A Live Digital Forensic system for Windows
networks

Roberto Battistoni’, Alessandro Di Biagio®, Roberto Di Pietro**, Matteo
Formica', and Luigi V. Mancini®

Abstract This paper presents FOXP (computer FOrensic eXPerience), an open
source project to support network Live Digital Forensics (LDF), where the network
nodes run a Windows NT family Operating System (OS). In particular, the FOXP
architecture is composed of a set of software sensors, once for every network node,
that log node activities and then send these logs to a FOXP collector node; this
collector node analyzes collected data and manages the sensors activities. Software
sensors, implementing the technique called System Call Interposition for Win32,
intercepts all the kernel API (native API) invoked by the OS of the node. Thanks to
the fine granularity of the logs, FOXP can intercept malicious activities. Centralized
logs collected in the collector node, allow to detect coordinated-attacks on network
nodes: attacks that would not be detectable with a single node analysis only. Note
that the implemented System Call Interposition technique has allowed to intercept
and redirect all of the 284 Windows XP system calls. The technique is exposed in
detail and could be considered a contribution on its own. Finally, an overview of
next steps to complete the FOXP project is provided.

Acknowledgements This work was partly supported by the Spanish Ministry of Science and Ed-
ucation through projects TSI2007-65406-C03-01 E-AEGIS and CONSOLIDER CSD2007- 00004
ARES, and by the Government of Catalonia under grant 2005 SGR 00446.

T “Sapienza” Universita di Roma, Dipartimento di Informatica, Via Salaria n. 113, 00197 - Roma,
Italy; e-mail: {battistoni, dibiagio, formica, mancini} @di.uniromal.it

¥ Universita di Roma Tre, Dipartimento di Matematica, L.go S. Leonardo Murialdo n.1,
00146 - Roma, Italy; e-mail: dipietro@mat.uniroma3.it

* Universitat Rovira i Virgili, UNESCO Chair in Data Privacy, Dept. of Computer Engineering and
Maths, Av. Paisos Catalans 26, E-43007 Tarragona, Catalonia; e-mail: roberto.dipietro@urv.cat

653

654 Battistoni et al.

1 Introduction

Vulnerabilities are constantly growing (see Figure 1), and new vulnerabilities are
the pre-requisite for new attacks. One difficulty for network administrator and police
forces to deal with attacks, is that smart attackers attempt to erase or to hide proofs of
their intrusion: log deleting, changing files timestamp or rootkit installation. These
considerations show the need for new generations of Live Digital Forensic (LDF)
tools [26] that could enforce responsibility attribution [12].

CERT Vulnerability MNotes Published

1995 19946 1997 1998 1999 2000 2001 2002 2003 2004 2005 2004

Year

Fig. 1 CERT reported vulnerability in 1996-2006

In this context, network administrators need tools to support analysis and audit
tasks and to detect intrusions and malicious activities. Suppose, for example, that
in a time interval an attacker is able to exploit a node new vulnerability to attack
other nodes of the network. If the administrator has not the right tool, she cannot
detect neither the node generating the attack, nor when the attack started. In this
type of context, tools that allow to reconstruct the entire activities of a system in
a determined time interval, collecting evidences of the activities carried out in that
interval, are needed. To date, there are two possibilities to accomplish this goal:
traditional Computer Forensics (CF) and Live Digital Forensics (LDF). While the
former approach is a static analysis of electronic supports only after a damaging
event, the latter is able to represent the state of a live system for a determined time
interval [2] [11].

The main contribution of this paper is to detail the architecture of FOXP, com-
puter FOrensic eXPerience, an open source project [5] to support network LDF.
FOXP traces activities at a kernel level in the node OS (Windows NT family based),
with the primary goal of detecting malicious activities that are trying to subvert (or
subverted) the node. In compliance with the LDF approach, FOXP is able to monitor

A Live Digital Forensic system for Windows networks 655

activities in the system at every moment, and it allows both a live and a post-mortem
analysis of the system. We also detail the corner stone of this architecture: the Log-
ger; a software module that implements the system call interposition technique at
kernel level within Windows NT family OS based nodes.

