
Leveraging Lattices to Improve Role Mining

Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello

Abstract In this paper we provide a new formal framework applicable to role mining
algorithms. This framework is based on a rigorous analysis of identifiable patterns
in access permission data. In particular, it is possible to derive a lattice of candidate
roles from the permission powerset. We formally prove some interesting properties
about such lattices. These properties, a contribution on their own, can be applied
practically to optimize role mining algorithms. Data redundancies associated with
co-occurrences of permissions among users can be easily identified and eliminated,
allowing for increased output quality and reduced processing time. To prove the
effectiveness of our proposal, we have applied our results to two existing role mining
algorithms: Apriori andRBAM. Application of these modified algorithms to a realistic
data set consistently reduced running time and, in some cases, also greatly improved
output quality; all of which confirmed our analytical findings.

1 Introduction

In recent years role-based access control (RBAC, [3]) has been spreading within
organizations, greatly due to simplicity of the model: a role is just a set of access
permissions, while users are assigned to roles based on duties to fulfill. However,
companies still have considerable difficulty migrating to this model due to the com-

Alessandro Colantonio
Engiweb Security, Roma, Italy, e-mail: alessandro.colantonio@eng.it
Università di Roma Tre, Roma, Italy, e-mail: colanton@mat.uniroma3.it

Roberto Di Pietro
Università di Roma Tre, Roma, Italy, e-mail: dipietro@mat.uniroma3.it
Universitat Rovira i Virgili, UNESCO Chair in Data Privacy, Dept. of Computer Engineering and
Maths, Av. Paı̈sos Catalans 26, E-43007 Tarragona, Catalonia, e-mail: roberto.dipietro@urv.cat

Alberto Ocello
Engiweb Security, Roma, Italy, e-mail: alberto.ocello@eng.it

333

334 Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello

plexity involved in identifying a set of roles fitting the real needs of the company.
Thus was born role engineering, the discipline of role definition based on actual
company needs [5]. Various role engineering approaches proposed in literature are
typically classified as: top-down or bottom-up [7,8,13]. The former carefully decon-
structs business processes into elementary components, identifying system features
necessary to carry out specific tasks. This activity is mainly manual, requiring a
high level analysis of the business [10–12]. The latter class searches legacy access
control systems to find de facto roles embedded in existing permissions. Automat-
ing this process with data mining techniques [4, 9, 13–16] is called role mining. All
role mining techniques proposed to date in literature seek to derive candidate roles
through the identification of data patterns in currently existing access rights. De-
spite important differences among the various techniques, almost all take advantage
of some common principles summarized by the following:

• If two access permissions always occur together among users, these should si-
multaneously belong to the same candidate roles. Without further access data
semantics, a bottom-up approach cannot differentiate between a role made up
of two permissions and two roles containing individual permissions [15]. More-
over, defining roles made up of as many permissions as possible minimizes the
administration cost by reducing the number of role-user assignments [4].

• If no user possesses a given combination of access permissions, it makes no sense
to define a role containing such combination. Similar to the previous point, if no
user actually performs a task for which a certain permission set is necessary, it is
usually better not to define a role containing such an unassignable set.

• It is quite common within an organization to have many users possessing the
same set of access permissions. This is one of the main justifications that brought
about the RBAC model. The creation of a role in connection with a set of co-
occurring permissions is typically more advantageous since the number of rela-
tionships to be managed is reduced [4].

The following example clarifies the assertions just made, particularly that of the
first point presented. If of the given four permissions p1, p2, p3, p4, the pair p1, p2
is always found together with p3, p4, it is advisable not to define two distinct roles
{p1, p2} and {p3, p4} but, rather, a single role {p1, p2, p3, p4}. This is different from
saying that no user possesses only p1, p2 without also having some other permission.
Suppose some users possess only p3, others only p4, others p1, p2, p3 and still others
p1, p2, p4. In this case, even if p1, p2 never occur “by themselves”, it could be con-
venient to define the role {p1, p2} since roles {p3} and {p4} will certainly already
exist individually. Thus, avoiding roles {p1, p2, p3} and {p1, p2, p4}.
The cited role mining techniques do not always exploit the above-mentioned ob-

servations, even though analyzing such data “recurrences” could improve the quality
of proposed candidate roles or increase computational efficiency of the algorithms.

Contributions. The mathematical analysis introduced in this paper provides a new
model capable of increasing output quality and reducing process time of role mining
algorithms. The model revolves around identifiable patterns in access permissions

Leveraging Lattices to Improve Role Mining 335

data. Through analysis of user permissions, a lattice [6] of candidate roles can be
constructed from the permission powerset. Notable properties of this lattice will be
discussed to substantiate their effectiveness in optimizing role mining algorithms.
Leveraging our results, data redundancies associated with co-occurrence of permis-
sions among users can be easily identified and eliminated, thus improving the role
mining output.
To prove the merit of our proposal, we have applied our results to two algorithms:

Apriori [1] and RBAM [4]. Applying them to a realistic data set yielded drastic re-
ductions in running time and often provided significant redundancy elimination.

Roadmap. This paper is organized as follows: Section 2 cites the main related works.
Section 3 reviews mathematical tools and RBAC concepts required for the analysis.
Section 4 provides a description of how to define roles based on the permission-
powerset lattice, and then Section 5 further analyzes this lattice by introducing the
concept of equivalent sublattice and a few of its properties. Section 6 shows how to
apply permission-powerset lattice properties to existing role mining techniques. We
implement and test, over a real data set, our proposed framework with reference to
two role mining algorithms, obtaining support for our theoretical findings. Finally,
Section 7 reports concluding remarks and indicates further research directions.

