
Policies and Security Aspects For Distributed
Scientific Laboratories

Nicoletta Dessı́, Maria Grazia Fugini, R. A. Balachandar

Abstract Web Services and the Grid allow distributed research teams to form dy-
namic, multi-institutional virtual organizations sharing high performance computing
resources, large scale data sets and instruments for solving computationally inten-
sive scientific applications, thereby forming Virtual Laboratories. This paper aims
at exploring security issues of such distributed scientific laboratories and tries to
extend security mechanisms by defining a general approach in which a security pol-
icy is used both to provide and regulate access to scientific services. In particular,
we consider how security policies specified in XACML and WS-Policy can support
the requirements of secure data and resource sharing in a scientific experiment. A
framework is given where security policies are stated by the different participants in
the experiment, providing a Policy Management system. A prototype implementa-
tion of the proposed framework is presented.

1 Introduction

Web Services (WS) and the Grid have revolutionized the capacity to share informa-
tion and services across organizations that execute scientific experiments in a wide
range of disciplines in science and engineering (including biology, astronomy, high-
energy physics, and so on) by allowing geographically distributed teams to form
dynamic, multi-institutional virtual organizations whose members use shared com-
munity tools and private resources to collaborate on solutions to common problems.
Since WS have been recognized as the logical architecture for the organization of

Nicoletta Dessı́ and R. A. Balachandar
Dipartimento di Matematica e Informatica, Universitá degli Studi di Cagliari, Via Ospedale 72,
09124 Cagliari, Italy, e-mail: dessi@unica.it, balsonra@yahoo.co.in

Maria Grazia Fugini
Dipartimento di Elettronica e Informazione, Politecnico di Milano, piazza L. da Vinci 32, 20133
Milano, Italy, e-mail: fugini@elet.polimi.it

221



222 Nicoletta Dessı́, Maria Grazia Fugini, R. A. Balachandar

Grid services, they can enable the formation of Virtual Laboratories, which are not
simply concerned with file exchange, but also with direct access to computers, soft-
ware, and other resources, as required by a dynamic collaboration paradigm among
organizations [6].
As the community of researchers begins to use Virtual Laboratories, exploiting Grid
capabilities [16], the definition of secure collaborative environments for the next
generation of the science process will need further potentialities. In order to extend
common security mechanisms such as certification, authorization or cryptography.
These new functions include, for example, the definition and the enforcement of
policies in place for single Virtual Laboratories in accordance with dynamically
formed Virtual Organizations (VOs), and the integration of different local policies,
in order to make the resources available to the VO members, who deploy their own
services in the VO environment. These considerations motivate the approach that
we propose in this paper, whose aim is to explore the security of environments sup-
porting the execution of scientific experiments in a Virtual Laboratory. Specifically,
the paper elaborates on extending usual control access mechanism by defining a
general approach in which security policies are expressed and enforced to regulate
resource sharing and service provisioning. In detail, the paper proposes a reference
framework for secure collaboration where security policies can be formulated in
order to regulate access to scientific services and to their provisioning. Since each
Virtual Laboratory has a set of local security policies, we examine how these polices
can be expressed and enforced such that the allocation process of resources to a dis-
tributed experiment is made aware of security implications. As a sample application
of the proposed approach, some implementation hints are presented for distributed
experiments that incorporate security policies. This paper is structured as follows.
Section 2 reviews related work. Section 3 addresses requirements to be considered
when security policies for experiments are defined. Section 4 presents our refer-
ence framework for Virtual Laboratories, with emphasis on security issues. Section
5 details our approach to Policy Management, giving a component architecture and
providing implementation aspects. Finally, Section 6 contains the conclusions.

2 Related Work

A Virtual Laboratory for e-Science can be viewed as a cooperative System where
WS are dynamically composed in complex processes (experiments) and executed
at different organizations. WS security [19] is assuming more and more relevance
sinceWS handle users’ private information. WS-Trust [9] describes a framework for
managing, assessing and establishing trust relationships for WS secure interopera-
tion. In WS-based systems, security is often enforced through security services [20],
for which new specifications have been developed to embed such security services
in the typical distributed and WS-based elements, considering also security policies
[18]. Examples are the SOAP header [19], the Security Assertion Markup Language
(SAML) [12], XML Signature [4] and XML Encryption [14]. WS-Security [3] ap-



