
Role Signatures for Access Control in Open
Distributed Systems

Jason Crampton and Hoon Wei Lim

Abstract Implementing access control efficiently and effectively in an open and
distributed system is a challenging problem. One reason for this is that users re-
questing access to remote resources may be unknown to the authorization service
that controls access to the requested resources. Hence, it seems inevitable that pre-
defined mappings of principals in one domain to those in the domain containing the
resources are needed. In addition, verifying the authenticity of user credentials or
attributes can be difficult. In this paper, we propose the concept of role signatures to
solve these problems by exploiting the hierarchical namespaces that exist in many
distributed systems. Our approach makes use of a hierarchical identity-based signa-
ture scheme: verification keys are based on generic role identifiers defined within a
hierarchical namespace. The verification of a role signature serves to prove that the
signer is an authorized user and is assigned to one or more roles. Individual member
organizations of a virtual organization are not required to agree on principal map-
pings beforehand to enforce access control to resources. Moreover, user authenti-
cation and credential verification is unified in our approach and can be achieved
through a single role signature.

1 Introduction

The most problematic issue for an authorization service in any open distributed com-
puting environment is that access requests may be received from a user that is not
known to the authorization service. It is certainly possible to use signed assertions
and a public key infrastructure (PKI) to determine that the user has been previously

Jason Crampton
Information Security Group, Royal Holloway, University of London, e-mail: jason.
crampton@rhul.ac.uk

Hoon Wei Lim
SAP Research, France, e-mail: hoon.wei.lim@sap.com

205

206 Jason Crampton and Hoon Wei Lim

authenticated by some security domain D1, even one not previously known to the
security domain D2 to which the request was directed. It may even be possible to
use similar types of assertions to determine that a user has a particular attribute, role
r, say, in D1. However, there still remains the difficult problem of interpreting r in
the context of D2’s authorization policy. It seems inevitable that there must be some
prior agreement between D1 and D2 about what r should mean to D2. This pre-
supposes that D2 is aware of the roles defined in D1’s security policy, which also
means that D1 is prepared to reveal role names and their authorization semantics
(within D1) to D2.
In short, it seems inevitable that pre-defined mappings will need to be speci-

fied between principals in one security domain and those in another. It is fair to
say, therefore, that authorization is considerably more difficult than authentication
in open distributed systems. Indeed, it seems practically impossible to evaluate an
access request from a user that is not previously known to the authorization ser-
vice, unless there exists some a priori agreement between the domain containing
the authorization service and the requester’s domain.
In addition to the problem of principal mapping, we also note that all of the

above approaches and existing authorization frameworks that we know of for open
distributed computing environments, such as KeyNote [3], SPKI/SDSI [7] and
RBTM [12], rely on some form of certificate-based PKI. Essentially these frame-
works rely on signed statements or assertions, attesting to the user or the associated
public key having a particular attribute. A set of such attributes is used to map the
user to principals in the relevant authorization policy. The richer the policy language,
the more complex the recovery of these assertions and subsequent computation of
an authorization decision becomes. A considerable amount of research effort has
been devoted to credential chain discovery algorithms in both SPKI/SDSI [5] and
RBTM [13], for example. In essence, existing approaches require the processing,
particularly verification, of a large number of digitally signed credentials.
In this paper, we consider the problems of inter-domain principal mapping and

verification of user credentials that make authorization so difficult in open dis-
tributed environments. We believe the nature of a hierarchical structure within a
virtual organization (VO) or a federation offers some opportunities to reduce the
impact of the difficulties posed by principal mapping, credential verification and cre-
dential chain discovery.1 Typically, a VO will have a hierarchical structure, enabling
member organizations (MOs) and principals within those organizations to be iden-
tified uniquely within a hierarchical namespace. Access requests are signed using a
hierarchical identity-based signature scheme (HIBS), in which signing keys corre-
spond to role identifiers, hence the terminology role signatures. These identifiers are
based on the hierarchical namespace in the VO and associated with some generic
roles defined by the VO. If the identifiers are correctly formed and the associated
signature on the request can be verified, then the user is known to be authorized for
those roles in his home organization.

1 Hereafter, a VO, a term commonly used in large-scale distributed computing systems [8], is
assumed to be a collection of geographically dispersed organizations with heterogeneous systems,
each of which has individual organizational autonomy.

Role Signatures for Access Control in Open Distributed Systems 207

We now summarize the main contributions of this paper.

• There does not need to be agreement between individual member organizations
about how to map principal identifiers. This means that the composition of the
VO can be dynamic without compromising the effectiveness of the authorization
mechanisms in member organizations. New member organizations can join the
VO and need only define some additional rules mapping their local roles to the
VO roles.