2 Related Work

The proposed mathematical formalism is based on some well-known concepts such
as the lattice, powerset, partial order, Hasse diagrams and directed acyclic graphs.
The following section introduce these subjects; further details can be found in [6].
Various role mining techniques can benefit from this analysis. Due to space con-

straints, only a few of them will be summarized. The first improved algorithm is
Apriori [1]. It is used in Market Basket Analysis (MBA, also known as association-
rule mining), a method for discovering customer purchasing patterns by extracting
associations or recurrences from store transaction databases. Role mining can be
seen as a particular application of MBA, simply considering permissions, roles and
users instead of products, transactions and customers, respectively. The RBAM algo-
rithm [4] also benefits from the present analysis. It is a specialized implementation
of Apriori in which any permission combinations increasing the RBAC model ad-
ministration cost are rejected. This paper shows how data pruning operations can be
conducted to improve RBAM efficiency without detracting from output quality.
There also exist some role mining techniques that take into account some prop-

erties described in the previous section. The most important is probably subset enu-
meration [15]. This algorithm starts from permission sets possessed by users and
identifies potential candidate roles from all possible intersections among these sets.
The resulting candidate role set presents analogies to a lattice of roles where all
redundancies related to permission co-occurrence among users are eliminated.

336 Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello

3 Background and Preliminaries

3.1 Posets, Lattices, Hasse Diagrams and Graphs

In computer science and mathematics, a directed acyclic graph (DAG) is a directed
graph with no directed cycles. For any vertex v, there is no non-empty directed path
starting and ending on v, thus DAG “flows” in a single direction. Each DAG provides
a partial order to its vertices. We write u≽ v when there exists a directed path from
v to u. The transitive closure is the reachability order “≽”. A partially ordered set
(or poset) formalizes the concept of element ordering [6]. A poset ⟨S,≽⟩ consists of
a set S and a binary relation “≽” that indicates, for certain element pairs in the set,
which element precedes the other. A partial order differs from a total order in that
some pairs of elements may not be comparable. The symbol “≽” often indicates a
non-strict (or reflexive) partial order. A strict (or irreflexive) partial order “≻” is a
binary relation that is irreflexive and transitive, and therefore asymmetric. If “≽”
is a non-strict partial order, then the corresponding strict partial order “≻” is the
reflexive reduction given by: a≻ b ⇔ a≽ b ∧ a ̸= b. Conversely, if “≻” is a strict
partial order, then the corresponding non-strict partial order “≽” is the reflexive
closure given by: a≽ b ⇔ a≻ b ∨ a= b. An antichain of ⟨S,≽⟩ is a subset A⊆ S
such that ∀x,y ∈ A : x ≽ y ⇒ x = y. We write x ∥ y if x ̸≽ y ∧ y ̸≽ x. A chain is a
subsetC⊆ S such that ∀x,y∈C : x≽ y ∨ y≽ x. Given a poset ⟨S,≽⟩, the down-set of
x ∈ S is ↓x! {y∈ S | x≽ y}, while the up-set of x ∈ S is ↑x! {y ∈ S | y≽ x}. Given
a≽ b, the interval [a,b] is the set of points x satisfying a≽ x ∧ x≽ b. Similarly, the
interval (a,b) is set of points x satisfying a≻ x ∧ x≻ b.
The transitive reduction of a binary relation R on a set S is the smallest relation

R′ on S such that the transitive closure of R′ is the same as the transitive closure
of R. If the transitive closure of R is antisymmetric and finite, then R′ is unique.
Given a graph where R is the set of arcs and S the set of vertices, its transitive
reduction is referred to as its minimal representation. The transitive reduction of
a finite acyclic graph is unique and algorithms for finding it have the same time
complexity as algorithms for transitive closure [2]. A Hasse diagram is a picture of
a poset, representing the transitive reduction of the partial order. Each element of S
is a vertex. A line from x to y is drawn if y≻ x, and there is no z such that y≻ z≻ x.
In this case, we say y covers x, or y is an immediate successor of x, also written y!x.
A lattice is a poset in which every pair of elements has a unique join (the least upper
bound, or lub) and a meet (the greatest lower bound, or glb). The name “lattice” is
suggested by the Hasse diagram depicting it. Given a poset ⟨L,≽⟩, L is a lattice if
∀x,y ∈ L the element pair has both a join, denoted by x" y, and a meet, denoted by
x# y within L. Let ⟨L,≽,",#⟩ be a lattice. We say that ⟨Λ ,≽,",#⟩ : Λ ⊆ L is a
sublattice if and only if ∀x,y ∈Λ : x" y ∈Λ ∧ x# y ∈Λ . In general, we define:

•
!
Λ ! {x ∈ L | ∀ℓ ∈ L,∀λ ∈Λ : ℓ≽ λ ⇒ ℓ≽ x}, the join of Λ (lub);

•
"
Λ ! {x ∈ L | ∀ℓ ∈ L,∀λ ∈Λ : λ ≽ ℓ ⇒ x≽ ℓ}, the meet of Λ (glb).

In particular, x" y!
!
{x,y} and x# y!

"
{x,y}. Both

!
Λ and

"
Λ are unique.

Leveraging Lattices to Improve Role Mining 337

3.2 RBAC Model

We shall now review some of the concepts in the RBAC model according to the
ANSI/INCITS standard [3]. The entities of interest for the present analysis are:

• PERMS, the set of all possible access permissions; USERS, the set of all system
users; ROLES ⊆ 2PERMS , the set of all roles.

• UA ⊆ USERS ×ROLES, the set of user-role assignments. Given a role, the
function ass users : ROLES → 2USERS identifies all the assigned users.