Policies and Security Aspects For Distributed Scientific Laboratories 223

plies XML security technologies to SOAP messages with XML elements. Based
on SOAP e-Services, [8] proposes an access control system, while XACML (XML
Access Control Markup Language) [2] allows fine-grained access control policies
to be expressed in XML. However, all these mechanisms prove useful in specifying
specific aspects of security, but need to be selected first, and integrated later, into a
uniform framework addressing all issues regarding e-collaboration.
Policies, as an increasingly popular approach to dynamic adjustability of applica-

tions, require an appropriate policy representation and the design and development
of a policy management framework. Considering that security policies should be
part of WS representations, [19] and [10] specify the Web Services Policy Frame-
work (WS-Policy). Policy-based management is supported by standards organiza-
tions, such as the Internet Engineering Task Force (IETF). The IETF framework
[13] defines a policy-based management architecture, as the basis for other efforts
at designing policy architectures.
Existing technology for the Grid (e.g., see [11]) allows scientists to develop

project results and to deploy them for ongoing operational use, but only within a
restricted community. However, security is still implemented as a separate subsys-
tem of the Grid, making the allocation decisions oblivious of the security implica-
tions. Lack of security [20] may adversely impact future investment in e-Science
capabilities. The e-Science Core Programme initiated a Security Taskforce (STF)
[http://www.nesc.ac.uk/teams/stf/], developing a Security Policy for e-Science
(http://www.nesc.ac.uk/teams/stf/links/), while an authorization model for multi-
policies is presented in [17]. An approach combining Grid and WS for e-Science
is presented in [5, 1].
Authorizations in distributed workflows executed with their own distinctive ac-

cess control policies and models has been tackled in [7]; security is handled through
alarms and exceptions. In [15] access control for workflows is described explicitly
addressing cooperation. However, decentralization of workflow execution is not ex-
plicitly addressed nor security policies handling is specifically tackled.

3 Basic Security Aspects for Virtual Laboratories

At least for certain domains, scientific experiments are cooperative processes that
operate on, and manipulate, data sources and physical devices, whose tasks can be
decomposed and made executable as (granular) services individually. Workflows
express appropriate modeling of the experiment as a set of components that need
to be mapped to distinct services and support open, scalable, and cooperative envi-
ronments for scientific experiments [5]. We denote such scientific environments as
Virtual Laboratories (VLs) or eLabs.
Each VL node (or eNode) is responsible for offering services and for setting the
rules under which the service can be accessed by other eNodes through service
invocation. Usually, the execution of an experiment involves multiple eNodes inter-
acting to offer or to ask for services. Services correspond to different functionalities



224 Nicoletta Dessı́, Maria Grazia Fugini, R. A. Balachandar

that encapsulate problem solving and data processing capabilities. Services can be
designed to use of VOs resources while the network infrastructure promotes the
exploitation of distributed resources in a transparent manner. This offers good op-
portunities for achieving an open, scalable and cooperative environment.
We classify services in:

• Vertical services, that include components for a range of scientific domains, in-
cluding various software applications.

• Horizontal services, that provide adaptive user interfaces, plug-and-play collab-
orative work components, interoperability functions, transaction co-ordination,
and security.

Vertical services expose interfaces that convey information about specific applica-
tion functions. Their interfaces are implemented from within the component embed-
ding them and are assembled in a workflow that globally expresses the experiment
model. Horizontal services allow for easier, more dynamic and automated eNode
integration and for more precise run-time integration of remote services. They are
designed to facilitate collaboration.
A VO member plans a complex scientific experiment by repeatedly choosing a se-
quence of services and including these services in a workflow. He can wait for the
fulfilment of a specific workflow and/or choose the next service to invoke on the ba-
sis of the returned information. The workflow execution may require the collabora-
tion of various services spread over different VLs whose owners must be confident
that users accessing their software or data respect fine-grained access restrictions
controlling the varying levels of access to the resource that a user may be granted
for. For example, a service may require commodity processors or may have a limited
choice of input data (possibly requiring a specific file-format or database access).
Similarly, a scientist executing a service on a remote eNode must trust the adminis-
trator of the eNode to deliver a timely and accurate result (and possibly proprietary
data sent to the site).
This requires the extension of security aspects related to resource sharing to those
related to service sharing.
However, security is still currently unsupported in an integrated way by any of the
available WS technologies, nor a standard method to enforce Grid security is de-
fined. Moreover, security policy requirements have to be considered. The approach
of this paper regards the definition of the basic aspects to be tackled when extending
WS and Grid security infrastructures to VLs environments.

