
Negotiation of Prohibition: An Approach Based
on Policy Rewriting

Nora Cuppens-Boulahia, Frédéric Cuppens, Diala Abi Haidar, Hervé Debar

1 Introduction

Traditionally, access control is enforced by centralized stand-alone architectures. In
this case, the access controller “knows” all information necessary to evaluate the
access control policy. As a consequence, when a subject sends a query to the access
controller, this access controller does not need to interact with this subject to decide
if this query must be accepted or rejected.
However, in more recent architectures, such a centralized evaluation of the access

control policy is no longer appropriate. When a subject sends a query to the access
controller, this controller needs to interact with the subject through a negotiation
protocol. The objective of this protocol is to exchange additional information neces-
sary to evaluate the policy. This information generally correspond to credentials the
subject has to provide to prove that he or she satisfies the requirements to execute
the query.
Notice that the negotiation protocol can actually behave in a symmetric way in

the sense that the access controller may also exchange credentials to provide the
subject with guarantees that this subject can interact securely with the controller.
The objective of the negotiation is to exchange credentials in order to decide if

the query must be accepted or not. When the access control policy corresponds to a
set of permission rules, this consists in determining if the query matches one of these
permission rules. However, the access control policy may also include prohibitions
that act as exception to the permissions. In that case, the negotiation protocol must
decide if (1) there is a permission to accept the query and (2) there is no prohibition
that would apply to deny the query.

Nora Cuppens-Boulahia, Frédéric Cuppens and Diala Abi Haidar
TELECOM Bretagne, 2 rue de la châtaigneraie, 35512 Cesson Sévigné Cedex, France

Diala Abi Haidar and Hervé Debar
France Telecom R&D Caen, 42 rue des coutures BP 6243, 14066 CAEN, France

173

174 Nora Cuppens-Boulahia, Frédéric Cuppens, Diala Abi Haidar, Hervé Debar

However, we claim that it would not be fair if the negotiation protocol ask for
credentials in order to activate prohibitions. To illustrate this claim, let us consider
the two following access control rules: (R1) a member of the medical staff is permit-
ted to consult the patient’s medical summary, (R2) a medical secretary is prohibited
to consult the patient’s medical summary. Let us also assume that rule R2 has higher
priority than rule R1. Assigning priority to access control rules will be further dis-
cussed in the remainder of this paper.
Let us now consider a subject who asks to consult a given medical summary. We

argue that the negotiation protocol should not ask this subject to provide a credential
proving that he or she is a medical secretary in order to activate prohibition R2.
Instead, the negotiation protocol should ask this subject to prove that he or she is a
medical staff member (so that permission R1 applies) and not a medical secretary
(so that prohibition R2 does not apply). For this purpose, the subject may provide
a credential proving that he or she is a physician if this is sufficient to derive that
(1) a physician is a medical staff member (due to an inclusion hierarchy) and (2) a
physician cannot be a medical secretary (due to a separation constraint).
Since it is not possible to directly negotiate prohibitions, we suggest an approach

to solve this problem. The central idea consists in rewriting an access control pol-
icy that contains both permissions and prohibitions into an equivalent policy that
contains only permissions. We show that this approach applies to both open and
close policies. The resulting policy only contains permissions but requires to nego-
tiate negative attributes. For instance, in our above example, the negotiation protocol
must get evidence that the subject is not a medical secretary. Thus, another contri-
bution of this paper consists in adapting a negotiation protocol so that negotiation
of negative attributes is possible.
The remainder of this paper is organized as follows. In section 2, we further de-

velop a scenario to motivate the problem addressed in this paper. Section 3 presents
the model we use to specify access control policies and explains how to manage
conflicts between permissions and prohibitions by assigning priority levels to secu-
rity rules. In section 4, we define a rewriting procedure that transforms an access
control policy into an equivalent set of permissions and show how this procedure
applies to both open and close policies. Since our rewriting procedure can generally
generate negative conditions, section 5 explains how to adapt a negotiation protocol
in order to negotiate such negative conditions. Section 6 presents a discussion of our
approach and compares it with related work. Finally, section 7 concludes the paper.

2 Motivating example

In this section, we present an example to illustrate our approach. We consider a
database used in an organization to manage medical records. There is special type
of medical record called medical summary.