Architecture components can be grouped in two distinct sets: client side and
server side components (figure 2):

Agent Kernel .
g Logger | Client
Side
Management Service
Network
Server
Side

Server 4>
Applications \

Forensic
Analysis /
Tools

Fig. 2 FOXP architecture

1. Client side components are located on every node of the network. One component
is the Logger, that allows to collect all the information needed to reconstruct the
activity of the single node.

2. Server side components could be located on a single server node or on multiple
server nodes, and their task is to collect nodes logs and organize them in an
RDBMS for the successive forensic analysis.

The sequel of the paper is organized as follows. Section 2 reports some related
works.

In Section 3 the FOXP architecture is introduced. Section 4 is focused on the
Logger: the main technical component of the system. The Logger allows, extending
technique called System Call Interposition, to intercept and monitor the entire set of
Windows NT family system calls. Thanks to the ability to monitor system calls and
their parameters, it will be possible to create a first dangerousness classification of
Windows system call. Section 5 reports some concluding remarks and the activities
currently under development to fully implement the FOXP architecture.

656 Battistoni et al.

2 Related Work

IDSs are key to the protection of computing systems and computer networks: they
allow to control systems and to react to attacks. In [3] it is shown the role of IDS
in complex organization and some guidelines are provided for the development,
operational conduct and management of IDS. IDS can be used as COTS or can be
customized [27] to support CF or LDF.

Intrusion Detection named anomaly based is based on network traffic analysis.
Its funding principle is that attacker behavior is different from normal user behavior
and that the differences can be detected. Provided a definition of what a normal
behavior is, anomaly based IDS could detect if the behavior is not normal, hence are
able to detect unknown attacks or attacks for which patterns are not known yet [4]
[23]. The main issue with this type of IDS is that there can be just a slight difference
between normal and anomalous system behaviour. These two concepts can overlap
producing a false positive, hence denying the access to system to a legitimate user.
To reduce this problem, one could try to relax the definition of what is normal.
However, this could produce false negatives: attacks could successfully run without
being detected.

A subset of the IDS family are Host-based IDSs (HIDS) [4] [23]: these particular
IDSs are the last line of defense in a system, because they try to detect and prevent an
intrusion occurring within the system. HIDSs monitor both malicious and suspicious
activities.

A subset of HIDS is constituted by the Host Intrusion Prevention System (HIPS)
that also prevents attacks stopping invocation of malicious system calls. An example
of HIPS are WHIPS [6] and REMUS [9] that use System Call Reference Monitor
paradigm [9]. REMUS (REference Monitor for Unix System) is a prototype to mon-
itor system calls that could be used to subvert privileged applications. REMUS uses
a simple mechanism to implement the interception of the system calls at OS kernel
level. Fundamentally, the execution of system calls is allowed only when the pa-
rameters of a certain set of system calls match a rule in an Access Control Database
(ACD) in the kernel. That is, REMUS follows an Anomaly Detection approach.

WHIPS (Windows NT family Host based Intrusion and Prevention System) [6] is
a system similar to REMUS that implements detection and prevention in Windows
OSs and uses the Reference Monitor paradigm too.

In figure 3 we report the scheme of WHIPS, while details on the techniques im-
plemented in WHIPS can be found in [14]. WHIPS and REMUS are on SourceForge
as Open Source projects and it is possible to download them[7] [8].

An example of CF architecture is Forensix [21] for UNIX system. Similarly to
FOXP, Forensix allows to control all the activities in the OS kernel space sending
logs to a central server to structure logs in an RDBMS to implement CF high level
analysis.

BluePipe [18] is another LDF system for *NIX platforms that is an alternative to
a classic post-mortem analysis. It first performs a so called on-the-spot analysis, then
results go to a central server for detailed analysis (as FOXP and Forensix, Bluepipe
implement a client/server paradigm too).

