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Abstract In this paper we propose an anomaly intrusion detection model based on
shuffle operation and product machines targeting persistent interposition attacks on
control systems. These attacks actually are undetectable by the most advanced sys-
tem call monitors as they issue no system calls and are stealthy enough to transfer
control to hijacked library functions without letting their saved instruction pointers
get stored on stack. We exploit the fact that implementations of control protocols
running in control systems, which in turn are attached to physical systems such as
power plants and electrical substations, exhibit strong regularities in terms of se-
quences of function calls and system calls issued during protocol transactions. The
main idea behind the proposed approach is to introduce NULL function calls within
a Modbus binary and to apply the shuffle operation between them and existing func-
tion calls. We then devise and implement a product machine capable of recogniz-
ing the shuffle representation of function call and system call regularities. A sensor
uses a unidirectional interprocess communication channel based on shared memory
to receive profile data from a Modbus process, and subsequently submits them to
the product machine. We describe an experimental evaluation of our model on an
ARM-based Modbus device and demonstrate that the proposed model overcomes
the limitations of state of the art approaches with regard to detection of persistent
interposition attacks on control systems.

1 Introduction

With the advent of low cost computing the control systems industry is replacing
its proprietary legacy hardware with state of the art devices. The interconnectivity
of control systems has transitioned drastically from minimal communications over
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dedicated serial-line channels to Ethernet TCP/IP networks connecting control sys-
tems to each-other and often to the enterprise network and/or Internet. Proprietary
communication protocols and operating systems have been in part replaced with
open standards such as IEC 61850, DNP3, Modbus, IEC 60870-5, etc., and modern
operating systems such as Windows CE or real-time variants of Linux, respectively.
The actually high connectivity of control systems along with their use of standard
technology expose control networks to a variety of network attack vectors. In fact
several studies have shown that control systems are subject to various kinds of vul-
nerability relying in their data, security administration, architecture, networks, and
platforms[18]. In particular, low-level coding vulnerabilities exploitable by mem-
ory corruption attacks have been found to be widespread in control system code.
Unclassified case studies include a heap overflow in Inter Control Center Protocol
(ICCP)[19], a heap overflow in LiveData Protocol Server [8], faulty mappings be-
tween protocol elements, i.e. handles and protocol data unit addresses, and main
memory addresses in OLE for Process Control (OPC)[13][20], and faulty mappings
between data items in a protocol data unit (PDU) as addressed by Modbus and the
memory locations where those data items are stored[3].

In this paper we provide an anomaly intrusion detection technique based on con-
cepts which we borrowed and adapted from automata theoretic models of parallel
computation, namely shuffle operations and product machines[5, 9]. The proposed
technique has been devised to detect persistent interposition attacks[15] and is car-
ried out through sensor agents placed in control systems. These sensor agents gather
execution data from a process to be protected and apply an automata—based recog-
nition algorithm for the purpose of determining whether an intrusion is taking place.
In our opinion the very first line of defense from network attacks on control systems
should be some host-based intrusion prevention approach such as the one provided
in [4]. Nevertheless, counting for the highly sensitive role played by control systems
in monitoring and controlling critical infrastructures, additional security levels are
necessary for countering network attacks. Moving along this line the proposed in-
trusion detection technique is intended as an additional layer of defense.

The remaining of this paper is organized as follows. Section 2 provides the motiva-
tions behind our contribution and describes representative related work. Section 3
provides the main ideas behind the proposed intrusion detection model. Section 4
describes an experimental evaluation of this model on a Modbus device[12] running
an embedded Linux operation system. Section 5 summarizes our contribution and
concludes the paper.

2 Motivations and Related Work

Anomaly intrusion detection systems (IDS) based on system call information rely
on monitoring interactions between a process in user land and an underlying oper-
ating system kernel. A process to be protected is sent regular data in input several
times and in isolation, i.e. off line. All system calls which are issued to the kernel
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by this process are analyzed for the purpose of building a normal execution profile.
In literature such an operation is often referred to as the learning phase. In moni-
toring mode an anomaly IDS starts monitoring system calls issued by a process to
be protected and compares. Such an IDS compares the information extracted from
monitored system calls with the information extracted from system calls issued dur-
ing the learning phase. If deviations are identified, then the IDS concludes that an
intrusion has taken place, hence the detection type — anomaly detection.