Negotiation of Prohibition: An Approach Based on Policy Rewriting 175

The database can be accessed by medical staff members. There are several sub
roles of medical staff member: medical secretary, nurse and physician. There are
also two sub roles of physicians: senior physician and junior physician.
Subjects can ask to execute the activity of managing a medical records. There are

two sub activities of managing called consult and update.
The access control policy associated with this database management system cor-

responds to the following rules:

• R1: A member of the medical staff is permitted to manage the patient’s medical
summary,

• R2: A medical secretary is prohibited to manage the medical records,
• R3: In a context of urgency, a medical secretary is permitted to consult the pa-
tient’s medical summary,

• R4: A nurse is prohibited to update the patient’s medical summary,
• R5: A physician is permitted to manage medical records,
• R6: A junior physician is prohibited to update medical records.
• R7: In a context of urgency, a junior physician is permitted to update the patient’s
medical summary.

When a subject queries the database to get an access to a medical record, this sub-
ject has to provide credentials to prove that the requested access is actually permit-
ted. For this purpose, a subject can give credentials proving his or her role (medical
secretary, nurse, physician, junior physician or senior physician), credential prov-
ing that someone is his or her patient (if this subject is a physician) and credentials
proving that the context of urgency is active.
When a subject queries the database, several rules of the security policy may po-

tentially apply. For instance, when a subject asks to update some medical summary,
all the rules of the above policy may potentially apply (since update is a sub activity
of manage and medical summary is a special type of medical record).
Since these rules are conflicting, it is first necessary to solve these conflicts by as-

signing priority levels to these rules. This is further explained in section 3. Based on
these priority levels, we define a process to rewrite the initial policy into an equiv-
alent set of access control rules but that only contains permissions. For example, if
we assume that rule R6 has higher priority than rule R5, then our rewriting process
will rewrite rule R5 into the two following rules:

• R5.1. A physician who is not a junior physician is permitted to manage his or her
patient’s medical records,

• R5.2. A physician is permitted to manage without updating his or her patient’s
medical records.

Then, the database access controller has to determine which rule actually applies
to take the decision to accept or deny the access. For this purpose, the access control
must determine which credentials are sufficient to grant an access. For example, let
us assume that the subject that queries the database provides his credential proving

176 Nora Cuppens-Boulahia, Frédéric Cuppens, Diala Abi Haidar, Hervé Debar

that he or she is physician. In this case, if the query consists in updating some medi-
cal record, then rule R5.1 potentially applies. Thus, the negotiation process may ask
this subject to prove that he or she is not a junior physician.
As mentioned in the introduction, the net advantage of our approach is that the

negotiation process will not ask the subject to prove that he or she is a junior physi-
cian to check if the prohibition associated with rule R6 actually applies. We claim
that it is clearly better to ask this user to prove that he or she is not a junior physician
in order to derive that rule R5.1 actually applies.

3 Policy specification and conflict management

3.1 Access control specification

Access control models provide means to specify which permissions and prohibitions
apply to subjects when they execute actions on objects [3, 9]. These permissions
and prohibitions are generally modelled by rules having the form1 condition →
permission(S,A,O) or condition→ prohibition(S,A,O) where condition is a con-
dition that must be satisfied on the state of the information system to derive the
corresponding permission or prohibition. A conflict occurs if it is possible to derive
that a given subject is both permitted and prohibited to execute a given action on a
given object.
Managing conflicts in such models is a complex problem and [4] shows that

detecting potential conflicts is actually undecidable. In [4], we also show the ad-
vantage of a more structured model as suggested in the OrBAC model [10, 11]
and we shall use this model in the following to express the access control pol-
icy. One of the OrBAC contribution is the abstraction of the traditional triples
⟨sub ject,action,ob ject⟩ into ⟨role,activity,view⟩. The entities sub ject, action and
ob ject are called concrete entities whereas the entities role, activity and view are
called organizational entities.
A view is a set of objects that possess the same security-related properties within

an organization thus these objects are accessed in the same way. Abstracting them
into a view avoids the need to write one rule for each of them. Another useful ab-
straction is that of action into activity. An activity is viewed as an operation which is
implemented by some actions defined in the organization. For example, the actions
read (for a file) and select (for a database) may be considered as one consult data op-
eration. This is why they can be grouped within the same activity for which we may
define a single security rule. One of the main contributions of the OrBAC model
is that it can model context that restricts the applicability of the rules to some spe-
cific circumstances [5]. Thus, context is another organizational entity of the OrBAC
model.

1 In the following, we shall assume that terms starting with a capital letter represent variables and
that all free variables in formula are implicitly universally quantified.