• PA ⊆ PERMS ×ROLES, the set of permission-role assignments. Given a role,
the function ass perms : ROLES → 2PERMS identifies all the assigned perms.

• RH ⊆ ROLES ×ROLES, the set of hierarchical relationships between pairs of
roles. ⟨r1,r2⟩ ∈ RH indicates that all the permissions assigned to r1 are also as-
signed to r2, and some more permissions are assigned to r2.

The symbol “≽” indicates a partial order based on the role hierarchy. If r1 ≽ r2,
then r1 is referred to as the senior of r2, while r2 as the junior of r1. If r1 ! r2
then r1 is an immediate senior of r2, while r2 is an immediate junior of r1. For the
sake of simplicity, we define the functions ass users() and ass perms() indicating
respectively the users and permissions authorized by a role—what a role inherits
along the hierarchical path. This is slightly different from the definition given by the
NIST standard: ass users(r) thus indicates users possessing permissions assigned to
role r instead of users assigned to role r but not to its seniors. In particular:

r1 ≽ r2 ⇒ ass users(r1)⊆ ass users(r2) ∧ ass perms(r1)⊇ ass perms(r2). (1)

In addition to RBAC standard entities, the set UP ⊆USERS×PERMS identifies
permission to user assignments. In an access control system it is represented by
entities describing access rights (e.g., access control lists). Given a permission, the
function perm users : PERMS → 2USERS identifies the set of users possessing it.

3.3 Support, Confidence and Equivalence

We now review some definitions given in [4]. Since RH defines a partial order on the
role set, ⟨ROLES ,≽⟩ is thus a poset on which the following definitions are based.

Definition 1. Given a role r ∈ ROLES, the support of that role is defined as
support(r) ! |ass users(r)|/|USERS | and indicates the percentage of users pos-
sessing all permissions assigned to r.

Definition 2. Given r ∈ ROLES, the degree of that candidate role is defined as
degree(r) ! |ass perms(r)| and indicates the number of permissions assigned to r.

Definition 3. Given a pair r1,r2 ∈ ROLES : r2 ≽ r1, the confidence between them
is confidence(r2 ≽ r1) ! |ass users(r2)|/|ass users(r1)|, namely the percentage of
users possessing permissions of the junior also possessing permissions of the senior.

338 Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello

Lemma 1. Given a role pair r1,r2 ∈ ROLES : r2 ≽ r1, the confidence between such
a role pair is confidence(r2 ≽ r1) = support(r2)/support(r1).

Definition 4. Given a role pair r1,r2 ∈ ROLES, we call them equivalent, and indi-
cate this with r1 ≡ r2, if and only if ass users(r1) = ass users(r2).

The following properties are additionally demonstrated:

Lemma 2. The equivalence relation is transitive, meaning that ∀r1,r2,r3 ∈ROLES :
r1 ≡ r2 ∧ r2 ≡ r3 ⇒ r1 ≡ r3.

Proof. According to Definition 4, ass users(r1)= ass users(r2) and ass users(r2)=
ass users(r3), thus ass users(r1) = ass users(r3). ⊓(

Lemma 3. Given r1,r2 ∈ ROLES : r1 ≽ r2, if confidence(r1 ≽ r2) = 1 then r1 ≡ r2.

Proof. From Def. 3, confidence(r1 ≽ r2) = 1 ⇒ |ass users(r1)|= |ass users(r2)|.
From Eq. 1, ass users(r1)⊆ ass users(r2) ⇒ ass users(r1) = ass users(r2). ⊓(

4 Roles Based on the Permission-Powerset Lattice

We now introduce the model on which the following analysis is based. Consider
the powerset of a set S (the set of all subsets of S) written as 2S. The set 2S can
easily be ordered via subset inclusion “⊇”. It can be demonstrated that ⟨2S,⊇,∪,∩⟩
is a lattice [6]. Setting S = PERMS makes it possible to build an RBAC model
based on all derivable roles from a given permission set. As the operator “≽” (see
Section 3.2) is based on the inclusion operator “⊇” applied to permissions assigned
to roles, it is thus natural to map the operators “!” to “∪” (the join of two roles
represented by the union of all assigned permissions) and “"” to “∩” (the meet
of two roles represented by shared permissions). Every permission combination of
the lattice ⟨2PERMS ,≽,!,"⟩ identifies the following: (1) an element of ROLES,
(2) its corresponding relationships in PA to such permissions, (3) all permission
inclusions in RH which involve the role and (4) all relationships in UA to users
possessing such combination. RH is defined to represent the transitive reduction of
the graph associated to the lattice. Moreover, if a user is assigned to a role r, then
UA will contain relationships between r, its juniors and users assigned to them,
namely ∀r ∈ ROLES ,∀ j ∈ ↓r : ass users(r)⊆ ass users(j).
For simplicity sake, from now on the lattice ⟨2PERMS ,≽,!,"⟩ is identified only

with the set ROLES. The following are some basic properties of this lattice:

Lemma 4. Removing a role r from ROLES, and its corresponding relationships in
PA,UA,RH, such that ass perms(r) ̸=

⋂

r′∈ROLES ass perms(r′) and ass perms(r) ̸=
⋃

r′∈ROLES ass perms(r′), the resulting set ROLES is still a lattice.