A Live Digital Forensic system for Windows networks 657

Biocked
System File
Cali

'
| Reference *"

Dispatcher
P Dispatched Monitor
System
call
Allowed A
CCESS

S'l'g;i.m Control

L Database

Kernel

Fig. 3 WHIPS module

FOXP is similar to previous mentioned systems, but it has also some important
differences:

e As Forensix and BluePipe, FOXP is based on a distributed agent (Logger) ar-
chitecture, whereas WHIPS and REMUS are made of a single kernel module
implementing system call interposition technique.

e Development of Forensix, Bluepipe and REMUS are just suitable for open source
(well documented) OS. FOXP (as WHIPS) is developed for Windows NT family
based OS. This introduces a critical level of complexity: Windows is a closed
source OS, with little documentation available, especially for the native API
realm.

e As Forensix and Bluepipe, FOXP uses an RDBMS too. This allows to store lot
of logs in a structured way, useful to perform efficient analysis thanks to the
expressivity of SQL.

3 FOXP Architecture

The aim of the FOXP architecture is to monitor the activities of the nodes in a net-
work; when the client running on a node detects a malicious or suspicious activity, it
will record the activities running on that node for a suitable time interval. Recorded
data will be then sent to a centralized analysis system for CF purpose. In the follow-
ing we provide a detailed discussion of the FOXP architecture.

Note that it is out of the scope of this paper to address the issue of communi-
cation security. Indeed, in this paper we focus on the forensics components of our
proposed architecture only. However, note that the cited issue, together with the is-
sues needed to provide a complete and deployable architecture, such as authenticity

658 Battistoni et al.

and non-repudiability of collected logs, are currently under investigation and will be
presented in a different paper.

- . ™~
Server Side
FoXP-FAT FoXP-MC
< FoXP-CS FoXP-AS >
Log DB Audit DB
N ~
4 . ™
Client 1..N
‘ FoXP-MS ‘
‘ FoXP-A ‘ ‘ FoXP-L ‘
N\ /

Fig. 4 Detail of FOXP Architecture

As shown in Figure 4, we assume a network of N nodes, where on each node
it is installed a software module called FOXP Agent (FOXP-A): when this module
detects an anomaly in the behavior of the system, it activates the FOXP Logger
(FOXP-L) that starts collecting and sending data to a dedicated server machine.
FOXP Architecture is composed by client-server subsystems (Figure 2): the client
subsystem is located on every node of the network, and it controls the activities of
the single node in order to detect anomalous behaviors.

Client subsystem is composed by:

e FOXP Agent (FOXP-A): it performs the analysis of the node activities. If an
anomaly is detected, than the logging is activated (Section 3.1).

e FOXP Logger (FOXP-L): it intercepts the system calls invoked on the node and
keeps track of them in a logging file (Section 3.1).

o FOXP Management Service (FOXP-MS): it manages the Agent and the Logger
on every node as well as their communications with the centralized server of the
architecture (Section 3.1).

A Live Digital Forensic system for Windows networks 659

Server-side subsystems are represented by one or more dedicated servers: these

systems store the logs sent from every network node and collect these logs into a
database for a successive forensic analysis. The server-side subsystems are:

FOXP Collector Server (FOXP-CS): it receives and stores logs from every net-
work node (Section 3.2).

FOXP Audit Server (FOXP-AS): it receives and stores the state of the nodes
(Section 3.2).

FOXP Management Console (FOXP-MC): it remotely manages network nodes
communicating with the FOXP-MS on every node (Section 3.2).

FOXP Forensic Analysis Tool (FOXP-FAT): it executes the analysis of the col-
lected logs and states (the Section 3.2).