Negotiation of Prohibition: An Approach Based on Policy Rewriting 177

The OrBAC model defines four predicates2:
• empower: empower(s, r) means that subject s is empowered in role r.
• consider: consider(α , a) means that action α implements the activity a.
• use: use(o, v) means that object o is used in view v.
• hold: hold(s, α , o, c)means that context c is true between subject s, action α and
object o

Access control rules are specified in OrBAC by quintuples that have the following
form:

• SR(decision,role,activity,view,context)

which specifies that the decision (i.e. permission or prohibition) is applied to a given
role when requesting to perform a given activity on a given view in a given context.
We call these organizational security rules. An example of such a security rule is:

• SR(prohibition,nurse,update,medical summary,anyC)

that corresponds to the rule R4 in our motivating example associated with the anyC
context which is always true.
Concrete permissions or prohibitions that apply to triples ⟨sub ject,action,ob ject⟩

are modelled using the predicate sr(decision,sub ject,action,ob ject) and logically
derived from organizational security rules. The general derivation rule is defined as
follows:

• SR(Decision,R,A,V,C)∧ empower(Sub ject,R)∧ consider(Action,A)∧
use(Ob ject,V)∧hold(Sub ject,Action,Ob ject,C)

→ sr(Decision,Sub ject,Action,Ob ject)

3.2 Structuring organizational entities

The OrBACmodel is based on four different types of organizational entities, namely
role, activity, view and context. When defining our algorithm to rewrite a security
policy in section 4, we shall need to aggregate elementary entities into composite
entities. For instance, if r1 and r2 are two roles, then we shall consider that the
intersection r1∩r2 and the disjunction r1∪r2 of these two roles is also a (composite)
role. Similarly, the complement r or a role r is also a role.
For this purpose, we define an algebra for the four types of organizational enti-

ties. To simplify the presentation, we only formally define this algebra for the role
entities. The algebras for the three other entities activity, view and context are simi-
larly defined.
To define this algebra, we first consider a finite setS or subjects and a finite set

R of elementary roles. The algebra associated with the role entity is then defined as
follows:
2 In OrBAC, the organization is made explicit in every predicate but here, to simplify, the organi-
zation is left implicit since we consider always only one organization.

178 Nora Cuppens-Boulahia, Frédéric Cuppens, Diala Abi Haidar, Hervé Debar

Definition of the role algebra:

We define an algebra for the role entity as follows:
• noR and anyR are two roles.
• If r ∈R then r is an (elementary) role.
• If r is a role, then r is a role.
• If r1 and r2 are roles, then r1∩ r2 and r1∪ r2 are roles.
• Nothing else is a role.
In the following, we shall also use r1\r2 as a notation equivalent to r1∩ r2.

Interpretation of the role algebra:

To provide an interpretation of the algebra, we use the following notation for each
elementary role r:

| r |= {s ∈S such that empower(s,r) is true}
Then the algebra is interpreted as follows:

• | noR |= /0
• | anyR |= S

• | r |=C|r|
S

• | r1∩ r2 |=| r1 | ∩ | r2 |
• | r1∪ r2 |=| r1 | ∪ | r2 |

Axiomatic:

The axiomatic of the role algebra is defined by axioms that specify that ∩ is com-
mutative, associative, it distributes over ∪ plus the following axioms:

• noR = anyR
• R∩R= R
• R∩noR = noR
• R∩anyR = R
• R= R
• R1∪R2 = R1∩R2
We also associates the four organizational entities with a hierarchy of inclusion

and constraints of separation. We only present the model for the role entity. The
models for the activity, view and context entities are similarly defined.
The inclusion hierarchy on the roles is defined using the sub role predicate: If r1

and r2 are roles, then sub role(r1,r2) means that r1 is a sub role of r2.
Separation constraints between roles are defined using the separated role(r1,r2)

predicate which states that role r1 is separated from role r2, i.e. a subject cannot be
empowered in both r1 and r2.
We have the following axioms:

Negotiation of Prohibition: An Approach Based on Policy Rewriting 179

• separated role(R1,R2)↔ R1∩R2 = noR
• sub role(R1,R2)↔ R1∩R2 = noR
• sub role is transitive
• sub role(R1,R2)∧ separated role(R2,R3)→ separated role(R1,R3)

To illustrate this algebra, let physician be a role. According to our algebra
physician is also a role which is defined through the complement of the role
physician. That is, a subject is assigned to the role physician if he is not assigned to
the role physician. If we have two roles physician and employee then physician∩
employee and physician∪employee are also roles based respectively on intersection
and disjunction of roles. A subject is empowered in the role physician∩ employee
if he or she is empowered in both roles physician and employee.