Thus, a process—to—kernel interaction through system calls is used as a mechanism
for profiling a process to be protected. Along their way system call based IDS have
had various limitations in extracting information from system calls in a proper and
thorough way. Nevertheless, modern system call based IDS are quite powerful in
exploiting system call information. If we assume an ideal system call based IDS,
i.e. an IDS which has the capabilities of capturing the whole context of process—
to—kernel interactions through system calls, could we state that we have in hand an
IDS which is capable of detecting all known attacks on a protected process ? The
answer to our question comes directly from the research work discussed in [15] that
describes an attack technique which has been demonstrated to be capable of evad-
ing powerful system call based IDS. Authors refer to such a technique as persistent
interposition attack, and we verified its offensive capabilities on control systems.

A persistent interposition attack relies upon an initial shellcode injection attack. Af-
ter gaining execution flow control, injected shellcode corrupts pointer tables such
as the global offset table (GOT) in ELF, virtual table pointers in C++ code, or any
specific support for plug-ins and modules. The aforementioned corruption is carried
out in such a way that attack code interposes itself between a target process and
write() & read() functions of a C library. A persistent interposition attack intercepts
in a man in the middle (MITM) style and subsequently modifies either all or se-
lected parts of data read and/or written by a target process. Taking into account that
a persistent interposition attack only modifies the I/O data stream of a target pro-
cess, and does so by limiting itself not to issue any system calls or corrupt any data
stored on stack, in traditional computer systems it may not be sufficient for attackers
to achieve their objectives. That said, from our evaluation of persistent interposition
attacks as applied on control systems results that such attacks are extremely power-
ful and fully sufficient to achieve attacker goals. In fact relevant objectives of attacks
on control systems center around gaining control over control protocol frames hold-
ing commands to underlying critical infrastructure utilities or status information to
be processed by a master station.

Obviously all those IDS which rely only on sequences of system calls issued by a
given process have no means of detecting a persistent interposition attack since the
latter absolutely does not cause any changes to sequences of system calls. Thus, a
persistent interposition attack issues no system calls on a target platform. The Vt-
Path model[6] goes beyond sequences of system calls and points towards call stack
information in conjunction with system call information. As a system call is issued
by a given process, VtPath extracts the system call name and the value of instruc-
tion pointer (IP) register. Further, VtPath extracts from the stack all routine return
addresses preliminarily saved on stack and puts them into what authors refer to as
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a virtual stack list. The value of IP register is then added to the end of the virtual
stack list. For the purpose of characterizing a transition from a system call A to an-
other system call B VtPath employs virtual stack lists. It uses them to build a logical
virtual path from A to B that abstracts execution from the moment the process is-
sued system call A to the moment the process issued system call B. If during the
monitoring phase VtPath cannot construct the virtual stack list, then it assumes that
a successful attack has corrupted return addresses that were stored on it. This fact
is referred to as a stack anomaly. If an address is missing in the virtual stack list,
then we have a return address anomaly. If the extracted value of IP register does not
correspond to the system call name, then we have a system call anomaly. If there are
any deviations in the virtual paths between two system calls, then we have a virtual
path anomaly.

The work in [7] also combines system call information with call stack information
defining an observation as a vector of a system call number along with the return ad-
dresses present on the stack in the moment this system call is issued. Executions then
are thought as arbitrary-length sequences of observations and are used to create the
so-called execution graph characterizing the behavior of a process to be protected.
In both the VtPath model and the execution graph model we can observe that the
factors which create some kind of virtual fence to prevent injected shellcode from
achieving attack goals without being detected from the IDS, i.e. call stack config-
uration and systems calls, are situated in the offensive space of injected shellcode
itself. In fact nothing prevents injected shellcode from writing to a corrupted stack
in order to restore return addresses before a system call is issued, hence evade de-
tection. Further, although injected shellcode cannot issue a system call itself since
that way it would cause what VtPath refers to as a system call anomaly, the work in
[10] has demonstrated that the injected shellcode could jump to existing legitimate
code in order to have that code execute the system call for it, i.e. for injected shell-
code. Memory locations and registers are corrupted in such a way that the execution
control is returned to injected shellcode after the issuance of a system call.