• User authentication and credential verification is unified and credential verifica-
tion is rendered trivial. The authorization service is required to verify a single
role signature to both confirm that the user is an authenticated member of some
other member organization and occupies a particular generic role within that or-
ganization.

In the next section, we provide a brief overview of identity-based cryptogra-
phy, the Gentry-Silverberg HIBS scheme, and a recent extension to this scheme.
In Section 3, we present the concept of role signatures and describe the use of a
HIBS scheme for constructing and verifying such signatures. We also describe what
policies need to be defined by member organizations. In Section 4, we describe a
security architecture in which the concept of role signatures can be deployed. We
discuss related work in Section 5.

2 Hierarchical Identity-Based Cryptography

The idea of generating public keys based on user names, or some other publicly
available information that could uniquely identify a user (such as an email address),
was conceived by Shamir more than two decades ago [20]. The corresponding pri-
vate keys are computed and distributed by a trusted Private Key Generator (PKG).
The usual role of a trusted third party (the CA) in a PKI is to attest to the authen-
ticity of public keys. In identity-based cryptography, public keys are derived from
public information and their authenticity can be assumed, obviating the requirement
for certificates. Hence, the job of the trusted third party (the PKG) is to ensure the
correct binding of private keys to identities.
Hierarchical identity-based signatures (HIBS) schemes were developed to reduce

the burden of (private) key generation on the PKG. In such schemes, it is assumed
that entities can be arranged in a rooted tree and that entities at one level are trusted
to issue private keys to entities immediately below them in the tree. More specifi-
cally, the root PKG, located at level 0, produces private keys for entities at level 1,
who in turn act as PKGs for entities in their respective domains at level 2, etc. In the
context of this paper, the root PKG is the trusted authority (TA), who issues keys to
VOs, who in turn issue keys to MOs, who in turn create role signing keys.
Each node in the tree has an identifer. The identifier of an entity is the concatena-

tion of the node identifiers in the path from the root to the node associated with the
entity. Hence, the string id1.id2. · · · .idt represents an entity at level t whose ancestor

208 Jason Crampton and Hoon Wei Lim

at level 1 has identifier id1 and whose ancestor at level j has identifier id1. · · · .id j.
In other words, the tree defines a hierarchical namespace.
We base our work around the Gentry-Silverberg HIBS scheme [10], which works

in the following way. The root PKG computes a master secret s0 and a set of system
parameters, and every other entity chooses a secret value. Each non-leaf entity is
a PKG and is responsible for computing private keys for each of its children using
each child’s identifier, the entity’s secret information and the system parameters.
Each entity may sign messages using the private key generated by its parent. Any
other entity may verify the validity of a signature using the signed message, the
signer’s identifier and the system parameters as inputs.
The purpose of a role signature is to prove membership of a role. As we will see

in Section 3.1.2, there may be situations in which it is useful to prove membership
of multiple roles with a single signature.
There are other HIBS schemes in the literature, for example [4], that may be used

for role signatures. Our proposal is based on Gentry-Silverberg’s scheme because it
can be extended to support “multi-key signatures” [14], in which several keys are
used to generate a single signature, thereby enabling a user to sign a message to
prove possession of two or more signing keys.

3 Role Signatures

We assume that there exists a hierarchical structure within an open distributed sys-
tem, where a trusted authority (TA) is at the top of the hierarchy. Below the TA, we
have the VOs who are formed by MOs. We assume that the VO specifies a small
number of generic roles that can be used as principals in the authorization policy of
each MO. We would argue that this is a much weaker assumption than assuming the
existence of mappings between the principals referenced in each of the MOs’ access
control policies. It is also important to stress at this point that we are using identifiers
(for VOs, MOs and generic roles), rather than (user) identities in our framework.
We treat the TA as a level 0 entity in a tree, the VOs as level 1 entities, the MOs

as level 2 entities, and generic roles as level 3 entities. We then apply the Gentry-
Silverberg HIBS scheme to this hierarchical structure. The TA is responsible for
issuing signing keys to VOs. We view the issuance of a signing key as analogous
to assigning a role to a principal. Hence, if the TA issues a signing key to principal
VO1, this means that VO1 is a legitimate VO principal (recognized by the TA). This
signing key will be derived from the identifier VO1. Similarly, if the principal VO1
issues a signing key to Org1, this means that Org1 is a legitimate MO principal in
VO1. This signing key will be derived from the identifier VO1.Org1. Finally, Org1
may issue a signing key to user u, based on the generic role identifier VO1.Org1.vr.
This is the simplest form of generic role identifier: additional information can be
encoded in the identifier to specify the user to which the role is assigned or the
lifetime of a key. We discuss these issues in more detail in Section 3.3.