3.3 Prioritized access control rules

When the access control policy contains permissions and prohibitions, a conflict
occurs when one can derive both sr(permission,s,a,o) and sr(prohibition,s,a,o)
for some subject, action and object. The solution is based on assigning priorities to
security rules so that when a conflict occurs between two rules, the rule with the
higher priority takes precedence.
This is basically the approach suggested in the OrBAC model [4]. It actually pro-

vides means to detect and manage potential conflicts between organizational rules.
A potential conflict exists between an organizational permission rule and an organi-
zational prohibition rule if these two rules may possibly apply to the same subject,
action and object. There is no such potential conflict between two organizational
security rules if these rules are separated. Thus, in OrBAC, a potential conflict be-
tween two organizational security rules is defined as follows:

Definition 1. A potential conflict occurs between two security rules SR(d1,r1,a1,
v1,c1) and SR(d2,r2,a2,v2,c2) if d1 ̸= d2 and role r1, activity a1, view v1 and context
c1 are respectively not separated from role r2, activity a2, view v2 and context c2.

Priorities should be associated with such potentially conflicting security rules in
order to avoid situations of real conflict. Prioritization of security rules must proceed
as follows [4]:

• Step 1: Detection of potentially conflicting rules.
• Step 2: Assignment of priority to potentially conflicting rules.

We then obtain a set of partially ordered security rules SR(decision, role, activity,
view, context, priority). Concrete security rules can be derived from the abstract
security rules and are assigned with the same priority. It has been proved in previous
works [4] the following theorem.

Theorem 1. If every potential conflict is solved, then no conflict can occur at the
concrete level.

180 Nora Cuppens-Boulahia, Frédéric Cuppens, Diala Abi Haidar, Hervé Debar

3.4 Application to our motivating example

The access control policy of our motivating example is formally specified by the
following set of OrBAC security rules:

• R1: SR(permission,medical sta f f ,manage,medical summary,anyC)
• R2: SR(prohibition,secretary,manage,medical record,anyC)
• R3: SR(permission,secretary,consult,medical summary,urgency)
• R4: SR(prohibition,nurse,update,medical summary,anyC)
• R5: SR(permission, physician,manage,medical record,anyC)
• R6: SR(prohibition, junior physician,update,medical record,anyC)
• R7: SR(permission, junior physician,update,medical record,urgency)

We also assume we have the following separation constraints:

• C1: separated role(nurse,secretary)
• C2: separated role(nurse, physician)
• C3: separated role(secretary, physician)

Notice that since we have sub role(junior physician, physician) we can also de-
rive:

• C4: separated role(nurse, junior physician)
• C5: separated role(secretary, junior physician)

Let us now detect and solve the potential conflicts of this access control policy:

• Step 1: Detection of potential conflicts.
We have the following set of pairs of potentially conflicting rules:
Con f lict = {(R1,R2),(R1,R4),(R1,R6),(R2,R3),(R5,R6),(R6,R7)}

• Step 2: Resolution of potential conflicts.
To solve the set of potential conflicts, we need to assign priority to every pair of
potentially conflicting rules. For instance:
R1< R2< R3
R1< R4, R6< R1
R5< R6< R7

4 Policy rewriting

We present an algorithm to rewrite a security policy that contains both permissions
and prohibitions into an equivalent security policy that only contains permissions.
In the initial policy we want to rewrite, we assume that every potential conflict is
solved by priority assignment.
We first address the case of a close policy and then the case of an open policy.

We recall that in the case of close policy, when no security rule applies to a given

Negotiation of Prohibition: An Approach Based on Policy Rewriting 181

query, then the default decision is to reject the query. Whereas in an open policy,
when no security rule applies to a given query, then the default decision is to accept
the query.