3.1 Client-side Components

Client-side components reside on every node of the network and have the task to in-
tercept and to log system calls invoked on the analyzed node. Recorded logs are sent
to a dedicated server node (Collector Server) that stores their data in an RDBMS.
As shown in Figure 5, the main components are:

Client1..N

| Log File]q—p FoXP-MS

[y

User Space |

Kernel Space u:ucn.} l

—— FoXP-L FoXP-A

Fig. 5 Client-Side Components

FOXP Agent

it is an IDS (based on the Anomaly Detection [4] [23] paradigm) installed on
every network node, that executes basic analysis of the node activities. All the
FOXP Agents realize a Distributed IDS (DIDS) [1]: in this type of IDS, the role
of the traditional IDS is delegated to a group of agents equipped with some intel-
ligence (at the moment still not formalized and implemented in the system [14]).
FOXP Agent will be able to detect malicious activities; the consequent action is
then to send an alarm to the Management Service that will activate the Logger.

660 Battistoni et al.

e FOXP Logger
it is the main module of the FOXP architecture; it can be manually activated
from the system administrator through the (server-side) Management Console or
automatically by the (client-side) Agent. Through the system call interception in
the Windows kernel, FOXP Logger captures and records every system generated
event. Such module is implemented as a kernel driver: it is loaded and run in a
reserved (and not paged) zone of kernel memory. FOXP Logger is loaded in the
kernel by the Management Service and then it is launched together with the OS.
Because the kernel module resides in the kernel space, it is not directly accessible
from the user space programs, and it only accepts commands from the Manage-
ment Service: module loading or unloading from the kernel memory, starting or
stopping the interception of the system calls, and log writing on a file. Further
details of this module will be given in Section 4.

o FOXP Management Service
it performs the following tasks:

— it receives commands from the Management Console for the Agent rules up-
date;

— it forwards commands directly to the Logger (through IOCTL channels [28])
without using the Agent.

— it sends to the Audit Server periodic messages on the node live state (heart-
beat), as well as the notifications of all the actions completed on the node from
the Agent and the Logger.

— itreceives messages from the Agent and consequently sends commands to the
Logger;

— it sends to the Collector Server the data collected from the Logger.

This module has been implemented as an OS service: it runs in background and
supplies functionality not tied to the single user (services of Windows are similar
to UNIX daemons). The requirement to use a service in order to communicate
with driver when in user mode, derives from the fact that only an application with
specific privileges can interact with a kernel module. The Management Service is
initially installed by the system administrator and configured in automatic mode
at start-up, so it will be started automatically at OS startup.

3.2 Server-side Components

On the Server-side, as synthesized in Figure 6, the tasks are the following: to receive,
to store and to analyze logs received by the nodes of the network. It is fundamental
that the reception is not compromised in some way (for example with DoS attacks),
that the sent data are neither accessed nor alterable from unauthorized entities, and
that the log storage support is adequately protected. These requirements, that could
be achieved with standard network security techniques, are out of the scope of this
paper and we assume them fulfilled. In detail, Server-side components are:

A Live Digital Forensic system for Windows networks 661

-~ i T~
Server Side
FoXP-FAT FoXP-MC
- FoXP-CS FoXP.AS >
Log DB Audit DB
~ e

Fig. 6 Server-side Components

e FOXP Collector Server
itis a server application that receives, over a TCP channel, the logs from the Man-
agement Service installed on every node and stores these logs into an RDBMS
(Log DB). The server is a multithreaded application and the number of the thread
is correlated to the number of the network nodes that are sending their log; it
implements load balancing techniques with other server processes or with other
Collector Server in cluster configuration.

e FOXP Audit Server
it is a server application that receives, over a TCP channel, commands from the
Management Console and forwards them to the Management Service of the des-
tination nodes. Moreover, the Audit Server receives the notifications about the
state and the completed operations from the Agent and the Logger; each of these
pieces of information is to be inserted in a relational database (Audit DB).

e FOXP Management Console
it is an administration console that is used to manage the entire FOXP architec-
ture. It is used by the network administrator to monitor the state of the nodes
(query on Audit DB), to configure (or to update) the FOXP Agent rules, and to
manage the Logger.

o FOXP Forensic Analysis Tool
itis a tool for the forensic analysis of the data stored in the Log DB. The main task
of this component is the detection and the acquisition of the evidences to be used
in a legal procedure to prosecute computer crimes perpetrators. This analysis
methodology has not been defined yet at the moment, but will be addressed in
future work. Some guidelines on Forensic Analysis methodology can be found in
[16] and [15]. In particular, in [24] it is defined a formal model for the definition
of forensic analysis procedures.