Role Signatures for Access Control in Open Distributed Systems 209

3.1 RBAC Policies for Open Distributed Systems

In our proposal, we assume that a VO comprises a countable set of MOs,
Org1,Org2 . . . , and that membership of this set may change over time. We also as-
sume that the VO defines a finite set of generic role identifiers vr1, . . . ,vrm.
Each MO Orgi defines and maintains role-based access control (RBAC) policies.

As usual, a policy decision point (PDPi) for a resource controlled by Orgi uses an
access control policy (ACPi) to decide requests for access to that resource from
users authenticated directly by that organization. This is the internal ACP.
EachMO extends its ACP so that users in that MO are assigned to zero or more of

the generic roles. These role identifiers will be used to map users in one MO to roles
in another MO. In addition, the ACP must be extended to specify how members of
generic roles in other MOs are mapped to local roles. This is the external policy.

3.1.1 Internal ACPs

We use RBAC96 syntax [19] for internal ACPs. We write VR for the set of generic
roles identified within a VO. Given a set of internal role identifiers R, we write R∗
for R∪VR. Each MO Orgi defines an internal set of roles Ri and defines

• a user-role assignment relation UAi ⊆Ui×R∗i , where Ui is the set of authorized
users in Orgi;

• a permission-role assignment relation PAi ⊆ Pi×R∗i , where Pi is the set of per-
missions for resources maintained and protected by Orgi;

• a role hierarchy relation RHi ⊆ R∗i ×R∗i , where the graph (R∗i ,RHi) is directed
and acyclic.

We write (R∗i ,!) for the reflexive transitive closure of RHi. Henceforth, we drop the
subscript i whenever no ambiguity can arise.
Hence, a user u ∈Ui may be assigned directly to a generic role vr via the UAi

relation, or assigned implicitly via inheritance in the RHi relation. This assignment
may enable u to access resources in another organization Org j, depending on the
external policy defined by Org j.

3.1.2 External ACPs

Informally, each member organization needs to decide which other member orga-
nizations it trusts, and which generic roles defined by those organizations can be
mapped to internal roles. The RT family of languages [12] provides a natural way
of stating these external policies. The RT0 language defines four different types of
rules:

• A.r ← A′ is an assertion made by principal A that principal A′ is assigned to
role r. Such an assertion is equivalent to saying that (A,r) ∈ UAA, where UAA

210 Jason Crampton and Hoon Wei Lim

denotes the user-role assignment relation defined by A. In a distributed setting,
the assertion may be presented by A′ to another principal as a credential signed
by A.

• A.r← A′.r′ is a policy statement made by principal A that any member of role
A′.r′ is also a member of the role r. In general, this assertion has no direct equiva-
lent in RBAC96, which is concerned with RBAC policies in closed environments.
(If, however, A = A′, then the statement is analogous to defining a child-parent
relationship between r and r′ in RBAC96.)

• A.r← A.r′.r′′ is a policy statement made by principal A that says any member
of a role B.r′′, where B is itself a member of role A.r′, is a member of role r.
Statements of this form allow A to delegate responsibility (to members of A.r′)
for assigning principals to role r′′.

• A.r← A1.r1∩A2.r2 is a statement made by principal A that says that any member
of roles A1.r1 and A2.r2 is also a member of role r.

We now show how rules of this form can be used to encode our external policies.
The RT rules

Orgi.memberOrg←VO.memberOrg (1)
Orgi.vr← Orgi.memberOrg.vr (2)

assume that (principal) VO defines a role called memberOrg and state that

• Orgi defines a role called memberOrg and any member of VO.memberOrg is
also a member of the local memberOrg role;

• any member of a generic role vr defined by a member of role memberOrg is also
a member of the generic role defined by Orgi.

In other words, these rules state that if the VO says that Org j is a member organi-
zation and Org j says that u is a member of generic role vr, then Orgi is prepared to
accept u as a member of vr as defined and used in ACPi.
This means that any member of generic role vr defined by any MO is also a

member of generic role vr in Orgi. In particular, in order to be assured that a user
is authorized for generic role vr, Orgi needs to confirm that there exists a credential
from the VO asserting that the MO is a legitimate member of the VO and a credential
from the MO asserting that the user is a legitimate member of the role vr. In other
words, if Org j signs a credential of the form Org j.vr← u (meaning u is a member
of role vr defined by Org j), then Orgi may deduce that u is a member of Org j.vr,
provided that Orgi can be convinced that Org j is a genuine MO. The latter check
requires the existence of a credential of the form VO.memberOrg← Org j signed
by the VO principal. In principle, then, the authenticity of two different credentials
needs to be established by Orgi. Moreover, these credentials are issued by different
entities. In Section 3.2 will show that these credentials can be encoded in a single
role signature.
In fact, Orgi could map generic roles directly to local role ri using the rules