4.1 Close policy case

Principle of the rewriting process: For every pair of potentially conflicting rule Ri
and Rj such that Ri has higher priority than Rj and decision(Ri) = prohibition and
decision(Rj) = permission, rewrite Ri with Rj.
The rewriting process core: It keeps the rule with the higher priority Ri unchanged
and it replaces the rule with the lower priority Rj by another rule after excluding
from its application conditions the conditions of the higher priority rule Ri.
Let us write SR(decision,r,ac,v,ctx, priority) = SR(decision, tupleSR, priority),
where tupleSR = {(s,a,o,c) such that s∈ r,a∈ ac,o∈ v,c∈ ctx} and let us illustrate
our algorithm using the following example of three conflicting rules:
SR1(permission, tupleSR1 , priority1)
SR2(prohibition, tupleSR2 , priority2)
SR3(permission, tupleSR3 , priority3)

where each tupleSRi = {(s,a,o,c) such that s ∈ ri,a ∈ aci,o ∈ vi,c ∈ ctxi} and
priority1 < priority2 < priority3.
The steps of our rewriting process are then the following:

1. The rule SR3 is kept unchanged with its associated application condition tupleSR3 .
2. Rewriting SR2 with SR3 is a process that replaces SR2 by SR′2 with:

tupleSR′2 = {(s,a,o,c) such that (s,a,o,c) ∈ tupleSR2\tupleSR3}
3. According to the principle of the rewriting process core, SR′2 is kept unchanged
and SR1 is rewritten and replaced by SR′1 with:

tupleSR′1 = tupleSR1\(tupleSR2\tupleSR3)

tupleSR′1 can be simplified using some common properties of set theory. In a finite
space E, we have the following properties over two sets S1 and S2:

S1\S2 = S1∩CS2E (1)
CS1∩S2E =CS1E ∪C

S2
E (2)

CC
S1
E

E = S1 (3)

Thus, using the property (1),(2) and (3), we get:

S1\(S2\S3) = S1∩ (S3∪CS2E) (4)

Coming back to our security rules and their associated conditions tupleSRi , i ∈
{1,2,3}, if we apply the above simplifications to tupleSR′1 , we get:

tupleSR′1 = tupleSR1\(tupleSR2\tupleSR3) = tupleSR1 ∩ (tupleSR3 ∪C
tupleSR2
E)

182 Nora Cuppens-Boulahia, Frédéric Cuppens, Diala Abi Haidar, Hervé Debar

As the set tupleSR3 is already taken into account since we keep the rule of higher
priority unchanged (i.e the rule SR3), we can perform further simplification and we
get:

tupleSR′1 = tupleSR1 ∩C
tupleSR2
E = tupleSR1 ∩ tupleSR2 (5)

The simplification (5) is true in the case of 3 conflicting rules or even any num-
ber n of totally ordered conflicting rules. The correctness of this rewriting is proved
in [6]. Thus, if we consider that we have n rules such as priority1 < priority2 <

priority3 < ... < priorityn where priorityn is the priority of SRn, our rewriting al-
gorithm for n ordered conflicting rules can be stated as the following:

• SRn with its condition tupleSRn are keep unchanged and
• for each j such that 1≤ j,SRn− j is replaced by SR′n− j with the condition:
tupleSR′n− j = tupleSRn− j\tupleSRn−(j−1)

We get in fine:

tupleSR′n− j = | rn− j\rn−(j−1) |× | acn− j |× | vn− j |× | ctxn− j |

∪ | rn− j |× | acn− j\acn−(j−1) |× | vn− j |× | ctxn− j |
∪ | rn− j |× | acn− j |× | vn− j\vn−(j−1) |× | ctxn− j |
∪ | rn− j |× | acn− j |× | vn− j |× | ctxn− j\ctxn−(j−1) |

Actually, after applying the algorithm each rewritten rule is subdivided into four
distinct sets of rules:

SR′n− j ⇔ SR′1.n− j(decision,rn− j\rn−(j−1),acn− j,vn− j,ctxn− j, priorityn− j}
SR′2.n− j(decision,rn− j,acn− j\acn−(j−1),vn− j,ctxn− j, priorityn− j}
SR′3.n− j(decision,rn− j,acn− j,vn− j\vn−(j−1),ctxn− j, priorityn− j}
SR′4.n− j(decision,rn− j,acn− j,vn− j,ctxn− j\ctxn−(j−1), priorityn− j}

The rewriting process we have stated transforms a security policy into an equiva-
lent policy that contains only permissions. All the conditions of prohibitions that are
of higher priority are excluded from the permissions of less priority. Due to such an
exclusion, if a prohibition rule of the policy before the application of our algorithm
should have been applied to a given request, none of the resulting permissions of the
rewritten policy should be matched. In this case, the default policy will be applied.
To illustrate our rewriting process, let us apply it to our motivating example. We

shall obtain the following set of permissions:

• R1.1: SR(permission,medical sta f f\secretary\nurse,
manage,medical summary,anyC)

• R1.2: SR(permission,medical sta f f\secretary,
manage\update,medical summary,anyC)