662 Battistoni et al.

4 Logger

The Logger is implemented as a kernel driver. We chose this technique because in
Windows NT family based OS (as well as in *NIX) any code can be injected into
the kernel through a driver. However, note that this is critical for the stability and
the security of the system. Indeed, such modules operate in Ring 0 ! and constitute
an extension of the kernel. For this reason, third party drivers — usually employed
to control hardware devices — should be installed only if certified from trusted
entities. In the following we detail the techniques used to implement this feature.

4.1 Interception of system call

The purpose of the FOXP Logger is the interception of all the Windows system calls,
in order to monitor the entire activity of the system. The interception technique, that
constitutes a contribute on its own, is described in detail in the following.

The paradigm of system call interposition (SCI) has already been used, for
instance for the development of: sandboxing systems [20], process confinement,
intrusion detection, auditing and privilege elevation [25] [17]. Although the SCI
paradigm is a powerful method to monitor application behavior, it is a very error
prone technique. In particular, Garfinkel [19] shows some of the difficulties and
provides some guidelines to cope with them.

The interception technique was introduced by M.Russinovich in [13] (based on
the SCI paradigm). Basically, this technique replaces the pointers to the original
system calls in the SSDT table > with pointers to new functions. This substitution
is not a trivial task: in fact, in the most recent Windows versions, it is not possible
to write in certain regions of the kernel space, in particular the region where the
SSDT resides. This makes the traditional technique of SCI useless: if someone tries
to modify the SSDT, writing in a protected region, this would cause a Blue Screen
of Death 3 [28].

To avoid experiencing a BSOD due to the violation of the memory protection
mechanism, the solution is based on applying a patch to the SSDT [10] [22] [29].
In particular, this technique leverages the use of a Memory Descriptor List (MDL),
to allocate a zone of non paged memory with the same interval of addresses of the
virtual memory of the original SSDT. The fundamental difference is that this new
zone of memory can be accessed in write mode.

A function in the MDL replacing an original system call (in agreement with
the SCI technique) is called wrapper. Each wrapper is coded to perform logging
and control operations. These activities carried out, the wrapper completes its last

I Windows has two modes (or rings) [28]: user mode (Ring 3) and kernel mode (Ring 0)

2 System Service Dispatch Table, a kernel data structure where every system call has associated an
index and a pointer to the memory zone that hosts the system call code

3 BSOD, an error not recoverable that requires to reboot the system

A Live Digital Forensic system for Windows networks 663

function: it invokes the original system call. This way, the intended functionalities
associated to the invocation of the system call are performed. A limited disadvantage
of this technique is that, for every system call that must be intercepted, it is necessary
to write a new wrapper.

To save (in OIdAPIPtr) the pointer to the original system call (the APIName) and
to exchange this one with the pointer to the wrapper (NewAPIPtr), it will be used
the HOOK macro:

HOOK(APIName , NewAPIPtr, OIdAPIPtr)
OIdAPIPtr=ExchangePointers (
&SSDT[Index (APIName)],
NewAPIPtr)

Listing 1 HOOK macro

For example, if we want to intercept the Windows NT ZwOpenFile system call,
we would use the HOOK macro in the following way:

HOOK(ZwOpenFile , NewZwOpenFile , OldZwOpenFile) ;

Listing 2 ZwOpenFile API

After the completion of this operation the OS will execute, when invoked, the
new function NewZwOpenFile and not the ZwOpenFile; in OldZwOpenFile will be
stored the memory address of the original system call (necessary for its restoration
when the wrapper returns).