We deem approaches such as VtPath model and execution graph model to be still
capable of detecting system call issuing attacks on control systems if an additional
observable factor is employed, namely transaction response time. We exploiting the
fact that industrial control communications are supposed to be real-time. In a typical
Modbus transaction, for instance, a master station sends a Modbus request protocol
data unit (PDU) to a slave device. The slave device examines the request and is
supposed to reply with either a Modbus Response PDU or Modbus Exception Re-
sponse PDU within a time limit which in most cases is in the range of just a few
milliseconds. The response time of a slave device in normal transactions may slide
between upper and lower time boundaries within the allowable response time. Let’s
take as an example a scenario where we have a sensor running on each slave device
on a field. Let’s assume that attackers acquire access to a process control network
through a wireless node and start sending unauthenticated Modbus request PDU’s
to a target slave device on the field in order to exploit a memory corruption vulner-
ability in, say, a cryptographic routine.

If injected shellcode will try to reconstruct a corrupted stack each time it has existing
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legitimate code issue a system call for it, then the sensor on the compromised field
device will notice a considerable variation in the response time of the compromised
device. This is due to the fact that reconstructing a call stack several times and
regaining execution control from existing code requires a considerable amount of
time. Powerful IDS models such VtPath and execution graph though don’t have the
instruments necessary for detecting persistent interposition attacks. As stated above
persistent interposition attacks issue no system call. Further, after having intercepted
and possibly modified function call arguments stored on stack, a persistent interpo-
sition attack uses a jump instruction to transfer execution control to the real read() or
write() functions of the C library. In a system running on an ARM microprocessor|[2]
we had injected shellcode which transferred execution control to the real read() or
write() functions by writing directly to R15 register or executing an unconditional
branch instruction. This way the return address of the injected shellcode will not be
saved on stack and no virtual path anomaly will take place. For more information
on persistent interposition attacks please refer to [15].

3 A Product Machine Model for Anomaly Detection

The information extracted from user land by powerful system call monitors such
as VtPath model and execution graph model for the purpose of creating a process
profile consists of the value of program counter (PC) and return addresses saved
on stack. We deem PC is quite a suitable mechanism for forcing attack code not to
issue any system calls, at least not by itself. With regard to return addresses saved
on stack we see several weaknesses which could allow an attacker to evade intrusion
detection, namely:

e Information used for detection is stored on buffers which attack code can easily
corrupt. In fact nothing prevents attack code from writing to selected locations
on stack before a system call is issued and intrusion verifications are made.

e If attackers perform a deep analysis on target code and are patient enough to go
through it, detection information itself, i.e. return addresses, may be calculated
by attack code and used to restore a corrupted stack in order to cover attack traces
in the moment of intrusion verification.

In fact a good part of implementations of control protocols and/or related libraries
are provided by third party software companies and are accessible to everybody
with enough financial support. A dedicated attacker could get the code of a target
control protocol and analyze how stack is laid out immediately after gaining the ex-
ecution control of a target process by transferring it to injected shellcode. Function
call paths could also be analyzed as they directly influence stack layout. Further,
none of the information employed by other models for intrusion detection is actu-
ally usable in detecting persistent interposition attacks which limit themselves to
intercepting and modifying the I/O data stream of a target process without issuing
any system calls. The proposed detection model aims at avoiding these weaknesses.
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On one hand the approach obfuscates legitimate function call paths, thus invalidates
attacker’s knowledge required for evasion. On the other hand it prevents attack code
from corrupting profile data generated by a monitored process. We first explain the
concepts of our anomaly detection model. Then in the other section we describe the
application of the proposed model to ARM-based devices with the premise that it
is straightforward to do the same on control devices equipped with other embedded
CPU architectures.