4 A Reference Framework for Virtual Laboratories

Based on what illustrated so far, we now introduce some basic modeling elements
for the context of VLs security, by defining as an actor each relevant subject capable
of executing experiments supported by networked resources, which we consider as
objects. In detail:



Policies and Security Aspects For Distributed Scientific Laboratories 225

• Subjects execute activities and request access to information, services, and tools.
Among subjects we mention the remote user of a WS/Grid enabled application,
which would generally be composed of a large, distributed and dynamic popu-
lation of resources. Subjects may also include organizations, servers and appli-
cations acting on behalf of users. In this paper, we consider only trusted groups
which are not requested to exchange security tokens or credentials during a sci-
entific experiment, since they know and trust each other, and received authenti-
cation and authorization to access resources when first joining the VL.

• Objects are the targets of laboratory activities. Services are considered as objects.
Methods are also regarded as objects, which can be grouped together to form
experiments. Fine-grained access control would thus be required over input and
output parameters, methods, WS and groupings among WS (to form a process)
and among WS and other applications (e.g., legacy software or device control
software). Other objects are the server hosting the WS, an IP address, or the URI
of a WS. Internal data, kept in a database and other objects accessed by the WS,
should also be considered as part of the list of objects to be managed.

• Actions that can be performed are various, depending on the type of subject issu-
ing a request. Remote users or applications would generally be allowed to execute
a WS method, or access a server hosting a number of WS objects or an applica-
tion. Rights corresponding to actions such as place experiment, or view results,
update data could be granted.

The identification of subjects and objects in a scientific environment defines a frame-
work for secure collaboration based on the idea of integrating components that con-
trol the workflow execution through a set of specific security components. Such
framework, depicted in Fig. 1 comprises components (diamonds), their specific ac-
tivities (ovals) and specific security aspects (double-border boxes).

The framework elements are as follows:
Process Manager - Each process manager supervises the execution of the work-
flow modeling the scientific experiment. It is responsible for the transformation of
the abstract workflow into a concrete plan whose components are the executions of
specific tasks/tools and/or actual accesses to data repositories. This planning process
can be performed in cooperation with a service broker, acting as a mediator, in that
it supplies, at run time, the description and location of useful resources and services.
TaskManager - This is in charge of executing a particular set of activities which are
instances of the workflow plan. It is also responsible for collaborating with others
components for managing the service execution. In fact, execution involves contact-
ing data sources and components and requesting the appropriate execution steps.
Service Manager - This supervises the successful completion of each task request.
In case of failure, the service manager takes appropriate repair actions. Repair may
involve either restarting the task execution or re-entering the configuration compo-
nent in order to explore alternative ways of instantiating the task execution to avoid
service failures, e.g., due to a security attack or service misuse. In that case, the ser-
vice flow can be rerouted to other services able to provide substitute functionalities,
thus allowing redo or retry operations on tasks that were abnormally ended before



226 Nicoletta Dessı́, Maria Grazia Fugini, R. A. Balachandar

rerouting. Moreover, this component waits until completion of the task request, and
notifies to the task manager the end of the activity.
Policy Manager - This component supports and updates the resource provision pol-
icy that regulates the flow of information through the applications and the network,
and across organizational boundaries, to meet the security requirements established
by members who are in charge of deploying their own services under their own poli-
cies that assert privileges and /or constraints on resource and services utilization.

Fig. 1 Security Aspects and Related Components of a Virtual Laboratory

Two major concerns in this framework are: structural and dynamic concerns,
and security concerns. i) Structural and dynamic concerns deal with the execution
of a scientific experiment in a VL and incorporate controls on vertical services. ii)
Security concerns refer to horizontal services supporting privileges and constraints
on the of VL resources, and may differ from user to user for each individual service.
The sequel of the paper presents how these policies can be implemented and how
fine-grained constraints can be defined in the VL to gain restricted different access
levels to services according to a policy that is fully decided by software owners
themselves.