Orgi.memberOrg←VO.memberOrg, (3)

Role Signatures for Access Control in Open Distributed Systems 211

Orgi.ri← Orgi.memberOrg.vr. (4)

In general, the external ACP includes rules that map multiple generic roles to
local roles and vice versa. For each generic role vr that Orgi chooses to recognize,
Orgi defines one or more rules of the form

Orgi.r←
m
⋂

j=1
Orgi.memberOrg.vr j, (5)

Orgi.memberOrg←VO.memberOrg. (6)

That is, any user who is a member of each of the generic roles vr1, . . . ,vrm defined
by any MO (that is recognized by the VO) is a member of role r ∈ R∗i in Orgi. It can
be seen that this requires checking m+1 credentials. In Section 3.2, we show how
key aggregation can be used to construct a single role signature, whose verification
proves that all m+1 credentials are valid.

3.2 Access Request Signing And Verification

As we noted in the preceding section, in conventional RBTM (and other trust man-
agement frameworks) it may be necessary for the authorization service to obtain
and verify the authenticity of a number of different credentials in order to evaluate
an access request. We now demonstrate how hierarchical identity-based signature
schemes can be exploited to simplify credential discovery and verification. Essen-
tially, we associate each generic role with a unique identifer within the VO names-
pace and use this to generate a private key that is used to sign access requests — role
signatures. Signature verification is performed using a key that can be derived from
the identifier by any principal, thereby enabling that principal (or the PDP acting for
that principal) to verify that the user is indeed a member of a particular generic role.
Note first that rules (3) and (4) can be reduced to the rule

Orgi.ri←VO.memberOrg.vr.

In other words, if a user can provide a credential proving that she is a member of a
generic role vr in a member organization of the virtual organization, then she can be
mapped directly to role vr in Orgi.
We adopt a push model in which the user supplies authorization credentials as

part of an access request. In particular, a user u uses a signing key, such as the one
associated with role identifier VO1.Org1.vr, to sign an access request. If the PDP
in Org2 can verify the signature on the request using the verification key associated
with VO1.Org1.vr, then the PDP in Org2 can be convinced that VO1 is a legitimate
VO (as far as the TA is concerned), Org1 is a legitimate MO (as far as the VO
is concerned), and u is a legitimate user assigned to role vr (as far as the MO is
concerned). The PDP inOrg2 may then use its policy to map the generic role to local

212 Jason Crampton and Hoon Wei Lim

roles, and hence evaluate the access request. Note the definition of a comparatively
small number of generic roles and a single signature verification are sufficient to
both solve the principal mapping problem and eliminate credential chain discovery.
Moreover, the use of multi-key signatures enables a user to prove authorization

for multiple roles in a single signature. Hence external policy rules (5) and (6),
which can be reduced to the rule

Orgi.r←
m
⋂

j=1
VO.memberOrg.vr j,

can be matched using a single (multi-key) signature. In this case, the
user should possess a set of signing keys associated with role identifiers
VO1.Org1.vr1, . . . ,VO1.Org1.vrm.

3.3 Fine-Grained Identifiers

So far we have looked at how basic role-only identifiers are used to construct the
associated signing keys. We now discuss more fine-grained ways of specifying iden-
tifiers.

Key Lifetimes It is well known that effective revocation of public-private key pairs
is rather difficult to achieve. Within our framework, this is related to user-role revo-
cation. Many practical applications prefer, instead, to use ephemeral keys that have
a limited time period for which they are valid. In a grid environment, for example,
short-lived keys are used for secure job submissions, to minimize the risk of ex-
posing long-term keys. This is analogous to the relatively short lifetimes given to
Kerberos tickets.
Therefore, we envisage that role identifiers will include a lifetime L. A typical

identifier would have the form VO1.Org1.vr∥L1, the interpretation being that the
corresponding signing key would only be valid for time L1 after its issuance. Note
that L1 can also be set to the validity period of the RBAC session2 associated with
role vr.