4.2 The Wrapper functions

In this subsection we detail the structure of the wrapper, focusing on the NewZ-
wOpenkFile introduced above:

NewZwOQOpenFile (OUT PHANDLE phFile ,
.., IN ULONG OpenMode) {
doLog(”ZwOpenFile”, phFile, .., OpenMode);
OldZwOpenFile (phFile, .., OpenMode);

Listing 3 NewZwOpenFile API

Remind that the goal of the FOXP system is to trace the invocation of every
system call. The main operation executed by each wrapper will be to write into a
file some information about the intercepted system call: the name, the parameters,
the date and the time of the invocation, the information on the current user and, at
last, the complete path of the process that invoked the system call. The last operation
of every wrapper will be to recall the original system call not to interfere with the
normal evolution of the computation.

664 Battistoni et al.

4.3 Interruption of the interception

It can happen that the administrator requires to unload the Logger. In this case, the
original system calls must be restored. This action, issued via the management mod-
ule of the Logger (Agent or Management Console), invokes the UNHOOK macro:

UNHOOK(APIName, OIdAPIPtr)
ExchangePointers (&SSDT[Index (APIName)] ,
OIdAPIPtr)

Listing 4 UNHOOK macro

After this operation the driver will be unloaded from memory by the Management
Service using the Logger UnLoad function.

In the following we report an issue we had to deal with to implement the unload
function. In the first stage of the implementation, the restoration of the original
pointers of the system call (UNHOOK macro) and the unload of the logger (the
Unload() function) was executed in one phase only, often generating (but in a non-
deterministic fashion) a BSOD with error:

‘ DRIVER_UNLOADED_WITHOUT_CANCELLING_PENDING_OPERATIONS

Listing 5 BSOD error

We figured out the reason: some system calls delay their own execution till the
moment they are called again. This behavior can be due to the fact that the release
of the resources held by the driver overlaps with the instant when these resources
are requested by the pending system call. This problem has been superseded by
separating the restoration phase from the unload phase.

4.4 Extension of the System Call Interposition technique

The system calls that can be intercepted with the macro previously described are
only 104 out of a total of 284: for each of them, it exists an exported symbol # in the
ntoskrnl.lib library, that allows to invoke the system call using its name. Note that
trying to invoke a system call from a driver, a system call that has an unexported
symbol (as for example ZwAddAtom) would generate the linking error:

error LNK2019:

unresolved external symbol
__imp__ZwAddAtom@24

referenced in function
_Hook@0sys\i386\Logger.sys:

error LNK1120: 1 unresolved externals

Listing 6 Linking error

4 The symbols are special strings that identify a function within a program and link it to the re-
spective code in a library

A Live Digital Forensic system for Windows networks 665

For the Logger module to intercept also those system calls for which the sym-
bol from ntoskrnl.lib is not exported, the original technique has been extended as
follows.

First, observe that, in the SSDT, a system call is clearly identifiable not only
through its name, but also via its numerical index within the same SSDT. Then, the
basic idea is to recall a system call just using its corresponding index in the SSDT
(and not its name). The HOOK macro has been therefore extended through new
HOOK_NE macro:

HOOKNE (IndexAPIName , NewAPIPtr, OIdAPIPtr)

OIdAPIPtr=ExchangePointers (
&SSDT[IndexAPIName],
NewAPIPtr)

Listing 7 HOOK_NE macro

Using this macro the Logger will be able to intercept, without generating any
error, the not exported system call (for example the ZwCreateProcess):

HOOKNE(0x002f , NewZwCreateProcess,
OldZwCreateProcess);

Listing 8 ZwCreateProcess API

Consequently, we define the UNHOOK _NE macro:

UNHOOKNE (IndexAPIName , OIdAPIName)
ExchangePointers (&SSDT[IndexAPIName],
OIdAPIName)

Listing 9 UNHOOK_NE macro

4.5 Getting the image path of a process invoking a system call

Remind that, among the items that are collected by the logger, the complete process
path of the process invoking the system call is an important one. Indeed, this would
greatly help in both LDF and post-mortem analysis, to attribute responsibilities.

However, it is necessary to emphasize as finding this path has not been an easy
task. Indeed, in principle there exist several ways to obtain this piece of information,
when programming within the user space. However, many of these methods fail
when adapted to the kernel mode, or just cause instability of the system, carrying to
non deterministic BSOD generation.