In the proposed model the information used as a basic building block in the activity
of creating the profile of a process to be protected consists of the memory address
of an instruction which issues a call to a defined function and the memory address
where execution control is transferred shortly thereafter. Thus, when execution flow
moves from one function A to another function or code block B, we’re concerned
with extracting the address of the instruction in A which issued the function call
and the address in B where execution control is transferred. As in different execu-
tions a parent process along with any child processes it forks could be loaded at
different virtual memory locations, we use PC-relative addresses for identifying the
memory locations in functions A and B where a function call is issued and where
subsequently execution control is transferred, respectively. CPU architectures have
a predefined register which acts as a PC. PC-relative addresses do not change in
different runs, therefore they can be reliably used as profile data. In the proposed
anomaly detection model we consider the PC-relative address of a memory location
where execution flow is being transferred as a result of a function call.

That relative address in reality is an offset from PC in the moment a function call
is issued. If we are working on a [/-bit architecture and for the sake of simplicity
assume that respective memory addresses will consist of / bits, by using PC-relative
addresses we shrink the 2/ bits needed as profile data, i.e. / bits of the address where
a function call issuing instruction is stored + / bits of the address where execution
flow is transferred, into only [ bits of a PC-relative address. Thus, a PC-relative
address serves as some sort of logical binding between the memory address of an
instruction which calls a defined function and the memory address of an instruction
to which execution control is transferred. If in formal language notation we define a
letter as a PC-relative address, then the alphabet containing all letters which are of
our interest, i.e. PC-relative addresses, may be defined as follows:

3 ={x/alph(x) ={0,1},|x| =}

where al ph(x) denotes the symbols which appear in a given letter, and |x| denotes
a letter length in terms of number of symbols which appear in it along with their
frequency.

If we start monitoring a process, extract a PC-relative address, where execution
control is transferred, from each function call issuing instruction actually executed,
and concatenate those PC-relative addresses, i.e. letters in formal language nota-
tion, in their order of appearance, then we get a word which characterizes important
aspects of a process execution, namely what we refer to as inter-function transfer
paths. At this point we could extend the concept of profile data to include the mem-
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ory address of an instruction which issues a system call along with the system call
number of a service requested to an operating system. The memory address of an
instruction which issues a system call could still be relative to the value which PC
register had at some predefined entry point in the beginning of process execution.
Further, the system call number could be padded to / bits in order to give it an ap-
pearance which complies with how we define a letter. Thus, a given inter-function
transfer path is an ordered sequence of /-bit values taken as a function call is issued
or as an operating system service is requested through a system call.

Let X denote an alphabet, i.e. a finite set of symbols or letters. If we don’t con-
sider predefined address space ranges where a process may be loaded, then the set
of all possible arbitrary behaviors of a given process running on a /-bit architec-
ture is characterized by the set of words, i.e. letter concatenations, as shown in the
following definition:

! *
A= (Uizlxj)

where U denotes the union operator, x; is an arbitrary letter,i.e. x;¢X, and * denotes
the Kleene closure, i.e. Kleene star operation.

At this point we decide to introduce diversity into legitimate inter-function trans-
fer paths of a process to be protected. We do so by inserting some NULL functions
into the code of that process. NULL functions are inserted in such a way that they
preserve the correct computability of a given program. For instance, if before insert-
ing the NULL functions, say w() and v() into a program which has three functions
such as a(), b() and ¢(), and where a() calls both b() and ¢() in that order, then an
instance of a valid sequence of functions where execution flow passes through as a
process proceeds with its execution would be:

{W’ V7a7 V’ a’ b7a7 C’ V}

As a result of a correct insertion of NULL functions into a program to be pro-
tected, a new inter-function transfer path will be created upon the previous one. The
insertion of NULL functions into a program generally may cause deviations from
the logical bindings via PC-relative addresses which were already present in the
program before it got instrumented. Let’s refer to these deviations as jitter. The new
inter-function transfer path then will be composed of those original logical bindings
via PC-relative addresses as changed by jitter, interleaved with new logical bind-
ings via PC-relative addresses. These new logical bindings are due to new function
call issuing instructions inserted as a result of program instrumentation. NULL func-
tions may be defined as having an arbitrary number of arguments and local variables
with arbitrary lengths. Allocation of memory for these variables would contribute
to further obfuscate the stack layout. Considering the motivation behind introducing
function arguments and local variables in NULL functions, their values could be
arbitrary as long as they respect the type of the variables to which they are assigned.
In addition, it is also useful to insert NULL system calls into a program to be pro-
tected as well. Going back to our formal language parallelism, we may notice that
the word which represents a given inter-function transfer path of an instrumented
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program is the result of the shuffle operation between the word which represents the
inter-function transfer path of the same program before getting instrumented as sub-
jected to jitter, and the word created by concatenating the logical bindings of NULL
functions inserted into the instrumented program.

At this point we’ve built the basis for discussing how to proceed with an applica-
tion to anomaly detection of the concepts described above. According to our model
we run an instrumented program on a control system to be protected by sending
it regular PDUs, namely those frames which should be expected to be received by
this control system when it will be operational in a PCN. While doing so we make
sure that the control system in question is not under attack, such as for instance by
testing it in isolated laboratory settings. As a process under observation replies to
various normal PDUs, we extract information about the function calls along with
system calls it issues. In order to facilitate construction of a product machine to be
used to recognize legitimate process behaviors, we need to differentiate between PC-
relative addresses in an inter-function transfer path which represent original function
or system calls, and PC-relative addresses in that inter-function transfer path which
represent NULL function or NULL system calls.

For such a purpose we first record only those PC-relative addresses which represent
calls to functions found in the original version of a program to be protected. Thus,
the inter-function transfer paths we obtain in this step are those inter-function trans-
fer paths which could have been observed while learning the normal profile of an
original program, but which have been altered by jitter. We then repeat the profile
learning procedure, but this time we record all PC-relative addresses in each func-
tion or system call actually issued. As a result of such a learning phase we have in
hand a set of inter-function transfer paths which characterize legitimate behaviors
of a process to be protected. Furthermore, we know which PC-relative addresses in
an inter-function transfer path are due to original function or system call issues, and
which of them are due to NULL function or system call issues.

The language defined as:

I' ={y e A / y has been observed during learning phase}

defines all normal behaviors of an original program to be protected. I" is a finite
language since there is a defined finite number of different function call sequences
which a process follows during different executions upon receipt of a finite set of
input frames.

In general, if © is the language composed of words created by concatenating
letters, i.e. PC-relative addresses, of NULL functions and NULL system calls, then
the language Y" which defines all normal behaviors of a program instrumented in all
possible ways is defined as:

Y=0|T1'

where T'' is composed of words representing inter-function transfer paths in I" as
possibly altered by jitter.

Our anomaly detection model uses a product machine as a recognizer of normal
behaviors, i.e. words representing inter-function transfer paths which have been ob-
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served during the learning phases, of a process to be protected. While a shuffle
automaton could instead have been used in our model since we use shuffle oper-
ation to affect the behavior of program, we deem a product machine to be more
appropriate in our context since we do not use a shuffle closure operation. Accord-
ing to our model we build a first finite state machine for recognizing strings made
of PC-relative addresses which represent original function or system calls as altered
by jitter, and a second finite state machine for recognizing PC-relative addresses
which represent NULL function calls or NULL system calls. The ultimate recog-
nizer of legitimate behaviors of a protected process then is the product of these two
finite state machines. During the monitoring phase complete words of PC-relative
addresses are collected from a monitored process and fed to the product machine.
If such a machine recognizes those words, then the monitored process is exhibiting
normal behavior, otherwise our model deems that the execution control of a moni-
tored process has been hijacked.