Proof. The role r such that ass perms(r) =
⋂

r′∈ROLES ass perms(r′) represents a
lower bound for any role pairs, similarly ass perms(r) =

⋃

r′∈ROLES ass perms(r′)
represents an upper bound, thus lattice properties are preserved. ⊓(

Leveraging Lattices to Improve Role Mining 339

Table 1 An example of set UP

User Perms

u1 {1}
u2 {2}
u3 {3}
u4 {4}
u5 {5}
u6 {6}
u7 {1,2}

User Perms

u8 {1,3}
u9 {1,4}
u10 {1,5}
u11 {1,6}
u12 {2,5}
u13 {2,6}
u14 {3,5}

User Perms

u15 {3,6}
u16 {4,5}
u17 {4,6}
u18 {1,2,3}
u19 {1,2,4}
u20 {1,2,5}
u21 {1,2,6}

User Perms

u22 {1,3,5}
u23 {1,3,6}
u24 {1,4,5}
u25 {1,4,6}
u26 {2,3,5}
u27 {2,3,6}
u28 {2,4,5}

User Perms

u29 {2,4,6}
u30 {1,2,3,5}
u31 {1,2,3,6}
u32 {1,2,4,5}
u33 {1,2,4,6}
u34 {2,3,4,5,6}
u35 {1,2,3,4,5,6}

Note 1. Given r ∈ ROLES then ∀s ∈ ↑r : support(r) ≥ support(s). In fact, users
possessing permission combination ass perms(r) do not necessarily possess other
permissions. Analogously, ∀ j ∈ ↓r : support(r)≤ support(j). Apriori [1] and RBAM
[4] algorithms use this property as a pruning condition to limit the solution space.

Based on the initial hypothesis of Section 1, roles to which unused permission
combinations are assigned do not represent significant candidate roles. Such roles
have support equal to 0 and can be eliminated from ROLES, except for the meet
and join which are required to preserve lattice properties (see Lemma 4). Removing
such roles results in a lattice that satisfies the following property:

Lemma 5. The immediate seniors of a role r ∈ ROLES differ from r by a single
permission, that is ∀r,s ∈ ROLES : s! r ⇒ degree(s) = degree(r)+1.

Proof. For Equation 1, any role represented by a subset of ass perms(s) has support
> 0 and is at least assigned to users ass users(s). Thus, ROLES contains all roles
obtained by removing a single permission from ass perms(s), including r. ⊓)

5 Equivalent Sublattices

Let ROLES be the lattice based on 2PERMS in which roles with support equal to 0
have been eliminated, except for the meet and join. Such set has a very simple
property: every candidate role set is contained within, since it provides all user-
assignable permission combinations. Beyond eliminating roles having support equal
to 0, this section shows that it is also possible to remove roles presenting equivalence
with other roles, as they do not belong to any “reasonable” candidate role set.
Table 1 shows an example of UP presenting equivalence relationships. By ob-

serving the data, it can be noted that all users simultaneously possessing permis-
sions 3 and 4 also always have permissions 2, 5 and 6. Figure 1 shows the role
lattice built on the given set UP with junior roles above and senior roles below. De-
spite this being a directed graph, direction indicators are absent (from top to bottom)
to avoid complicating the figure. Thicker lines represent hierarchical relationships
with confidence equal to 1, namely equivalence relationships (see Lemma 3).

340 Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello

null

1 2 3 4 5 6

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

123 124 125 126 134 135 136 145 146 156 234 235 236 245 246 256 345 346 356 456

1234 1235 1236 1245 1246 1256 1345 1346 1356 1456 2345 2346 2356 2456 3456

1
2
3
4
5 1

2
3
4
6 1

2
3
5
6 1

2
4
5
6 1

3
4
5
6 2

3
4
5
6

1
2
3
4
5
6

Fig. 1 Hasse diagram of the lattice based on permission powerset derived from Table 1

Next, we want to demonstrate that when a role has more equivalent seniors,
the combination of its assigned permissions still represents an equivalent role. For
example, {3,4}≡ {2,3,4}, {3,4}≡ {3,4,5} and {3,4}≡ {3,4,6} implies {3,4}≡
{2,3,4,5,6}. Moreover, the set of equivalent seniors forms a sublattice. We will now
formalize this with a series of theorems demonstrating that: (1) given an interval
of roles, if the bounds are equivalent then all roles on the interval are equivalent
with each other; (2) by analyzing immediate equivalent seniors, the equivalent role
with the maximum degree can be determined; (3) an interval of equivalent roles
having the equivalent role with the maximum degree as upper bound is a sublattice
of ROLES; (4) such sublattice is replicated in ROLES with the same “structure”.

Theorem 1. Given a role pair r1,r2 ∈ ROLES such that r2 ≽ r1 and r1 ≡ r2, then
all roles on the interval [r1,r2] are equivalent to each other:

∀r,r1,r2 ∈ ROLES : r2 ≽ r ≽ r1 ∧ r1 ≡ r2 ⇒ r ≡ r1 ≡ r2.

Proof. According to Equation 1, ass users(r2)⊆ ass users(r)⊆ ass users(r1). But
ass users(r1) = ass users(r2), so ass users(r2) = ass users(r) = ass users(r1). ⊓)

Theorem 2. A role r ∈ ROLES is equivalent to the role represented by the union of
permissions assigned to any set of its equivalent seniors:

∀r ∈ ROLES, ∀R⊆ ↑r, ∀r′ ∈ R : r′ ≡ r ⇒

⇒ ∃s ∈ ROLES : r ≡ s ∧ ass perms(s) =
⋃

r′∈R ass perms(r′).