User-Role Bindings We remark that the use of signing keys based on role-only
identifiers provides user privacy and pseudo-anonymity. However, in some appli-
cations, it may be desirable for a resource provider to keep track of the identi-
ties of users who accessed its resources for auditing and accountability purposes.
This can be achieved by including a local user identifier u in a role identifier,
VO1.Org1.vr∥u∥L1, for example. The use of user identifiers and lifetimes may be
essential for commercial grid applications when billing comes into play.
A role is likely to be shared by more than one user, and hence a signing key,

which is based on a role-only identifier, may well be shared by a group of users. The

2 In an RBAC session, a user activates a number of the roles to which he is assigned, thereby
gaining the privileges associated with those roles for that interaction with the system.

Role Signatures for Access Control in Open Distributed Systems 213

inclusion of user identifiers within role identifiers obviates potential issues caused
by key sharing. It is worth noting that although user identifiers may be used in role
identifiers, principal mappings are still based on roles only.

Generic Role Sets There may also be situations where it is more appropriate for
a user presenting all roles to which she is entitled within a single identifier. The
user can obtain, from her organization, a signing key associated with all her roles
vr1, . . . ,vrm. Her role identifier now becomes VO1.Org1.(vr1, . . . ,vrm)∥u∥L1. One
advantage of this approach is that the user is relieved of her responsibility in se-
lecting the appropriate signing keys for a particular session. Clearly, on the other
hand, the limitation of this method is that it would undermine the principle of least
privilege, which may be desirable in some system environments.

3.4 Supporting Multiple Namespaces

It may well be useful to have a number of distinct hierarchical namespaces hav-
ing different root TAs, with principals having distinct identities in different names-
paces. We observe that Lim and Paterson’s multi-key signature scheme [14] can be
extended naturally to support multiple distinct hierarchical namespaces. The only
requirement is that the root TAs of these distinct hierarchies must use the same
group generator when computing their respective system parameters. Furthermore,
the scheme can take as input private keys which correspond to entities at different
levels in a hierarchy.
Consider, for example, an (imaginary) academic institution, the Missouri Insti-

tute of Science and Technology (MIST). We may have role identifier VO1.Org1.vr1
in a 3-level hierarchical namespace rooted at TA1 and role identifier Uni2.vr2 in a
2-level namespace rooted at TA2, where Org1 =Uni2 = mist. Informally, the first
identifier may be interpreted as: the Missouri Institute of Science and Technology
is an accredited member of the virtual organization VO1 working on data generated
by the large hadron collider at CERN, where TA1 is the EU Grid TA. On the other
hand, the second identifier means: the Missouri Institute of Science and Technol-
ogy is a higher education institution accredited by TA2, the Accrediting Board for
Universities, for example.
Supporting distinct hierarchical namespaces in role signatures is a very desir-

able feature in the sense that role signatures can now be used to articulate policy
rules of the form Orgi.r← VO.memberOrg.vr j ∩memberUni.vrk, where member
organizations and universities belong to different hierarchical namespaces.

214 Jason Crampton and Hoon Wei Lim

3.5 Supporting More Complex Namespaces

In the interests of simple exposition, we have assumed so far that the hierarchical
namespaces are rather simple, being based on a model in which the level 1 entities
are virtual organizations, level 2 entities are member organizations, and level 3 en-
tities are generic roles. This type of structure is characteristic of certain large-scale
distributed systems, for example computational grids, but not of open distributed
systems in general.
We now discuss how we can build more complex namespaces. The basic ideas

are to include the notion of a domain as a generic role and to generalize the binding
of users to generic roles in identifiers.
More specifically, identifiers are formed from the concatenation of one or

more identifier-role pairs. Hence, the root TA can create level 1 domains.
Each level 1 domain is provided with a signing key and material with which
to generate signing keys for generic roles, including level 2 domains. In this
way, arbitrarily deep hierarchies can be constructed. Identifiers have the form
domain∥D1∥domain∥D2∥ . . .∥domain∥Dn∥vr∥u, where vr is a generic role.
Then MIST might act as a level 0 TA and consider faculties to be level 1 entities.

Each faculty is associated with a domain and a signing key. Each department within
a faculty is treated as a level 2 domain. Each department is autonomous, in that each
has a separate access control policy and is able to define child domains if desired.
MIST identifies additional generic roles such as registered student and faculty.
Then a student alice, belonging to the computer science (CS) department, within

the mathematical sciences (MS) faculty would have an identifier

domain∥MS∥domain∥CS∥student∥alice

and a signing key corresponding to this identifier. alice may send a signed request
to the physics department and, for example, be assigned the guest role as a result
of the department’s external ACP, thereby enabling her to run a computer program
using certain data collected and stored by the physics department.
There are other possibilities too. We could for example introduce different types

of generic roles for level 1 entities. A computational grid, for example, might include
partners from academia, industry and government agencies. In such a situation, it
might be appropriate to define generic roles AMO, IMO andGMO, representing aca-
demic, industrial and governmental member organizations, respectively. We might
then have identifiers AMO∥MIST∥ . . . , IMO∥IBM∥ . . . and GMO∥FBI∥