• R3: SR(permission,secretary,consult,medical summary,urgency)

Negotiation of Prohibition: An Approach Based on Policy Rewriting 183

• R5.1: SR(permission, physician\ junior physician,
manage,medical record,anyC)

• R5.2: SR(permission, physician,
manage\update,medical record,anyC)

• R7: SR(permission, junior physician,update,medical record,urgency)

Notice that the objective of the rewriting process is not to obtain a set of mu-
tually independent permissions as suggested for instance in [1]. In our example,
rules R5.1 and R5.2 are not mutually independent: if a subject assigned to role
physician\ junior physician asks for executing an action in manage\update on the
view medical record, then both rules apply.
To obtain mutually independent rules, we could replace physician by

junior physician in rule R5.2. However, here, the objective of rewriting is actually
not to obtain a “minimal” set of permissions. Instead, it is better for the negotiation
process to obtain a set of “less” restrictive permissions. In our example, it would be
inappropriate for the negotiation protocol to ask the subject to prove that he or she
is a junior physician if proving that he or she is a physician is sufficient to activate
the rule.

4.2 Open policy case

The rewriting algorithm also applies when the security policy is open, i.e. when the
default policy is to accept the request when no access control rule applies.
When the policy is open, we have simply to add a security rule specifying “ev-

erything is permitted”:

• R0: SR(permission,anyR,anyA,anyV ,anyC)

This security rule is associated with the lowest priority, i.e. for every other access
control rule Ri of the policy, we have R0 < Ri.
We can then apply the rewriting algorithm without modification. Let us apply the

approach to the following access control policy:

• R1: SR(prohibition,secretary,manage,medical record,anyC)
• R2: SR(prohibition,nurse,update,anyV ,anyC)
• R3: SR(permission,nurse,update,medical summary,urgency)

Let us assume that R3 has higher priority than R2. After rewriting this policy, we
shall get the following set of permissions:

• R0.1: SR(permission,anyR\secretary\nurse,anyA,anyV ,anyC)
• R0.2: SR(permission,anyR\secretary,anyA\update,anyV ,anyC)
• R0.3: SR(permission,anyR,anyA\manage,anyV ,anyC)
• R0.4: SR(permission,anyR\nurse,anyA,anyV\medical record,anyC)
• R0.5: SR(permission,anyR,anyA\update,anyV\medical record,anyC)

184 Nora Cuppens-Boulahia, Frédéric Cuppens, Diala Abi Haidar, Hervé Debar

• R3: SR(permission,nurse,update,medical summary,urgency)

Rules R0.1 to R0.5 corresponds to rewriting rule R0 with prohibitions R1 and R2.
Rule R3 is not rewritten since it has higher priority than rule R2 and is separated
from rule R1.

5 Negotiation of negative attributes

The set theory we use in this paper is especially adapted to rewrite policies. We
shall now explain how to define a negotiation protocol for the rewritten policies.
For the purpose of negotiation, we need to specify conditions over attributes (i.e.
credentials) to be requested from the requester. This is why we need to express our
rewritten policy using conditions over the entities role, view, activity and context.
Thus, we assume that every organizational entity involved in the negotiation is asso-
ciated with a condition expressed in terms of attributes. This condition is a sufficient
requirement to derive that a concrete entity (for instance a subject) is assigned to
some organizational entity (for instance a role).
For example, the condition associated with the role senior physicianmay be that

the subject’s occupation is physician and this subject starts this occupation for more
than two years. Then, we have:
occupation(S, physician)∧ start occupation(S, physician,Start year)∧
year(current date,Current year)∧Current year−Start year ≥ 2

→ empower(s,senior physician)
Now, if a subject involved in the negotiation has to prove that he or she is empowered
in role senior physician, then it will be requested to provide credentials to prove that
his or her occupation is physician and that he or she is practicing this occupation for
more than two years.
We have also to translate our set theory algebra into logical based conditions

used in the negotiation process. This is straightforward because, if Cond(E1) and
Cond(E2) respectively represent the sufficient conditions to be assigned into orga-
nizational entities E1 and E2, then we have the following equivalence:

Cond(E1\E2)↔Cond(E1)∧not(Cond(E2))
Cond(E1∩E2)↔Cond(E1)∧Cond(E2)
Cond(E1∪E2)↔Cond(E1)∨Cond(E2)

As one can notice from the obtained rewritten security rules, we need to negotiate
negative attributes such as not(Cond(E2)). In the traditional centralized approach,
the access controller will generally use “negation by failure” to evaluate negation.
If the access controller cannot derive that some information is true, it will infer that
this information is false. This corresponds to the close world assumption: The access
controller knows every information necessary to evaluate the policy.