Leveraging Lattices to Improve Role Mining 341

Proof. Users possessing a role are those possessing all the permissions assigned
to that role, namely ∀r′ ∈ ROLES : ass users(r′) =

⋂

p∈ass perms(r′) perm users(p).
According to the hypothesis, ∀ri ∈ R : ri ≡ r, so all roles in R are assigned with
the same users. Then

⋂

r′∈R
(

⋂

p∈ass perms(r′) perm users(p)
)

= ass users(r). Such
an equality can also be written as

⋂

p∈
⋃

r′∈R ass perms(r′) perm users(p) = ass users(r)
but

⋃

r′∈R ass perms(r′) represent the set of permissions assigned to the role s. ⊓&

Definition 5. Given r ∈ ROLES, the maximum equivalent role of r, written r̄, is the
role represented by the union of permissions of its immediate equivalent seniors:

ass perms(r̄) =
⋃

r′∈ROLES | r′!r ∧ r′≡r ass perms(r′).

The name attributed to the role r̄ is justified by the following theorem:

Theorem 3. Given r ∈ ROLES, r̄ is the equivalent role with the highest degree:

∀r′ ∈ ROLES : r′ ≡ r ∧ r′ ̸= r̄ ⇒ degree(r′) < degree(r̄).

Proof. Seeking a contradiction, suppose that rmax ∈ ROLES : rmax ̸= r̄ is the high-
est degree role among all those equivalent to r. Since the same users possess both r̄
and rmax, then ass perms(r̄)⊆ ass perms(rmax). If this was not the case, then there
would exist another role within ROLES made up of the union of permissions as-
signed to r̄ and rmax having a larger degree than both of these. This other role would
also be equivalent to r̄ and rmax, since it is possessed by the same users. However,
this contradicts the fact that rmax is of the highest degree.
Let ∆ = ass perms(rmax)\ ass perms(r̄). If ∆ ̸= /0, then it is possible to identify

“intermediate” roles ρ ∈ [r,rmax] such that ∃p∈∆ : ass perms(ρ) = ass perms(r)∪
{p}. For Lemma 5, ρ ! r, while for Theorem 1, ρ ≡ r. Since r̄ is obtained by the
union of all permissions assigned to all equivalent immediate seniors, it contains all
the permissions of ∆ . Consequently, it must be that ∆ = /0 and so r̄ = rmax. ⊓&

Theorem 4. Given r,s ∈ ROLES : s≽ r, the interval [r,s] is a sublattice of ROLES.

Proof. As long as [r,s] is a lattice, it must be true that ∀r1,r2 ∈ [r,s] : r1 ! r2 ∈
[r,s] ∧ r1" r2 ∈ [r,s]. Given r1,r2 ∈ [r,s], let rub be an upper-bound role such that
ass perms(rub) = ass perms(r2)∪ ass perms(r2). Since s ≽ r1,r2 then the permis-
sions of s include the union of the permissions of r1,r2, so s≽ rub. Thus, rub ∈ [r,s].
Similarly, it can be demonstrated that [r,s] contains a lower-bound role rlb such that
ass perms(rlb) = ass perms(r2)∩ ass perms(r2).

Definition 6. Given a role r ∈ ROLES, we define the equivalent sublattice of r,
indicated by ε(r), the interval [r, r̄], that is ε(r) # [r, r̄].

Note 2. The set ε(r) does not represent all the equivalent roles of r, rather, only a
subset. In fact, we could have r′ ∈ ROLES such that r ≡ r′ even though r ∥ r′. How-
ever, for Theorem 3, from the union of permissions assigned to immediate equiva-
lent seniors of r or r′, the same maximum equivalent role is obtained, that is r̄ ≡ r̄′.
In fact, in Figure 1, roles {3,4} and {5,6} are antichain but, being equivalent to
each other, they share the same maximum equivalent role {2,3,4,5,6}.

342 Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello

Note 3. If a role has equivalent seniors, then no user possesses only its permissions,
namely if ∃r′ ∈ (↑r)\ r : r ≡ r′ then ass users(r)\

⋃

ρ∈(↑r)\r ass users(ρ) = /0. The
converse is not true. Particularly, if there is no user possessing a given permission
combination, it is unknown whether the role made up of such permissions has imme-
diate equivalent seniors. This is verified in Table 1. Permissions 3 and 4 are always
found together with 2, 5 and 6. Thus, no user is assigned to role {3,4} unless also
assigned to one of its seniors. Yet, the contrary is not true: even though {2,3} has
no immediate equivalent seniors, it is not assigned with any user.

Theorem 5. Given a role r ∈ ROLES, let E = {r′ ∈ROLES | r′! r ∧ r′ ≡ r} be the
set of immediate equivalent seniors of r. Then |ε(r)| = 2|E|.

Proof. For Lemma 5, ∀r′ ∈ E : degree(r′) = degree(r)+ 1. Thus, permissions as-
signed to the maximum equivalent role of r include those of r plus a number of
other permissions equal to |E|, that is degree(r̄) = degree(r) + |E|. Further, ε(r)
contains all roles whose permission combinations are between ass perms(r) and
ass perms(r̄), all of which have support greater than 0. Hence, the possible permis-
sion combinations between ass perms(r) and ass perms(r̄) are 2|E|.

Theorem 6. Let there be r,s∈ROLES such that s is an immediate equivalent senior
of r. If there is s′ ∈ ROLES, an immediate non-equivalent senior or r, then certainly
there is a role s′′ ∈ ROLES, an immediate equivalent senior of s′ and immediate
senior of s, represented by the union of permissions of s,s′:

∀r,s,s′ ∈ ROLES : s! r ∧ s′! r ∧ s≡ r ∧ s′ ̸≡ r ⇒ ∃s′′ ∈ ROLES :
s′′! s ∧ s′′! s′ ∧ s′ ≡ s′′ ∧ ass perms(s′′) = ass perms(s)∪ ass perms(s′).