5 Policy Management

Policy management in VLs, as the ability to support an access control policy in ac-
cordance with the resource access control goals, should support dynamically chang-
ing decentralized policies, policy administration and integrated policy enforcement.
A typical policy management system would include two components, namely the
Policy Enforcement Point (PEP), and the Policy Decision Point (PDP), as shown in



Policies and Security Aspects For Distributed Scientific Laboratories 227

Fig. 2. The PEP is the logical entity, or location within a server, responsible for en-
forcing policies with respect to authentication of subscribers, authorization to access
and services, accounting and mobility, and other requirements. The PEP is used to
ensure that the policy is respected before the user is granted access the WS resource.
The PDP is a location where an access decision is formed, as a result of evaluat-
ing the user’s policy attributes, the requested operation, and the requested resource,
in the light of applicable policies. The policy attributes may relate to authorization
and authentication. They may also refer to the attributes related to Quality of Ser-
vice (QoS), or to service implementation details, such as transport protocol used,
and security algorithms implemented. The PEP and the PDP components may be
either distributed or resident on the same server. In our VL, access control works
as follows. A user who wants to perform an experiment submits a request to the
appropriate resource(s) involved in the experiments through a set of invocations to
WS providers. The Policy Manager (see Fig. 2) located in each of the requested
resources, implements the PEP and the PDP to take the access decision about the
user access request. The PEP wraps up an access request based on the user’s secu-
rity attributes or credentials, on the requested resource, and on the action the user
wants to perform on the resource. It then forwards this request to the PDP, which
checks the request against the resource policy and determines whether the access
can be granted.

Fig. 2 Policy Management System

There is no standard way of implementing the PDP and PEP components; they
shall either be located in a single machine or be distributed in the different ma-
chines depending on the convenience of the Grid Administrator and of the resource
provider.
The Policy Manager (see Fig. 2) has the ability to recognize rules from the WS

requestor and provider of relevant sources, and is able to correctly combine appli-
cable access rules to return a proper, enforceable access decision.
Generally, policies are defined for access to a single resource; hence, the PEP

and the PDP can be contained in a single eNode or be distributed. VL resources may



228 Nicoletta Dessı́, Maria Grazia Fugini, R. A. Balachandar

be part of more than one application and therefore there should be a defined access
control service. Further, these resources can be used contemporaneously by different
applications with different associated policies; hence they will be processed by the
applicable Policy Managers. In that case, the applications have their own PEP and
PDP, which control user access to the applications. Further, the Policy Manager
must be able to recognize the policy attributes related to access control, as well
as, the information related to QoS. In the following subsection, we describe the
implementation methodology employed for the Policy Manager and the standard
specification used to express the access policy requirements for a resource.
The described access control mechanisms of the Policy Manager can be imple-

mented using XACML, which includes both a policy language and an access con-
trol decision request/response language (both encoded in XML). The policy lan-
guage is used to describe general access control requirements, and has standard
extension points for defining new functions, data types, combining logic, etc. The
request/response language allows queries on whether a given action should be al-
lowed, and the interpretation of the result. The response always includes an answer
about whether the request should be allowed using one of four values: Permit, Deny,
Indeterminate (in case of error or required values missing, that so a decision can-
not be made) or Not Applicable (the request can’t be answered by this service). A
Policy represents a single access control policy, expressed through a set of Rules.
Each XACML policy document contains exactly one Policy or a PolicySet, that
contains other policies or a reference to policy locations. For example, consider a
scenario where a user wants to access and read a web page available in a resource.
The XACML representation of this request in the PEP is as follows:

< Request >
< Sub ject >

< Attribute AttributeId = ”urn : oasis : names : tc : xacml : 1.0 : sub ject : sub ject− id”
DataType= ”urn : oasis : names : tc : xacml : 1.0 : data− type : r f c822Name”>

< AttributeValue> www.unica.it < /AttributeValue>

< /Attribute>

< /Sub ject >
< Resource>

< AttributeAttributeId = ”urn : oasis : names : tc : xacml : 1.0 : resource : resource− id”
DataType= ”htt p : //www.w3.org/2001/XMLSchema#anyURI”>

< AttributeValue> htt p : //webmail.ds f .unica.it/userGuide gLite.html < /AttributeValue>

< /Attribute>

< /Resource>

< Action>

< AttributeAttributeId = ”urn : oasis : names : tc : xacml : 1.0 : action : action− id”
DataType= ”htt p : //www.w3.org/2001/XMLSchema#string”>

< AttributeValue> read < /AttributeValue>

< /Attribute>



Policies and Security Aspects For Distributed Scientific Laboratories 229

< /Action>

< /Request >

The PEP submits this request form to the PDP component which checks this
request against the policy of the resource hosting the intended web page. For exam-
ple, the following policy states that the ”developers” group is allowed to read the
resource (i.e., the Web Page):