4 Experimental Evaluation and Technical Details

Fig. 1 depicts a cyber-physical system where an experimental evaluation of our
anomaly detection model was carried out. Note that the physical system, i.e. a nu-
clear power plant in our case, is simulated. The experiments were carried out on a
Modbus device based on a 32-bit ARM microprocessor and running an embedded
Linux operation system. More precisely, we worked on FreeModbus[21], which is
a free implementation of the popular Modbus protocol especially targeted for em-
bedded systems. For the purpose of experimentation we integrated FreeModbus into
uClinux[1], an embedded operating system most suited for use in microcontrollers.
In ARM microprocessors it is the register R15 which acts as PC, consequently while
applying our model to an ARM architecture we use R15 as a base register to allow
relative addressing. In fact register R15 at any moment holds a value which is the
sum of the memory address of an instruction currently executing and 8 (well, in most
cases, depends on implementation), but this fact has no affect on our assumption of
logical binding between the memory address of a function call issuing instruction
and the memory address holding an instruction to which execution control is subse-
quently transferred as a result of that function call.

In an application of our model to ARM we extract from each actually executed BL
(branch with link) instruction, i.e. an ARM function call issuing instruction, what
in ARM is referred to as a target address. The target address is a R15-relative ad-
dress where execution control is being transferred, and represents exactly what in
our model we refer to as logical binding. Further, we extract the address of each ac-
tually executed SWI instruction, i.e. an ARM system call issuing instruction, along
with the system call number of a service requested to an operating system. Each
extracted SWI address will be relative to R15 in a predefined entry point. The Mod-
bus processes we experimented with acted as slaves, in the sense that they received
requests and responded with responses. In fact in general configurations control
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Fig. 1 An experimental testbed where the anomaly detection approach was practically evaluated

devices on a field act as slaves, except several cases in which they relay or even
control protocol frames between other field devices. We coded a software agent
which we used to extract data from a Modbus process as the latter proceeds with
its execution. Further, we coded through the Concurrent Hierarchical State Machine
language system[11] a small implementation of a product machine which we used
as an intrusion detection mechanism following the proposed approach.

We started with a monitoring phase on FreeModbus tracing both its function calls
and system calls in order to determine its actual inter-function transfer paths. We
used testing utilities such as modpoll to send to the monitored process several Mod-
bus request PDU’s holding function codes of those which FreeModbus actually sup-
ports. We defined several NULL functions and a few NULL system calls which we
inserted into the code of FreeModbus in such a way that the inter-function trans-
fer paths newly formed were the result of a shuffle operation between R15-relative
addresses of existing function calls and system calls as perturbed by jitter, and the
inserted NULL function calls and NULL system calls. Rather than creating a profile
of the whole FreeModbus code, we operated only on that part which actually exe-
cutes during a Modbus transaction, which is from the moment a Modbus Request
PDU is received from a socked till either a Modbus Response PDU or a Modbus
Exception Response PDU is sent through a socket[12]. We used this defined inter-
val as operational boundaries also during the monitoring phase.

Thus, the sensor agent starts to gather monitoring data from the Modbus process
from the moment the latter receives a Modbus Request PDU. When a response is
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generated by the Modbus process, the sensor agent feeds to the product machine
implementation the string of monitoring data gathered that far. After doing so the
sensor agent starts from the beginning. We set up an interprocess communication
channel to allow the Modbus process send monitoring data to the sensor agent. The
instrumentation of FreeModbus allowed us to also enable the Modbus process to
send monitoring data to the sensor agent. We used shared memory as an interprocess
communication mechanism. It is the sensor agent which creates a shared memory
segment by issuing a shmget() system call. The shared memory permissions were
such that the owner of the shared memory segment, i.e. the sensor agent, was al-
lowed to attach to it in read mode, while others such as the Modbus process were
allowed to attach to it in write mode. Thus, the Modbus process was supposed to
write to the shared memory but not read from it, while the sensor agent was sup-
posed to read from memory but not write to it. We used semaphores to synchronize
the passage of monitoring data from the Modbus process to the sensor agent.