Proof. The role s′′ is a senior of both s,s′ since ass perms(s′′) ⊇ ass perms(s)
and ass perms(s′′) ⊇ ass perms(s′). But r ≡ s, so ass users(s′′) = ass users(s)∩
ass users(s′) = ass users(r)∩ ass users(s′). But ass users(s′) ⊆ ass users(r) be-
cause of s′!r, then ass users(s′′) = ass users(s′). Finally, for Lemma 5 roles s and s′
have an additional permission to that of r. If s ̸= s′ then degree(s′′) = degree(r)+2.
Hence, s′′ is an immediate senior to both s,s′. ⊓/

Note 4. The previous theorem can be observed in Figure 1. The role {3,4} has
three immediate equivalent senior roles, while {1,3,4} represents an immediate
non-equivalent senior. For Theorem 6, this means that {1,3,4} has at least three
immediate equivalent seniors, identifiable by adding the permission 1 to equivalent
seniors of {3,4}; according to Theorem 6, further immediate equivalent seniors of
{1,3,4} are allowed.

Theorem 7. Let there be r,s ∈ ROLES such that s! r and s ̸≡ r. Let also p =
ass perms(s)\ ass perms(r). Then there is a replica of the sublattice ε(r) obtained
by adding permission p to those of ε(r).

Proof. For Theorem 6, role s has among its immediate equivalent seniors at least
those obtainable by adding permission p to immediate equivalent seniors of r. Let

Leveraging Lattices to Improve Role Mining 343

then s′ ∈ ROLES be the senior of s represented by the union of such immediate
equivalent seniors, meaning ass perms(s′) = ass perms(r̄)∪{p}. According to The-
orem 2, s ≡ s′, while for Theorem 4 the interval [s,s′] is a sublattice. Let σ be
a role defined from role ρ ∈ ε(r) such that ass perms(σ) = ass perms(ρ)∪ {p}.
Then, s′ ≽ σ since ass perms(r̄)∪ {p} ⊇ ass perms(ρ)∪ {p} and σ ≽ s because
ass perms(ρ)∪{p}⊇ ass perms(r)∪{p}. Hence, σ ∈ [s,s′]. ⊓(

A direct consequence of the preceding theorem can be seen in Figure 1. The
equivalent sublattice ε({1,3,4}) can be obtained from ε({3,4}) by adding the per-
mission 1 to all roles. In the Hasse diagram of ROLES it is therefore possible to
identify a certain number of equivalent sublattice replicas determined by:

Theorem 8. Given a role r ∈ ROLES let S be the set of immediate non-equivalent
seniors, S = {ρ ∈ ROLES | ρ ! r ∧ ρ ̸≡ r}. Then ROLES has a number of ε(r)
replicas between |S| and 2|S|−1.

Proof. For Theorem 7, for all roles s ∈ S the sublattice ε(r) is replicated by adding
permission ass perms(s) \ ass perms(r) to every role in ε(r). So, there are at least
|S| sublattice replicas. Starting from S, the set P=

⋃

s∈S ass perms(s)\ass perms(r)
of permissions added to r from non-equivalent seniors of r can be identified. For
Lemma 5, the difference of degree between r and s ∈ S is equal to 1, thus |P| = |S|.
Every role s ∈ S has at most |S|− 1 immediate non-equivalent seniors, meaning
those represented by ass perms(s) to which are added one of the permissions of P\
(ass perms(s)\ass perms(r)). If, by contradiction, there was a role s′, an immediate
non-equivalent senior of s, for which p = ass perms(s′) \ ass perms(s) ∧ p ̸∈ P,
then a role r′ such that ass perms(r′) = ass perms(r)∪ {p} would have a support
greater than 0 and would belong to S. This means that, still for Theorem 7, the role
s can produce, at most, another |S|−1 replicas. Reiterating the same reasoning for
all seniors of r, it can be deduced that at most 2|S|−1 replicas can be constructed by
roles of ε(r) to which are added permission combinations of 2P \{ /0}. ⊓(

6 Discussion and Applications

The previous section analyzed some properties of a role lattice based on the power-
set of permissions excluding combinations of support equal to 0. It was shown that
a certain number of equivalent sublattice replicas could exist within such lattice.
Based on the premises of Section 1, all these replicas can be eliminated from the set
of candidate roles except for maximum equivalent roles. In fact, a maximum equiv-
alent role can be considered a “representative” of all sublattices to which it belongs.
Removing equivalent sublattices prunes the candidate role set solution space. Given
a role r ∈ ROLES, let E = {r′ ∈ ROLES | r′! r ∧ r′ ≡ r} be the set of immediate
equivalent seniors and S = {r′ ∈ ROLES | r′! r ∧ r′ ̸≡ r} be the set of immediate
non-equivalent seniors. For Theorem 5, the equivalent sublattice generated by r con-
tains |ε(r)| = 2|E| roles, all of which can be eliminated from ROLES except for r̄.

344 Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello

Algorithm 1 Procedure Remove-Equivalent-Sublattices
Require: Rk,Hk,PA ,UA ,k
Ensure: Rk,Hk,PA ,UA ,Mi
1: W ← /0 ◃ Set of equivalent roles to be deleted
2: Mi← /0 ◃ Set of maximum equivalent roles
3: for all ρ ∈ {h.junior | h ∈ Hk : h.confidence = 1} do
4: ◃ Identify equivalences in Rk to be deleted and maximum equivalent role permissions
5: E← {h.senior | h ∈ Hk : h.junior = ρ ∧ h.confidence = 1} ◃ Equivalent seniors
6: S ← {h.senior | h ∈ Hk : h.junior = ρ ∧ h.confidence < 1} ◃ Non-equivalent seniors
7: P← (