< RuleRuleId = ”ReadRule”E f f ect = ”Permit”>

< Target >

< Sub jects>

< AnySub ject/ >

< /Sub jects>

< Resources>

< AnyResource/ >

< /Resources>

< Actions>

< Action>

< ActionMatchMatchId = ”urn : oasis : names : tc : xacml : 1.0 : f unction : string− equal”>

< AttributeValue
DataType= ”htt p : //www.w3.org/2001/XMLSchema#string”> read < /AttributeValue>

< ActionAttributeDesignatorDataType= ”htt p : //www.w3.org/2001/XMLSchema#string”
AttributeId = ”urn : oasis : names : tc : xacml : 1.0 : action : action− id”/ >

< /ActionMatch>

< /Action>

< /Actions>

< /Target >

<ConditionFunctionId = ”urn : oasis : names : tc : xacml : 1.0 : f unction : string− equal”>

< ApplyFunctionId = ”urn : oasis : names : tc : xacml : 1.0 : f unction : string−one−and−only”>

< Sub jectAttributeDesignatorDataType= ”htt p : //www.w3.org/2001/XMLSchema#string”
AttributeId = ”group”/ >

< /Apply>

< AttributeValue
DataType= ”htt p : //www.w3.org/2001/XMLSchema#string”> developers< /AttributeValue>

< /Condition>

< /Rule>

The PDP checks this policy against the request and determines whether the read
request can be allowed for the web page. It then forms a XACML response and
forwards it to the PEP which eventually allows the user to read the page. The im-
plementation of XACML provides a programming interface to read, evaluate and
validate XACML policies. It can also be used to develop the Policy Manager con-



230 Nicoletta Dessı́, Maria Grazia Fugini, R. A. Balachandar

taining the PEP and the PDP, and performs most of the functionalities of the Policy
Manager. We can create a PEP which interacts with a PDP by creating requests
and interpreting the related responses. A PEP typically interacts in an application-
specific manner and there is currently no standard way to send XACML requests to
an online PDP. Hence, we need to include code for both PEP and PDP in the same
application. For instance, the following code snippet will create an XACML request
and pass the same to the PDP.

RequestCtxrequest = newRequestCtx(sub jects,resourceAttrs,actionAttrs,
environmentAttrs);
ResponseCtxresponse= pdp.evaluate(request);

The XACML based Policy Manager can recognize policy attributes related to
authentication and authorization. Hence, they can be used only for implementing
access control mechanisms. However, such authorization policies do not express
the capabilities, requirements, and general characteristics of entities (i.e., users and
resources) in an XML WS-based system and there are some more attributes, differ-
ent from the access control attributes, that need to be examined before accessing a
WS.
For instance, one may need to negotiate QoS characteristics of the service, or pri-
vacy policies and also the kind of security mechanism used in the WS. Unfortu-
nately, XACML does not provide the grammar and syntax required to express these
policies. For this aspects, we use WS-policy specifications which provide a flexible
and extensible grammar for expressing various aspects of policy attributes, such as
the used authentication scheme, the selected transport protocol, the algorithm suite,
and so on. For example, the following specification represents the policy for the al-
gorithm suite required for cryptographic operations with symmetric or asymmetric
key based security tokens (it is also possible to include timestamps to the policy
specifications to prevent any misuse of the policies).

< wsp : Policy
xmlns : sp= ”htt p : //schemas.xmlsoap.org/ws/2005/07/securitypolicy”
xmlns : wsp= ”htt p : //schemas.xmlsoap.org/ws/2004/09/policy”>

< wsp : ExactlyOne>

< sp : Basic256Rsa15/ >

< sp : TripleDesRsa15/ >

< /wsp : ExactlyOne>< wsp : All >
< sp : IncludeTimestamp/ >

< /wsp : All >
< /wsp : Policy>

The Apache implementation of WS-Policy provides versatile APIs for program-
matic access to WS-Policies. Under this approach, we can implement a policy
matching mechanism to negotiate security attributes, and other QoS attributes, be-



Policies and Security Aspects For Distributed Scientific Laboratories 231

fore actual access to the WS. Moreover, WS-policy APIs are a flexible tool to read,
compare and verify the attributes present inWS-Policies. For instance, the following
code snippet shall be used for creating a Policy Reader object to access a WS-Policy
(here Policy A) and to compare this object with another policy (Policy B):