4 Security Architecture

The concept of role signatures can be easily integrated into a security architec-
ture which makes use of hierarchical identity-based cryptography, for example a
password-enabled and certificate-free grid security infrastructure (PECF-GSI) pro-

Role Signatures for Access Control in Open Distributed Systems 215

posed by Crampton et al. [6]. PECF-GSI allows users to perform single sign-on
based only on passwords and does not require a PKI. Nevertheless, it supports es-
sential grid security services, such as mutual authentication and delegation, using
public key cryptographic techniques. The fact that users are authenticated using
only passwords significantly increases the user-friendliness of the infrastructure and
allows users to join or leave a VO in a flexible way. This is mainly because users do
not have to go through the hassle of obtaining a public key certificate when joining
a VO. Moreover, this approach alleviates the typical private key distribution issue
found in standard identity-based cryptosystems.3
We note that although identity-based techniques are certificate-free, an authentic

set of the TA system parameters (or all sets of parameters for multiple hierarchies)
must be made available to system users. One way to achieve this is by bootstrapping
these parameters into the system, as with bootstrapping root CA certificates in ex-
isting certificate-based approaches. Alternatively, distribution of the parameters is
also possible through the use of a certificate obtained from a conventional CA that
certifies the parameters.
Using PECF-GSI, a user authenticates to a domain authentication server through

a password-based TLS protocol [1]; hence authentication between the user and the
server can take place without relying on a PKI. When performing single sign-on,
the user establishes a secure TLS channel with the authentication server based on a
shared password. The authentication server, which essentially acts as a MO (within a
VO), then creates a proxy (short-lived) credential, comprising a role identifier and its
corresponding signing key, and transmits it to the user. As explained in Section 3.3,
there are several ways in which a role identifier can be specified. An authenticated
copy of the TA system parameters are sent to the user, enabling her to execute the
relevant cryptographic algorithms. In addition, the user is sent an up-to-date Identity
Revocation List (IRL) so that she can be sure that a resource provider to which she
submits her job request is still legitimate, respectively. The user is only required
to sign-on once and use the fresh proxy credential generated by the authentication
server until the credential expires.
Since our approach is applicable to the multiple hierarchical setting, we envisage

that no centralized root TA is required in our architecture. Hence our approach is
scalable in the sense that each VO or MO can be associated with a “decentralized”
TA that it is willing to trust. Moreover, the multiple TAs setting seems to reflect well
trust relationships and management in real world systems.
The use of role signatures seems to suit a decentralized access control model,

provided that there exist a hierarchical structure which relates principals involved in
access control, in such a way that higher-level authorities can delegate access con-
trol decisions to lower-level authorities/principals. This is often the case in many
real world systems. For example in the finance sector, the head office of each global
financial company can act as the root TA issuing credentials to regional main of-
fices, which in turn, issue credentials to local branch offices. Each customer then is
allowed multiple credentials, corresponding to different banks.
3 Typically, a user of an identity-based cryptosystem is required to obtain her private keys from a
TA through an independent secure channel or any out-of-bound mechanisms.

216 Jason Crampton and Hoon Wei Lim

5 Related Work

The idea of generic roles is not entirely new. Li et al., in describing role-based trust
management [12], said:

When an entity A defines A.R to contain B.R1, it needs to understand what B means by the
role name R1. This is the problem of establishing a common vocabulary.

Their solution to the problem was to introduce the concept of application domain
specification documents (ADSDs), which serve to establish a common vocabulary.
In particular, they can be used to define roles that are common to a number of differ-
ent organizations. In a sense, role signatures provide a way of implementing ADSDs
and role-based trust management in which credential verification is performed in a
lightweight fashion.
A number of authors have considered the idea of policy-based cryptography [2,

21] in recent years. This can be used to implement access control by encrypting
resources. A user is only able to read a resource if she has the appropriate encryption
key. This approach is rather limited in the type of interactions that can be controlled
between the user and the resource.
Bagga and Molva [2] recently introduced a policy-based signature scheme, de-

rived from an identity-based ring signature scheme of [23], which provides the in-
spiration for our work. However, the policies are expressed as monotonic logical
expressions involving complex conjunctions and disjunctions of conditions. Bagga
and Molva cite a motivating example in which Bob has an ACP such that Alice is
authorized to access some sensitive resource if she is an IEEE member and she is
an employee of either university X or university Y .
The policy is expressed as ⟨IEEE, Alice:member⟩ ∧ [⟨X , Alice:employee⟩ ∨

