give some
general recommendations on how to improve the security through changes to the
applet itself. In future versions of the BankID applet, the session discrepancy dis-
cussed in Sect. 4 should be corrected to mitigate the risk posed by our exploit. The
applet needs to properly authenticate its communication peers, enabling it to detect
a MitM proxy. Also, the applet must require end-to-end encryption when commu-
nicating with both the infrastructure and the merchant. To achieve these goals the
applet can require HTTPS when connecting to the infrastructure and the merchant,
and explicitly check that the authenticated server is the correct one. Input validation
[19], such as a whitelisting approach, can be useful to avoid hostile communica-
tion points. We leave it to the BankID community to evaluate the feasibility of this
approach.

In the long-term, the BankID community should evaluate the implications of
moving to a traditional PKI where the clients possess their own private-public key
pairs. The move would improve the strength of the authentication, and yield a sim-
pler design. Also, several of the problems identified in [18] could be reduced or
solved. Such a change comes with a cost. However, a national security infrastruc-
ture must fulfill minimum security requirements, including resistance to MitM at-
tacks, and offer strong authentication. Many countries around the world have already
put to use, or are contemplating national identity systems based on PKI and crypto-
graphic smartcards. Hence, there are many experiences around the world that should
be taken into consideration if the BankID community decides to offer a traditional
PKI.

8 Related Work

A series of three articles analyze Norwegian banking systems [17, 16, 18]. The first
paper shows that some Norwegian banks were vulnerable to a combined brute-force
and distributed denial-of-service attack in 2003 and 2004. The authors go on to
discuss the effects of the banks’ security-through-secrecy policy, concluding that it
prohibits learning and causes the same mistakes to be repeated. The second paper
elaborates on the problems with a bank’s non-disclosure policy in a Norwegian court
case. The third paper contains a risk analysis of BankID from the customer’s point of
view. It concludes that users of BankID are exposed to a number of significant risks
that should be mitigated. Our attack builds on the above-mentioned article series
and zooms in on weaknesses touched upon in the risk analysis of BankID [18]. In

Robbing Banks with Their Own Software 75

particular, our work further testify to the inefficacy of the banks’ security-through-
secrecy policy.

According to an IBM white paper [14], the two-factor authentication schemes
widely adopted by online banks are insufficient in protecting against combined
phishing and MitM attacks. An adversary first sends a phishing e-mail to the bank-
ing customer with a link to a proxy controlled by the attacker. If the victim takes the
bait, the adversary plays an active role in the log-in process by relaying user input
to the bank and the bank’s responses back to the user. Upon completing authentica-
tion, the attacker can seize the session or mix fraudulent transactions with the users
legitimate transactions.

Our attack uses elements of a combined phishing and MitM attack, but goes fur-
ther by using the bank’s own software, the BankID applet, to gain the victim’s trust.
The BankID attack starts as a phishing attack with a phishing e-mail to the bank
customer, but continues with loading the unmodified and digitally signed BankID
applet instead of a fake applet. By doing so, an adversary abuses a crucial point of
trust in BankID. The unmodifiable applet, formerly a disadvantage to an attacker,
becomes an advantage in terms of gaining the trust of banking customers. After fin-
ishing the applet log-in procedure, the attack procedes as in the combined phishing
and MitM attack, where the attacker must trick the victim into supplying his OTP
and fixed password.

In [2], Anderson argues that a false threat model was accepted, due to the lack
of feedback on why British retail banking systems failed. In doing so, the financial
industry developed increasingly complex systems to protect against cryptanalysis
and technical attacks, when it would have been wiser to focus on implementation
and managerial failures. Analyses of banking systems published after Anderson’s
initial paper underscore the observation that systems fail not because of inadequate
cryptographic primitives, but rather design flaws and implementation errors [6, 3].

9 Conclusion

The security of the Norwegian banking industry’s new PKI solution, BankID, was
repeatedly broken in ’07. A MitM attack enabled attackers to access customer ac-
counts in two online banks. Our attack used techniques well-known to cyber crim-
inals and was based solely on public information. An exploit was demonstrated for
FSAN and a group of security professionals to highlight the severity of the problem.

BankID’s untraditional design hinders the system from providing a high level
of security. The decision to store customers’ private-public key pairs in a central
location has resulted in a weak authentication protocol. A redesign of BankID is
called for if the system is to offer the intended degree of security.

Our exploit underscores the importance of independent evaluation of national
systems. BankID’s design flaw contradicts advice given by security experts, and
should have been detected and resolved long before the system was put into pro-

76 Yngve Espelid et al.

duction. An unbiased scrutinization of the infrastructure and its documentation by
leading security analysts would most likely have identified the problem.

The BankID community needs to improve their risk management processes. To-
day, the system owners fail to identify and quickly resolve problems. This was
demonstrated to us by the nine months it took the banks to address our initial exploit.
The subsequent version rollback attack further testifies to the inefficacy of BankID’s
current risk management processes.