PolicyReaderreader =

PolicyFactory.getPolicyReader(PolicyFactory.DOM POLICY READER);
PolicyReaderreader =

PolicyFactory.getPolicyReader(PolicyFactory.DOM POLICY READER);
FileInputStreamPolicy A= newFileInputStream(”ResA.xml”);
PolicypolicyA= reader.readPolicy(Policy A);
FileInputStreamPolicy B= newFileInputStream(”ResB.xml”);
PolicypolicyB= reader.readPolicy(Policy B);
Booleanresult = PolicyComparator2.compare(Policy A,Policy B)

Through the combination of XACML and WS-Policy specifications, we can im-
plement a full fledged Policy Management system for WS to manage authorization
policies on resources as well as policies related to security and other QoS aspects.
However, this Policy Management system cannot be used as such in Grid environ-
ments, considering the very nature of jobs and resources in the Grid. In fact, in the
Grid, there are computationally intensive resources, such as clusters, that can ei-
ther host an experiment as a service, or allow jobs to be executed in it. Hence, the
policy requirements in this environment will be different from those of WS envi-
ronments. For example, suppose that a resource wants to contribute up to (but not
more than) 200MB of its memory for job execution in the Grid. To express such
policy, currently existing policy languages do not offer enough grammar and syn-
tax. Hence, we suggest to extend the existing policy language schema to include
policies regarding elements typical of Grid Services, such as bandwidth informa-
tion, memory, CPU cycle, etc. For our prototype implementation, we consider three
attributes namely the memory, CPU cycle and the available nodes in the cluster re-
source and a schema is developed with these attributes. The APIs of the WS-Policy
implementation are modified accordingly, to deal with this schema and be able to
perform operations such as compare, read, normalize, and so on.
The schema that includes the attributes related to a Grid resource, and its usage

in WS-Policy is as follows:

< xs : schema
targetNamespace= ”htt p : //unica.it/gridpolicy.xsd”
xmlns : tns= ”htt p : //unica.it/gridpolicy.xsd”
xmlns : xs= ”htt p : //www.w3.org/2001/XMLSchema”
elementFormDe f ault = ”quali f ied”
blockDe f ault = ”#all”>



232 Nicoletta Dessı́, Maria Grazia Fugini, R. A. Balachandar

< xs : elementname= ”Mem”type= ”tns : OperatorContentType”/ >

< xs : elementname= ”ProcessorSpeed”type= ”tns : OperatorContentType”/ >

< xs : elementname= ”DiskSpace”type= ”tns : OperatorContentType”/ >

The following WS-Policy uses this schema to represent the capabilities and policy
information of a Grid resource:

wsp : Policyxmlns : sp= ”htt p : //schemas.xmlsoap.org/ws/2005/07/securitypolicy”
xmlns : wsp= ”htt p : //schemas.xmlsoap.org/ws/2004/09/policy”
xmlns : cs= ”htt p : //schemas.mit.edu/cs”>< wsp : ExactlyOne>< wsp : All >
< cs :Mem> 1024< /cs :Mem>

< cs : ProcessorSpeed > 2GHz< /cs : ProcessorSpeed >

< /wsp : All >
< wsp : All >< sp : Basic256Rsa15/ >< sp : TripleDesRsa15/ >< /wsp : ExactlyOne< wsp : All >
< /wsp : ExactlyOne>

< /wsp : Policy>

Through this policy, the Grid resource wants to advertise that it can allocate no
more than 1GB of its free memory to Grid job execution, and that it is able to provide
2GHz of its processor speed. This policy information can be read and compared with
other policies using the WS-Policy implementation libraries.
This prototype implementation modifies the WS-Policy specification to deal with

a larger number of attributes. To implement these issues in a real time dynamic
environment, an extensive survey of Grid resource usage policies and their repre-
sentation in a WS-policy schema are needed. Our future research will investigate
the development of a Policy Management system working for both WS and Grid
environments.