The intervention which enabled FreeModbus to send data to the sensor agent con-
sisted in locating each BL instructions and subsequently inserting instrumentation
instructions right before each one of them in order to extract their R15-relative rar-
get_address and write it to the shared memory so the sensor agent may grab it imme-
diately. Further, we used the kernel to retrieve both the relative return address after
a system call has been issued and the number identifying the service requested to
the operating system. The defensive characteristics of our anomaly detection model
which overcome the limitations of other powerful system call monitors described in
previous sections are the following:

o As the sensor agent gathers monitoring data from the Modbus process throughout
a transaction, an attacker cannot write valid data to the shared memory used for
interprocess communication. This is due to the fact that an attacker does not know
a valid inter-function transfer path as the original inter-function transfer paths
have been shuffled with NULL function/system call R15-relative addresses.

e Attack code cannot overwrite monitoring data produced by legitimate FreeMod-
bus instructions since due to process synchronization through semaphores those
data are read by the sensor agent as soon as written on shared memory by
FreeModbus.

Our anomaly detection model is devised to detect attacks which appear in an intra-
process interposition form, therefore operating system security mechanisms should
be properly employed to ensure that such attacks do not evolve into an inter-process
interposition form. If a compromised Modbus process happens to run as a privileged
account such as root in uClinux, then attack code could attach to a sensor process
and take full control over its execution. In that case attackers could use Dynlnst
API[14], which in earlier studies has turned out to be an easy to use and powerful
attack tool[17]. An inter-process interposition form is also acquirable in the case
both a Modbus process and a sensor process share user ID (uid) or group ID (gid).
Therefore, a reasonable deployment of our anomaly detection model would consist
in a Modbus process running as an unprivileged user, say Modbus, and in a sensor
running as an unprivileged user, say sensor. Further, the uid and gid of user sensor
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should be different than the uid and gid of user Modbus, respectively.

Let’s see how our anomaly detection model behaves in front of a persistent inter-
position attack and an attack such as the one described in [10]. During the initial
exploit phase phase of a persistent interposition attack a memory corruption vul-
nerability is used to transfer execution control to initial attack code. Such code is
responsible for possibly downloading and storing bootstrap code, interposing that
bootstrap code, and cleaning up any damage caused by the execution control hijack-
ing. If the hijacking of execution control to the initial attack code is done through
corruption of a return address or frame pointer stored on stack, our model is not
likely to detect it since such a hijacking won’t involve any of the BL instructions
we keep under monitoring. If corruption of any function pointers within the address
space of a target process is used to hijack execution control to the initial attack code,
as it may be the case of a heap overflow or format string attack corrupting an entry in
a function pointer table such as GOT, then our model will detect it. Considering that
GOT in addition to ELF is also part of BFLT format[16], which in turn is used for
formatting uClinux executables, let’s take an example in which an attacker corrupts
a GOT pointer to a library function f{). Let an original inter-function transfer path
produced by a given application of a shuffle operation be {A, s, g, [, 7, w, y, m, n},
where w is the address of function f{) relative to R15, m is the address of a system
call issuing SWI instruction relative to R15 in a predefined entry point, and 7 is a
system call number padded to 32 bits.

Since the 32-bit data value in GOT which pointed to f{) has been corrupted with
a value which points to injected code, when function f{) is called by the Modbus
process execution control is transferred to injected code. During such a hijacking
the BL instruction which was supposed to transfer execution control to the w R15-
relative address, i.e. call function f{), in fact transfers execution control to, say, v
R15-relative address, i.e. calls injected code. The inter-function transfer path ex-
tracted during the monitoring phase from such a hijacked process would be {#, s, g,
l,t,v,y, m, n}. When this inter-function transfer path is fed by a sensor to the re-
spective product machine, that product machine will not recognize such an observed
inter-function transfer path, causing the IDS system to visualize intrusion alarms on
HMI.

Regardless of detection of any hijackings of execution control to initial attack code,
our model results to be capable of detecting a persistent interposition attack during
what authors in [15] refer to as bootstrapping phase. In fact during the interposing
bootstrap code step of initial exploit phase initial attack code modifies one or more
function pointers in order to interpose bootstrap code. The effects of corruption of
function pointers are observed in bootstrapping phase when bootstrapping code is
invoked during all read and write operations. As each of these invocations takes
place, a sensor registers from the BL instruction issuing the call the R15-relative ad-
dress of the instruction of bootstrapping code where execution control is transferred.
Such an address will cause a deviation in the legitimate inter-function transfer path
making it unrecognizable by the product machine. The same consideration holds for
operational phase during which execution control is continuously hijacked, conse-
quently causing deviations in observed inter-function transfer paths which in turn
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will not be recognized by the product machine.