⟨Y , Alice:employee⟩]. This way of expressing policies does not seem to be prac-
tical, since Bob has to specify each policy for each requester who wants to access
the resources. Moreover, it assumes that Bob knows something about every user that
will make an access request. In short, while the cryptographic techniques they use
to enforce such policies are interesting, it seems unlikely that such policies will be
useful in practice.
We note in passing that (presumably the intent of) Bob’s ACP could be expressed

in the following way:

Bob.r← IEEE.member∩Bob.uni.employee

where r is a role name mapped to some appropriate permissions. This style of ACP
is far more appropriate in an open distributed environment. In this paper, we have
shown how role signatures can be used to demonstrate that a user is authorized for
a particular generic role within a single contiguous namespace. More importantly,
our work examines the fundamental principal mapping problem which underlies the
use of policy-based cryptography, rather than designing new cryptographic schemes
that support access control and policy enforcement.

Role Signatures for Access Control in Open Distributed Systems 217

Apart from policy-based cryptography, there are also proposals for attribute-
based systems, for example [11, 17], which are based on Sahai and Waters’s
attribute-based encryption (ABE) scheme [18]. ABE is closely related to the work
of Bagga and Molva [2] and of Smart [21]. In ABE, the recipient’s identifier com-
prises a set of attributes Ψ . A policy enforcer (sender) can specify another set of
attributesΨ ′, such that the recipient can only decrypt the ciphertext if his identifier
Ψ has at least k attributes in common with the setΨ ′. Here k is a parameter set by
the system.
As with [2, 21], the proposals of [11, 17] attempt to present constructions of

more expressive cryptographic schemes in terms of policy specification and en-
forcement, without dealing with the underlying principal mapping issue. The cen-
tral idea of their work is about using a threshold primitive to control access to some
data (through encryption), whereby only users who fulfill k-of-n attributes can ac-
cess the data (through decryption). On the other hand, we study how a hierarchical
identity-based signature scheme can be used to provide role signatures that poten-
tially greatly simplify inter-domain principal mappings and credential verification.
Perhaps the work that is most similar in spirit to ours, is that of Tamassia et al.

on role-based cascaded delegation (RBCD) [22]. RBCD combines the advantages
of RBTM with those of cascaded delegation [15]. Their proposal uses a hierarchi-
cal certificate-based encryption scheme [9] to simplify credential accumulation and
verification. The basic idea is to encode the chain of credentials into a single signed
delegation credential.
RBCD is only described using an extended example, making it difficult to ana-

lyze the approach formally. Each component of a delegation credential has the form
(iss,r, p), where iss is the issuer of the credential, p is the subject of the credential
who is authorized for role r. The delegation credential in the example has the form

(H,H.guest,M.pro f essor)
(M,M.pro f essor,Bob)
(Bob,H.guest,L.assistant)
(L,L.assistant,Alice)

meaning that

• hospital H says that any member of the professor role at the medical schoolM is
also a member of the role H.guest;

• M says that Bob is a member of the professor role;
• Bob says that any member of the lab assistant role at lab L is a member of role
H.guest;

• L says that Alice is a member of the lab assistant role.

It is suggested by the authors that this implies that H, on receipt of this delegation
credential from Alice, can verify that she is indeed a member of the H.guest role.
However, H needs to know about the professor role at M, and M is required to

know that the professor role is important to H. RBCD also assumes that credentials
of the form (Bob,H.guest,L.assistant) are regarded as trustworthy by the hospital.

218 Jason Crampton and Hoon Wei Lim

It also assumes that Bob is aware that he can issue credentials of this form, and
knows to include the (M,M.pro f essor,Bob) credential in the delegation credential.
In short, the problem of principal mapping is not addressed by RBCD.

6 Conclusions

We have proposed the use of role signatures for access control in open distributed
systems. Our work is built on three assumptions:

• it is reasonable to define a comparatively small number of generic roles that will
be recognized throughout a virtual organization;

• the structure of a virtual organization defines a hierarchical namespace;
• members of the virtual organization are trusted to assign their respective users to
generic roles.

We have shown how an hierarchical identity-based signature scheme can be adapted
to provide role signatures, where the corresponding verification keys are associated
with generic roles.
Key management in our proposal is simple as role signatures can be used to both

authenticate users and make access control decisions. Hence, we avoid the use of
complex credential or certificate chain discovery mechanisms. Moreover, our ap-
proach allows signing with multiple keys. These keys, which are associated with
multiple roles, can correspond to nodes at arbitrary positions within the same hier-
archy or multiple hierarchies.
To conclude, our work provides nice balance between expressiveness of policy

and ease of credential verification as compared to existing role-based access control
and trust management frameworks.