Negotiation of Prohibition: An Approach Based on Policy Rewriting 185

Of course, the close world assumption is not applicable to evaluate negative at-
tributes in a negotiation process. Thus, the subject must provide credentials to prove
that some condition is false.
If we assume that there is no credential that may be directly used to prove a neg-

ative attribute, then requester must provide credentials on positive conditions that
are used to derive negative attributes proving that some condition is false. This
derivation may be done using the inclusion hierarchy and separation constraint.
For instance, having separated entity(e1,e2), if the requester prove that he or she
is assigned to the entity e1, we can derive that he or she is not assigned to en-
tity e2. In addition to that if we have sub entity(e3,e2), then we can derive that
separated entity(e1,e3). Thus, the given requester is not assigned to entity e3.
For instance, in our motivation example, a subject can provide his or her cre-

dential proving that he or she is a senior physician to prove that he or she is not a
medical secretary if (1) a senior physician is a sub role of physician (inclusion hi-
erarchy) and (2) role physician is separated from role medical secretary (separation
constraint).

6 Discussion and related work

Among other works done on negotiation of security policies we mainly discuss the
Trustbuilder [15, 13, 14], Trust-χ [2] and XeNA [7] approaches.
TrustBuilder is a system for negotiation of trust in dynamic coalitions. It allows

negotiating trust across organizational boundaries, between entities from different
security domains. Using TrustBuilder, parties conduct bilateral and iterative ex-
changes of policies and credentials to negotiate access to system resources including
services, credentials and sensitive system policies.
The TrustBuilder approach consists in gradually disclosing credentials in order to

establish trust. The approach also incorporates policy disclosure; Only policies that
are relevant to the current negotiation may be disclosed by the concerned parties.
They specify what combinations of credentials one can present in order to gain
access to a protected resource of the accessed service. In this way it is possible to
focus the negotiation and base disclosures on need to know. Since these policies
may contain sensitive information, their disclosure can also be managed by some
strategies [12].
Trust-χ is another framework for trust negotiation specifically conceived for a

peer-to-peer environment. Trust-χ proposes a language for the specification of poli-
cies and credentials needed in the negotiation process. Furthermore, it provides a
variety of strategies for the negotiation. This latter consists of a set of phases to
be sequentially executed. Trust-χ introduces trust tickets that are issued after a ne-
gotiation process succeeds. By certifying that previous negotiation process relative
to a resource has succeeded, i.e. negotiating entities possess the required creden-
tials, the trust tickets reduce as much as possible the number of credentials and
policies needed in subsequent negotiation processes relative to the same resource

186 Nora Cuppens-Boulahia, Frédéric Cuppens, Diala Abi Haidar, Hervé Debar

thus speeding up these processes. Similarly to TrustBuilder, the Trust-χ disclosure
policies state the conditions under which a resource can be revealed. Furthermore,
prerequisites,(i.e. set of alternative policies to be disclosed before the policy they
refer to) associated with sensitive policies manage their disclosure.
However, none of the previously described models deals with prohibitions.
XeNA is another negotiation approach based on the eXtensible Access Control

Markup Language (XACML) [8, 7]. The proposed approach allows the expression
of negative policies since XACML is a language that makes use of prohibitions.
However, the authors do not explain how to deal with prohibitions in the negotiation
policies. Their approach is based on a resource classification methodology [8]. It
is the classification of a resource that determines if the access to this resource is
negotiated (or not) and what are the negotiation requirements, i.e. needed credentials
expressed in negotiation policies. They further propose a negotiation framework that
uses this classification methodology and is based on the XACML architecture [7].
Two modules are introduced to manage the negotiation process: (1) the negotiation
module is in charge of collecting the required information to establish a level of
trust and to insure a successful evaluation of access and (2) the exception treatment
module is called by the negotiation module in order to propose alternatives whenever
an exception (i.e. non access or loop exception) is raised.
Thus, to our best knowledge, it is the first time that the problem of negotiating se-

curity policies that includes prohibition is addressed. We are currently implementing
our approach as an extension of the above models.