Attack code itself cannot execute system calls without being detected. In fact, as a
Modbus process requests an operating system service the kernel registers the return
address and system call number. Such information is received by the sensor which
incorporates it into the inter-function transfer path observed during the monitoring
phase throughout a given Modbus transaction. The presence of NULL system calls
in a shuffled behavior of a Modbus process would require attack code to scan most
of existing instructions one by one in order to identify the system call numbers used
in them. Walking through the executable segment though requires considerable time
and processing logic. Further, if attack code issues a system call by itself, then its
return address will be stored on stack and will lead to an easy calculation of the
address of SWI instruction which issued the system call. The offset of the address
of SWI instruction which issued the system call with respect to the value of R15
in a predefined entry point would cause a deviation in the observed inter-function
transfer path.

Going back to our inter-function transfer path example and assuming a best case
scenario for attackers, i.e. they make it to properly replay the NULL system call
numbers, if such an offset is different than m, say ¢, then the following unrecogniz-
able bahaviour representation will be observed on a compromised process: {4, s, g,
I, t,w,y, q, n}. Thus, attackers would still need to issue system calls through SWI
instructions in existing code and apply the IDS evasion techniques provided in [10]
in order to regain execution control. Nevertheless, while reaching a returning point
existing executing code may issue further function calls or even system calls, con-
sequently additional R15-relative addresses or padded system call numbers may be
inserted into the observed inter-function transfer path rendering it unrecognizable
by the product machine applying the proposed intrusion detection model. The main
techniques for regaining execution control according to [10] are modifying function
pointers and return addresses stored on stack.

Modifying function pointers would immediately cause variations in inter-function
transfer paths, thus their detection is straightforward. On the other hand, walking
through the stack and searching for suitable return address values to corrupt re-
quires time. Further, the knowledge required for locating a stack frame suitable for
regaining control is not available since the sequence of original function calls has
been shuffled with NULL function calls. Thus, an attacker does not know the stack
layout and has to learn it. All these steps necessary for evasion cause a delay in both
the total response time of a field device under attack and the time which passes be-
tween reception of consecutive R15-relative addresses in an observed inter-function
transfer path. Our anomaly detection model takes into account these two different
but inter-related delays for realizing that an evasion has potentially happened at a
given field device.

The performance overhead induced by our anomaly detection model on a control
system is dependent on the number of NULL function calls and NULL system calls
inserted into a binary corresponding to an implementation of a control protocol. In-
serting into FreeModbus from 2 to 4 NULL system calls and a number of NULL
function calls which is a quarter of the overall number of function calls in the origi-
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nal FreeModbus code induces a performance penalty of 6% over the total response
time of a Modbus process during a typical transaction. Such a performance cost is
due to gathering inter-function transfer paths and processing them through a product
machine.

5 Conclusion

In this paper we provide an anomaly detection model based on shuffle operations
and product machines. The main idea behind the proposed model consists of in-
serting into a process what we refer to as NULL functions and NULL system calls.
In this model we represent each issuance of a function call or a system call as an
R15-relative address. We then apply a shuffle operation between R15-relative ad-
dresses of existing function calls and system calls, and NULL function calls and
NULL system calls. With regard to the decision mechanism we employ a product
machine which recognizes the result of the shuffle operation described above. If
such an automaton does not recognize any single string of data gathered from a pro-
cess running in a control system, then the proposed model deems that an attack is
taking place in the control system in question. As a conclusion, we demonstrate the
efficiency and feasibility of the proposed anomaly intrusion detection model. We
show that it overcomes the limitations of state of the art system call monitors by
providing an experimental evaluation on a Modbus ARM-based device running an
embedded version of the Linux operating system.
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