Acknowledgements The second author was at Royal Holloway, University of London when he
performed this work. He was supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) through Grant EP/D051878/1.
We would like to thank the anonymous referees for their helpful remarks, which have led to

substantial improvements in the presentation and exposition of our work.

References

1. M. Abdalla, E. Bresson, O. Chevassut, B. Möller, and D. Pointcheval. Provably secure
password-based authentication in TLS. In Proceedings of the 1st ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS 2006), pages 35–45. ACM Press,
March 2006.

2. W. Bagga and R. Molva. Policy-based cryptography and applications. In Proceedings of the
9th International Conference on Financial Cryptography and Data Security (FC 2005), pages
72–87. Springer-Verlag LNCS 3570, February 2005.

3. M. Blaze, J. Feigenbaum, J. Ioannidis, and A.D. Keromytis. The KeyNote trust-management
system version 2. The Internet Engineering Task Force (IETF), RFC 2704, September 1999.

Role Signatures for Access Control in Open Distributed Systems 219

4. D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant size
ciphertext. In Advances in Cryptology – Proceedings of EUROCRYPT 2005, pages 440–456.
Springer-Verlag LNCS 3494, May 2005.

5. D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos, and R. Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer Security, 9(4):285–322, January 2001.

6. J. Crampton, H.W. Lim, K.G. Paterson, and G. Price. A certificate-free grid security infras-
tructure supporting password-based user authentication. In Proceedings of the 6th Annual PKI
R&D Workshop 2007. NIST Interagency Report 7427, September 2007.

7. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate
theory. The Internet Engineering Task Force (IETF), RFC 2693, September 1999.

8. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable virtual or-
ganizations. International Journal of High Performance Computing Applications, 15(3):200–
222, 2001.

9. C. Gentry. Certificate-based encryption and the certificate revocation problem. In Advances
in Cryptology – Proceedings of EUROCRYPT 2003, pages 272–293. Springer-Verlag LNCS
2656, May 2003.

10. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Advances in Cryptology
– Proceedings of ASIACRYPT 2002, pages 548–566. Springer-Verlag LNCS 2501, December
2002.

11. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM Computer and Communi-
cations Security Conference (CCS 2006), pages 89–98. ACM Press, October 2006.

12. N. Li, J.C. Mitchell, and W.H. Winsborough. Design of a role-based trust management frame-
work. In Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages 114–130.
IEEE Computer Society Press, May 2002.

13. N. Li, W.H. Winsborough, and J.C. Mitchell. Distributed credential chain discovery in trust
management. Journal of Computer Security, 11(1):35–86, February 2003.

14. H.W. Lim and K.G. Paterson. Multi-key hierarchical identity-based signatures. In Proceedings
of the 11th IMA International Conference on Cryptography and Coding (IMA 2007), pages
384–402. Springer-Verlag LNCS 4887, December 2007.

15. N. Nagaratnam and D. Lea. Secure delegation for distributed object environments. In Pro-
ceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems, pages
101–116, April 1998.

16. K.G. Paterson. Cryptography from pairings. In I.F. Blake, G. Seroussi, and N.P. Smart, edi-
tors, Advances in Elliptic Curve Cryptography, pages 215–251, Cambridge, 2005. Cambridge
University Press, LMS 317.

17. M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systems. In Pro-
ceedings of the 13th ACM Computer and Communications Security Conference (CCS 2006),
pages 99–112. ACM Press, October 2006.

18. A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in Cryptology – Pro-
ceedings of EUROCRYPT 2005, pages 457–473. Springer-Verlag LNCS 3494, May 2005.

19. R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control models.
IEEE Computer, 29(2):38–47, February 1996.

20. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology
– Proceedings of CRYPTO ’84, pages 47–53. Springer-Verlag LNCS 196, August 1985.

21. N.P. Smart. Access control using pairing based cryptography. In Proceedings of the RSA
Conference: Topics in Cryptology – the Cryptographers’ Track (CT-RSA 2003), pages 111–
121. Springer-Verlag LNCS 2612, April 2003.

22. R. Tamassia, D. Yao, andW.H.Winsborough. Role-based cascaded delegation. In Proceedings
of the 9th ACM Symposium on Access Control Models and Technologies (SACMAT 2004),
pages 146–155. ACM Press, June 2004.

23. F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings. In Advances
in Cryptology – Proceedings of ASIACRYPT 2002, pages 533–547. Springer-Verlag LNCS
2501, December 2002.