6 Implementation Hints

The illustrated framework has been the basis for developing a prototype VL which,
in an initial validation stage, has been used to test secure cooperation from the per-
spective of one scientific server only, for which a Security Server has been imple-
mented, containing security functions deployed as Security WS. The prototype (see
Fig. 3) is built on top of Taverna1, a workflow composer that allows designers to
map the initial abstract workflow into a detailed plan. Each Taverna workflow con-
sists of a set of components, called Processors, each with a name, a set of inputs and
a set of outputs. The aim of a Processor is to define an inputs-to-outputs transforma-
tion. Vertical services can be installed by adding to Taverna new plug-in processors
that can operate alone or can be connected with data and workflows through control
links. When a workflow is executed and the execution reaches a security Proces-

1 Taverna is available in the myGrid open source E-science environment
http://www.mygrid.org.uk/



Policies and Security Aspects For Distributed Scientific Laboratories 233

sor, an associated invocation task is called that invokes a specific horizontal service
implementing security mechanisms. The Scufl workbench included in MyGrid pro-
vides a view for composition and execution of processors. The internal structure
of a VL includes four components: a Security Server, a Front-End, a Back-End, a
Workflow Editor.
The Security Server exposes various functionalities aimed at data privacy and

security both in the pole and during the interaction among poles. It manages User
Authentication, Validity check of Security Contracts, Trust Levels, Cryptographic
Functions, and Security Levels. The Security Server service communicates with the
front-end scientific services by sending them the local Security Levels and the list
of remote poles offering a specific resource. User authentications occurs through
insertion of a secret code by the user requesting the execution of a protected work-
flow. The Front-end of the scientific pole is a set of WS that can be invoked by a
workflow editor, after negotiation. These WS interact with the Security Server, from
which they require information related to the local pole access policy. The Front-end
includes services that do not hold their own resource trust level, but rather inherit
the clearance level of the user executing the WS. However, the Front-end service
receives, at creation time, a threshold security level, reflecting the quality and sensi-
tiveness of the service.

Fig. 3 Security Components Implementation Architecture

The Back-end of a scientific pole is constituted by the local resources of the sci-
entific pole, e.g., calculus procedures or data stored in databases. All the resources
in the Back-end are exposed as WS, and can be invoked by a remote Virtual Lab-
oratory. Each resource has its own Resource Service Level assigned by an admin-
istrator. The applied policy is ”no read up, no write down”. The invocations of the
Back-end services are protected via SSL. Finally, the scientific workflow is defined



234 Nicoletta Dessı́, Maria Grazia Fugini, R. A. Balachandar

using the Taverna workflow editor of MyGrid 2. Upon proper negotiation of security
contracts, a download of the workflow modifier tool and the encryption/decryption
module from the provider pole is required. The modifier tool modifies the scientific
workflow, by adding crypt and decrypt activities and the input data related to access
codes of services. The crypt/decrypt module implements cryptographic functions
on exchanged data (we use AES). These editors are designed to be used by sci-
entists teams, generally co-ordinated by a Chief Scientist. However, a workflow is
not associated to a whole, given global Security Level, but rather each service of
the workflow has an associated Security Level depending on the qualification of the
user requiring the service.

7 Concluding Remarks

This paper has highlighted the requirements that should be considered when access
control policies of Virtual Laboratories are written. To allow an access control pol-
icy to be flexible and dynamic, it can no longer be a high-level specification, but
must become a dynamic specification that allows real-time access control admin-
istration of WS and the Grid resources. To this aim, we have presented the secu-
rity requirements of a cooperative environment for executing scientific experiments.
Namely, we have illustrated XACML policy specifications, and the use of the WS-
Policy to define scientific resource sharing requirements needed to securely activate
a collaboration in experiments with negotiating of QoS policy attributes. A secu-
rity framework and a prototype environment have been presented, with the purpose
of providing a uniform view of Grid service policies for a dynamic environment
where a set of nodes cooperate to perform a scientific experiment. Currently there
exists no standardized access control for virtual applications implemented with WS
on the Grid. We plan to extend the requirements presented in this paper and define
a formal security model and architecture for WS and Grid enabled scientific appli-
cations. The model will be based on the security policy languages used in this pa-
per, independently of specific technologies and configuration models. This should
ensure industry-wide adoption by vendors and organizations alike to allow cross-
organization business integration. Interoperation requires a standard-based solution.
In fact, a Virtual Laboratory, created with WS and the Grid, where scientific re-
lationships may frequently change, requires a highly flexible, but robust security
framework, based on approval and universal acceptance of standards. This would
allow business partners to avoid interoperability problems among their disparate
applications and maintain a security context to allow interoperation.