7 Conclusion

We propose in this paper a new approach to negotiate security policies that include
both permissions and prohibitions. Since it would be not fair to ask the subject to
provide credentials in order to derive prohibitions, we suggest rewriting the policy
so that it only contains permissions.
For this purpose and as suggested in the OrBAC model, the access control policy

is defined in a structured way using the organizational entities of role, activity, view
and context instead of the traditional concrete entities of sub ject, action and ob ject.
We also define a set theory algebra to aggregate elementary organizational entities
into composite organizational entities. The rewriting algorithm uses, as preliminary
steps, the approach suggested in [4] to detect and solve conflicts by assigning prior-
ities to access control rules.
We then show that our rewriting algorithm provides means to transform an access

control policy that contains both permissions and prohibitions into an equivalent one
that only contains permissions. This rewritten access control policy is used in the
negotiation process to determine which credentials are required to grant access to
some requester. Since the rewritten policy generally specifies negative conditions, it
is necessary to define strategies to negotiate these negative conditions. For this pur-
pose, we actually assume that a credential cannot be directly used to prove a negative

Negotiation of Prohibition: An Approach Based on Policy Rewriting 187

condition. Thus, we present an approach to derive negative attributes proving that
some condition is false from credentials on positive attributes.
In future works we aim to implement this approach as an extension of existing

prototypes, in particular TrustBuilder. We also plan to investigate how to negotiate
policies that include obligations.

Acknowledgements This work is partially supported by the ANR Politess project.

References

1. J. G. Alfaro, F. Cuppens, and N. Cuppens-Boulahia. Towards Filtering and Alerting Rule
Rewriting on Single-Component Policies. In SAFECOMP, Gdansk, Poland, September 2006.

2. E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-X: A Peer-to-Peer Framework for Trust Es-
tablishment. IEEE Transactions on Knowledge and Data Engineering, 16(7):827–842, 2004.

3. E. Bertino, S. Jajodia, and P. Samarati. Supporting Multiple Access Control Policies in
Database Systems. In IEEE Symposium on Security and Privacy, Oakland, USA, 1996.

4. F. Cuppens, N. Cuppens-Boulahia, and M. Ben Ghorbel. High level conflict management
strategies in advanced access control models. Electron. Notes Theor. Comput. Sci., 186:3–26,
2007.

5. F. Cuppens and A. Miège. Modelling Contexts in the Or-BAC Model. ACSAC, page 416,
2003.

6. N. Cuppens-Boulahia, F. Cuppens, D. Abi Haidar, and H. Debar. Negotiation of prohibition:
An approach based on policy rewriting. Technical report, TELECOM Bretagne, 2008.

7. D. Abi Haidar, N. Cuppens, F. Cuppens, and H. Debar. Access Negotiation within XACML
Architecture. Second Joint Conference on Security in Networks Architectures and Security of
Information Systems (SARSSI), June 2007.

8. D. Abi Haidar, N. Cuppens, F. Cuppens, and H. Debar. Resource Classification Based Negoti-
ation in Web Services. Third International Symposium on Information Assurance and Security
(IAS), pages 313–318, August 2007.

9. S. Jajodia, S. Samarati, and V. S. Subrahmanian. A logical Language for Expressing Autho-
rizations. In IEEE Symposium on Security and Privacy, Oakland, CA, May 1997.

10. A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège,
C. Saurel, and G. Trouessin. Organization Based Access Control. In 8th IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY 2003), Lake Como,
Italy, June 2003.

11. A. Miège. Definition of a formal framework for specifying security policies. The Or-BAC
model and extensions. PhD thesis, ENST, June 2005.

12. K. Seamons, M. Winslett, and T. Yu. Limiting the Disclosure of Access Control Policies Dur-
ing Automated Trust Negotiation. In Network and Distributed System Security Symposium,
San Diego, CA, April 2001.

13. K.E. Seamons, T. Chan, E. Child, M. Halcrow, A. Hess, J. Holt, J. Jacobson, R. Jarvis, A. Patty,
B. Smith, T. Sundelin, and L. Yu. TrustBuilder: negotiating trust in dynamic coalitions. Pro-
ceedings DARPA Information Survivability Conference and Exposition, 2:49–51, April 2003.

14. B. Smith, K.E. Seamons, and M.D Jones. Responding to policies at runtime in TrustBuilder.
Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY’04), pages 149–158, June 2004.

15. T. Yu, M. Winslett, and K. E. Seamons. Supporting structured credentials and sensitive poli-
cies through interoperable strategies for automated trust negotiation. ACM Transactions on
Information and System Security (TISSEC), 6(1):1–42, February 2003.