⋃

r∈E ass perms(r))\ ass perms(ρ) ◃ Perms diff between maximum equiv role
8: W ←W ∪E ◃Mark equivalent immediate seniors for deletion
9: ◃ Transform ρ into its maximum equivalent role. Enrich roles in S with permissions P.
10: for all σ ∈ S∪{ρ} do
11: σ .degree← σ .degree+ |P|, PA ← PA ∪ (P×{σ}), Mi←Mi∪{σ}
12: end for
13: end for
14: ◃ Delete equivalent roles in Rk
15: Rk← Rk \W, PA ← {⟨p,r⟩ ∈ PA | r ̸∈W}, UA ← {⟨u,r⟩ ∈ UA | r ̸∈W}
16: Hk← {h ∈ Hk | h.senior ̸∈W}

Based on the theorems of the preceding section, ε(r) and r̄ can be derived from r and
E. Prospective algorithms calculating roles based on the permission-powerset lattice
could benefit from eliminating equivalent sublattices if 2|E| > |E|+1, namely when
the cost of calculating ε(r) is greater than the cost of calculating only the roles nec-
essary for identifying r̄. For simplicity, operating costs necessary for constructing
role r̄ from r and E are deemed negligible. The inequality 2|E| > |E|+ 1 is always
true when |E|> 1, namely when role r has more than one equivalent junior. For The-
orem 8, every equivalent sublattice has at least |S| number of replicas derivable from
r,E,S. It is thus advantageous to remove these when (|S|+1)2|E| > |E|+ |S|+1, that
is true when |E| > 1, where (|S|+1)2|E| represent the amount pruned.

6.1 Equivalent Sublattice Deletion in Apriori

This section introduces the RB-Apriori (Role-Based Apriori) algorithm to identify
roles based on permission-powerset lattices with no equivalent sublattices. Using
the Apriori [1] algorithm makes it possible to generate a partial lattice by pruning
permission combinations whose support is lower than a pre-established threshold
smin [4]. RB-Apriori extends Apriori removing equivalent sublattices except for the
maximum equivalent roles. The following are the main steps of Apriori summarized.
The set Rk ⊆ ROLES denotes all roles calculated at step k of the algorithm, while
Hk ⊆ RH gathers the immediate hierarchical relations among roles in Ri and Ri−1.

Step 1 An initial analysis of UP provides the set R1 containing candidate roles of
degree 1 with a support greater than the minimum.

Leveraging Lattices to Improve Role Mining 345

Step k When k≥ 2, the set Rk is generated merging all possible role pairs in Rk−1
(join step). In order not to generate roles with the same permission set, only
role pairs differing in the greater permission are considered. Combinations
not meeting minimum support constraints are rejected (prune step). Hier-
archical associations (Hk) are also identified, relating roles in Rk whose
assigned permissions are a superset of permissions of roles in Rk−1.

Stop The algorithm completes when Rk = /0, returning ROLES as the union of
all calculated Ri and RH as the union of all calculated Hi.

RB-Apriori is obtained from Apriori by calling the Remove-Equivalent-Sublattices
procedure at the end of every step k. The procedure is described in Algorithm 1.
Given r ∈ ROLES, r.degree indicates the number of permissions assigned to it;
given h ∈ RH, h.junior and h.senior indicate the pair of roles hierarchically related,
while h.confidence is the confidence value between them. Step 3 of Algorithm 1
identifies all roles calculated in step k− 1 presenting immediate equivalent seniors
in Rk. For each of these roles, the steps immediately following determine sets E,S
and the permission set P to be added to the role in order to obtain the maximum
equivalent role. Steps 10–12 make up the maximum equivalent role by adding per-
missions P to the current role. The immediate non-equivalent seniors are also en-
riched with the same permissions; if not, eliminating roles E (Steps 8, 15–16) could
prevent identification of the combination of permissions assigned to those roles dur-
ing step k+ 1. Based on the Note 4, enriching permissions assigned to immediate
non-equivalent seniors with P it is not definite that the respective maximum equiv-
alent roles will be generated. This means that RB-Apriori prunes only one sublattice
at a time, without also simultaneously eliminating any replicas.
As described in Note 2, there could exist r1,r2 ∈ ROLES : r1 ≡ r2 ∧ r1 ∥ r2. In

Figure 1, roles {3,4} and {5,6} are equivalent and share the same maximum equiv-
alent role {2,3,4,5,6}. According to Algorithm 1, the role {2,3,4,5,6} is built
twice. This means that after the last step (“Stop”) of RB-Apriori it is necessary to
check for duplicate roles. Particularly, given the set M =

⋃

Mi of identified maxi-
mum equivalent roles, for every m ∈ M each r ∈ ROLES \ {m} : ass perms(r) ⊆
ass perms(m) ∧ support(r) = support(m) needs to be discarded.

6.2 Testing on Real Data

To assess the efficiency of the RB-Apriori algorithm described in the previous section,
many tests have been conducted using real data. In order to highlight the properties
of the algorithm, consider the results obtained from analyzing data of an applica-
tion with a heterogeneous distribution of user permissions. In the analyzed data set,
954 users were possessing 1,108 different permissions. By applying the Apriori al-
gorithm with smin = 10%, a total of 299 roles were generated in about 119 seconds
through the adopted Apriori implementation. These 299 roles were assigned with
only 16 of the available 1,108 permissions resulting in 890 users possessing these
permissions. Using the same minimum support, with RB-Apriori we obtained only

346 Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello

109 roles in 87 seconds, thus reducing the number of roles by 64% and the com-
putation time by 27%. The difference in improvement between role number and
computation time was due to time “wasted” in identifying equivalent sublattices.
Actually, the algorithm identified 167 roles; although 58 of the 167 were subse-
quently eliminated as equivalents, time was saved avoiding computation of entire
equivalent sublattices. Changing the minimum support to smin = 5%, 8,979 roles
were produced with Apriori in about 3,324 seconds, involving 31 permissions and
897 users. With RB-Apriori we obtained only 235 roles in 349 seconds, thus reduc-
ing the number of roles by 97% and computation time by 90%.