Acknowledgements This paper has been partially supported by the Italian TEKNE Project.

2 Taverna, and other e-Science management tools, are freely available on the Internet, but to ensure
encryption, decryption and server authentication capabilities they require additional features.



Policies and Security Aspects For Distributed Scientific Laboratories 235

References

1. Amigoni F., Fugini M.G., Liberati D., ”Design and Execution of Distributed Experiments”,
Proc. 9th International Conference on Enterprise Information Systems, (ICEIS’07), Madeira,
June 2007

2. Anderson A. et. al., XACML 1.0 Specification,
http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml, 2003

3. Atkinson B. et al., Web Services Security (WS-Security), 2002, Version 1.0 April 5, 2002,
http://www.verisign.com/wss/wss.pdf

4. Bartel M., Boyer J., Fox B., LaMacchia B. and Simon, XML Signatures,
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/E

5. Bosin A., Dess N., Fugini M.G., Liberati D., Pes B., ”Supporting Distributed Experiments in
Cooperative Environments”, in Business Process Management, Springer-Verlag Bussler C.,
Haller A. (Eds.), vol. 25, 2006, pp. 281 - 292

6. Camarinha-Matos L.M., Silveri I., Afsarmanesh H., and Oliveira A.I., ”Towards a Frame-
work for Creation of Dynamic Virtual Organizations”, in Collaborative Networks and Their
Breeding Environments, Springer, Boston Volume 186/2005, 2005, pp. 69-80

7. Casati F., Castano S., Fugini M.G., ”Managing Workflow Authorization Constraints Through
Active Database Technology”, Journal of Information Systems Frontiers, Special Issue on
Workflow Automation and Business Process Integration, 2002

8. Damiani E., De Capitani di Vimercati S., Paraboschi S., Samarati P., ”Fine Grained Access
Control for SOAP E-Services”, in Proc. of the Tenth International World Wide Web Confer-
ence, Hong Kong, China, May 1-5, 2001.

9. Della-Libera G. et al., Web Services Trust Language (WS-Trust), available at
http://www.ibm.com/developerworks/library/ws-trust/index.html

10. Della-Libera G., et al, ”Web Services Security Policy Language (WS-SecurityPolicy,” July
2005. (See http://www.oasis-en.org/committees/download.php/16569/)

11. Foster, I. 2006. ”Service-Oriented Science: Scaling e-Science Impact”, Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web intelligence, 2006

12. Hallam-Baker P., Hodges J., Maler E., McLaren C., Irving R., SAML 1.0 Specification,
http://www.oasis-open.org/committees/tc home.php?wg abbrev=security, 2003

13. IETF Policy Framework Working Group, A framework for policy-based admission control,
available at http://www.ietf.org/rfc/rfc2753.txt, 2003

14. ImamuraT., Dillaway B., Simon E., XML Encryption, http://www.w3.org/TR/xmlenc-core/
15. Jiang H., Lu S., ”Access Control for Workflow Environment: The RTFW Model”, in Com-

puter Supported CooperativeWork in Design III, LNCS Springer Berlin / Heidelberg, Volume
4402/2007, 2007, pp. 619-626

16. Kim K.H., Buyya R., ”Policy-based Resource Allocation in Hierarchical Virtual Organiza-
tions for Global Grids”, 18th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’06), 2006, pp. 36-46

17. Lang B., Foster I., Siebenlist F., Ananthakrishnan R., Freeman T., ”A Multipolicy Authoriza-
tion Framework for Grid Security,” Fifth IEEE International Symposium on Network Com-
puting and Applications (NCA’06), 2006, pp. 269-272

18. Mohammad A.,Chen A.,Wang G. W., Changzhou C., Santiago R., ”A Multi-Layer Security
Enabled Quality of Service (QoS) Management Architecture”, in Enterprise Distributed Ob-
ject Computing Conference, 2007 (EDOC 2007) Oct. 2007, pp.423-423

19. Nadalin A., C. Kaler, P. Hallam-Baker, R. Monzillo (Eds.) Web Services Security, available
at http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

20. Welch V., Siebenlist F., Foster I., Bresnahan J., Czajkowski K., Gawor J., Kesselman C.,
Meder S., Pearlman L., Tuecke S., ”Security for Grid Services”, Proc. 12th IEEE International
Symposium on High Performance Distributed Computing, 22-24 June 2003, pp. 48- 57