As BankID is now gaining serious momentum in Norway —and is pushed by the
BankID community to become the main identity system in Norway—both govern-
ment and citizens need a better perception of the true level of security. In light of
our attacks and the findings in [18], a thorough analysis of BankID is called for.
This could increase the trustworthiness of BankID in the long run. At the time of
writing the gap is too big between the actual level of security, and how the BankID
community describes their system (see www . bankid.no.)

9.1 Final Remark

We would like to emphasize that only BankID accounts belonging to members of the
NoWires Research Group were used to develop and demonstrate the MitM attack.
No accounts belonging to others were involved in any way during our work with
this paper.

References

1. Adams, C., Lloyd, S.: Understanding PKI—Concepts, Standards, and Deployment Consider-
ations, 2nd edn. Addison-Wesley (2003)

2. Anderson, R.: Why cryptosystems fail. In: ACM 1st Conference on Computer and Commu-
nication Security. Fairfax, VA, USA (1993)

3. Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors—a survey.
Technical Report 641, University of Cambridge (2005). URL http://www.cl.cam.ac.
uk/-mkb23/research/Survey.pdf

4. Andrews, M., Whittaker, J.A.: How to Break Web Software —Functional and Security Testing
of Web Applications and Web Services. Addison-Wesley (2006)

5. BankID: Hva gjgr kunden ved mistanke om at noe er galt? (2007). URL http://www.
bankid.no/index.db2?id=4066. Last checked March 2008 (in Norwegian)

6. Berkman, O., Ostrovsky, O.M.: The unbearable lightness of pin cracking. In: Financial
Cryptography and Data Security (FC). Lowlands, Scarborough, Trinidad/Tobago (2007).
URL http://www.arx.com/documents/The_Unbearable Lightness_of_
PIN Cracking.pdf

7. Biancuzzi, F.: Disclosure Survey (2006). URL http://www.securityfocus.com/
columnists/415. Last checked March 2008

8. Christey, S., Wysopal, C.: Responsible vulnerability disclosure process (2002).
URL http://www.whitehats.ca/main/about_us/policies/
draft-christey-wysopal-vuln-disclosure-00.txt. Last checked March
2008

Robbing Banks with Their Own Software 77

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

Cranor, L.F., Garfinkel, S. (eds.): Security and Usability—Designing Secure Systems That
People Can Use. O’Reilly (2005)

Espelid, Y., Netland, L.H., Klingsheim, A.N., Hole, K.J.: A proof of concept attack against
norwegian internet banking systems. In: Proc. Financial Cryptography and Data Security
(2008)

Gartner: Gartner study finds significant increase in e-mail phishing attacks (2004). URL
http://www.gartner.com/press_releases/asset_71087_11.html. Last
checked March 2008

Gjgsteen, K., Hole, K.J.: Nei, ennd ikke trygg. Aftenposten (29. Nov, 2007). URL http:
//www.aftenposten.no/meninger/debatt/article2126133.ece. Last
checked March 2008 (in Norwegian)

Giihring, P.: Concepts against man-in-the-browser attacks (2006). URL http://www2.
futureware.at/svn/sourcerer/CAcert/SecureClient.pdf. Last checked
March 2008

Gundel, T.: Phishing and internet banking security (2005). URL ftp://ftp.software.
ibm.com/software/tivoli/whitepapers/Phishing and_ Internet_
Banking_ Security.pdf

Hoglund, G., McGraw, G.: Exploiting Software—How to Break Code. Addison-Wesley
(2004)

Hole, K.J., Moen, V., Klingsheim, A.N., Tande, K.M.: Lessons from the Norwegian ATM
system. IEEE Security & Privacy 5(6), 25-31 (2007)

Hole, K.J., Moen, V., Tjgstheim, T.: Case study: Online banking security. IEEE Security &
Privacy 4(2), 14-20 (2006)

Hole, K.J., Tjgstheim, T., Moen, V., Netland, L., Espelid, Y., Klingsheim, A.N.: Next gen-
eration internet banking in Norway. Tech. Rep. 371, Institute of Informatics, University of
Bergen (2008). Available at: http://www.ii.uib.no/publikasjoner/texrap/
pdf/2008-371.pdf

Huseby, S.H.: Innocent Code. Wiley (2004)

Kent, S.T., Millett, L.I. (eds.): IDs—Not That Easy: Questions About Nationwide Identity
Systems. The National Academies Press (2002)

Kent, S.T., Millett, L.I. (eds.): Who Goes There? Authentication Through the Lens of Privacy.
The National Academies Press (2003)

Marsh, S., Dibben, M .R.: Trust, untrust, distrust and mistrust—an exploration of the dark(er)
side. In: iTrust 2005, LNCS, vol. 3477, pp. 17-33. Springer (2005)

Schneier, B.: Two-factor authentication: too little, too late. Communications of the ACM
48(4), 136 (2005)

Sun Microsystems, Inc.: Applets. URL http://java.sun.com/applets/. Last
checked March 2008

The Norwegian Banks’ Payment and Clearing Centre: BankID FOI white paper (Release
2.0.0) (2006). (in Norwegian)

Viega, J., McGraw, G.: Building Secure Software —How to Avoid Security Problems the Right
Way. Addison-Wesley (2002)