6.3 Comparison to the RBAM Algorithm

The RBAM [4] algorithm leverages the RBAC administration cost estimate to find
the lowest cost candidate role-sets, implementing an extended version of Apriori to
identify the optimal role set. Pruning operations are based on the variable minimum
support concept. According to [4], a role r ∈ ROLES can be removed when the
percentage of users assigned to r but none of its seniors is below a threshold related
to the administration cost of r. When r has equivalent seniors, this percentage is
equal to 0 because of Note 3. Thus, RBAM always removes its equivalent sublattice.
Since RBAM is an extended version of Apriori, it is easy to improve performances of
the RBAM algorithm, basing it on RB-Apriori instead of Apriori. While producing the
same candidate role sets, computation of the entire equivalent sublattices is avoided,
thus improving the efficiency and obtaining performance comparable to RB-Apriori.

7 Conclusions and Future Work

This paper introduces a new formal framework based on a rigorous pattern analysis
in access permissions data. In particular, it is possible to derive a lattice of candi-
date roles from the permission powerset. We have proved some interesting proper-
ties about the above-defined lattice useful for optimizing role mining algorithms. By
leveraging our results, data redundancies associated with co-occurrence of permis-
sions among users can be easily identified and eliminated, hence increasing output
quality and reducing process time of data mining algorithms.
To prove the effectiveness of our proposal, we have applied our results to two

role mining algorithms: Apriori and RBAM. Applying these modified algorithms to a
realistic data set, we drastically reduced the running time, while the output quality
was either unaffected or even improved. Thus, we confirmed our analytical findings.
As for future work, we are currently pursuing two activities: the first is to apply

our findings to other role mining algorithms; the second is investigating equivalence
relationships between a single role and a set of roles.

Leveraging Lattices to Improve Role Mining 347

Acknowledgement

Roberto Di Pietro was partly supported by the Spanish Ministry of Science and
Education through projects TSI2007-65406-C03-01 E-AEGIS and CONSOLIDER
CSD2007-00004 ARES, and by the Government of Catalonia under grant 2005 SGR
00446. The authors would also like to thank Richard A. Parisi Jr. for his helpful
comments and valuable review.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: J.B. Bocca,
M. Jarke, C. Zaniolo (eds.) Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB, pp. 487–499. Morgan Kaufmann (1994)

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM
Journal on Computing 1(2), 131–137 (1972)

3. ANSI/INCITS 359-2004, Information Technology – Role Based Access Control (2004)
4. Colantonio, A., Di Pietro, R., Ocello, A.: A cost-driven approach to role engineering. In:
Proceedings of the 23rd ACM Symposium on Applied Computing, SAC ‘08, pp. 2129–2136.
Fortaleza, Ceará, Brazil (2008)

5. Coyne, E.J.: Role-engineering. In: Proceedings of the 1st ACM Workshop on Role-Based
Access Control, RBAC ‘95 (1995)

6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2 edn. Cambridge University
Press (2002)

7. Epstein, P., Sandhu, R.: Engineering of role/permission assignments. In: Proceedings of the
17th Annual Computer Security Applications Conference, ACSAC, pp. 127–136. IEEE Com-
puter Society (2001)

8. Kern, A., Kuhlmann, M., Schaad, A., Moffett, J.: Observations on the role life-cycle in the
context of enterprise security management. In: Proceedings of the 7th ACM Symposium on
Access Control Models and Technologies, SACMAT ‘02 (2002)

9. Kuhlmann, M., Shohat, D., Schimpf, G.: Role mining - revealing business roles for security
administration using data mining technology. In: Proceedings of the 8th ACM Symposium on
Access Control Models and Technologies, SACMAT ‘03, pp. 179–186 (2003)

10. Neumann, G., Strembeck, M.: A scenario-driven role engineering process for functional
RBAC roles. In: Proceedings of the 7th ACM Symposium on Access Control Models and
Technologies, SACMAT ‘02 (2002)

11. Röckle, H.: Role-finding/role-engineering. In: Proceedings of the 5th ACM Workshop on
Role-Based Access Control, RBAC 2000, p. 68 (2000)

12. Röckle, H., Schimpf, G., Weidinger, R.: Process-oriented approach for role-finding to imple-
ment role-based security administration in a large industrial organization. In: Proceedings of
the 5th ACMWorkshop on Role-Based Access Control, RBAC 2000, vol. 3 (2000)

13. Schlegelmilch, J., Steffens, U.: Role mining with ORCA. In: Proceedings of the 10th ACM
Symposium on Access Control Models and Technologies, SACMAT ‘05, pp. 168–176 (2005)

14. Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: finding a minimal descriptive set of
roles. In: Proceedings of the 12th ACM Symposium on Access Control Models and Technolo-
gies, SACMAT ‘07, pp. 175–184 (2007)

15. Vaidya, J., Atluri, V., Warner, J.: RoleMiner: mining roles using subset enumeration. In:
Proceedings of the 13th ACM Conference on Computer and Communications Security (2006)

16. Zhang, D., Ramamohanarao, K., Ebringer, T.: Role engineering using graph optimisation.
In: Proceedings of the 12th ACM Symposium on Access Control Models and Technologies,
SACMAT ‘07, pp. 139–144 (2007)