We were able to devise an effective method, reported in the following. It is based
on the usage of the ZwQuerylnformationProcess system call, that takes three formal
parameters. We have to pass to it, as parameters, both (ProcessInformationClass
type) and ProcessImageFileName value (defined in PROCESSINFOCLASS). The
third parameter is used to collect the return value. Hence, invoking the ZwQuery-
InformationProcess system call with the described parameters, returns —within the
third parameter— the string containing the complete path calling process.

666 Battistoni et al.

5 Conclusions and Future Work

In this paper we have presented FOXP, an open source project to support network
LDF where nodes run a Windows NT family based OS. In particular, we have de-
tailed the architecture components of FOXP. Further, we have shown the first imple-
mentation achievement: the Logger module of the FOXP agent. This module is the
one that presents the major technical difficulties within the project, and its imple-
mentation could be considered a contribution on its own. In particular, the Logger
extends the system call interposition technique. As a result, all of the 284 system call
in Windows XP OS have been mapped, and therefore FOXP is able to reconstruct
all the system activities on such system. Note that the completeness of system call
interception is a very important aspect for a system to support computer forensic
activities.

As for future work, we are undergoing the following steps: to classify the system
calls according to their level of dangerousness, to assess the overhead introduced by
our Logger. We are also striving to extend our SCI technique on VISTA 32-bit OS.
Preliminary results are quite encouraging.

Finally, note that two of the described architecture components have not been im-
plemented yet: FOXP Agent and FOXP Management console. These development
activities will be carried out as soon as the previously described steps complete; note
that a preliminary feasibility study supported out intuition that their implementation
should not present technical difficulties.

References

1. Abraham, A., Thomas, J.: Distributed intrusion detection systems: A computational intelli-
gence approach. Applications of Information Systems to Homeland Security and Defense
(Chapter 5), 105-135 (2005)

2. Adelstein, F.: Live forensics: Diagnosing your system without killing it first. Communications
of the ACM 49(2), 63-66 (2006)

3. Allen, J., McHugh, J., Christie, A.: Defending yourself: The role of intrusion detection sys-
tems. IEEE Software 17(5), 42-51 (2002)

4. Axelsson, S.: Intrusion detection systems: A taxomomy and survey. Tech. rep. (2000)

5. Battistoni, R., Di Biagio, A., Di Pietro, R., Formica, M., Mancini, L.V.: The foxp project.
SourceForge.net, http://foxp.sourceforge.net/

6. Battistoni, R., Gabrielli, E., Mancini, L.V.: A host intrusion prevention system for windows
operating systems. In: Computer Security ESORICS 2004, vol. 3193, pp. 352-368. LNCS
(2004)

7. Battistoni, R., Mancini, L.V.: The whips project. SourceForge.net,
http://whips.sourceforge.net/

8. Bernaschi, M., Gabrielli, E., Mancini, L.V.: The remus project. SourceForge.net,
http://remus.sourceforge.net/

9. Bernaschi, M., Gabrielli, E., Mancini, L.V.: Remus: A security-enhanced operating system.
ACM Transactions on Information and System Security pp. 36-61 (February 2002)

10. Butler, J., Hoglund, G.: Rootkits: Subverting the Windows Kernel. Addison Wesley Profes-
sional (2005)

A Live Digital Forensic system for Windows networks 667

11.

12.

13.

14.

17.

18.

19.

20.

21.

22.
23.
24.

25.
26.

27.

28.

29.

Carrier, B.D.: Risks of live digital forensic analysis. Communications of the ACM 49(2),
56-61 (2006)

Casey, E.: Investigating sophisticated security breaches. Communications of the ACM 49(2),
48-55 (2006)

Cogswell, R., Russinovich, M.: Windows nt system call hooking. Dr. Dobb’s Journal (January
1997)

Di Pietro, R., Durante, A., Mancini, L.: Formal specification for fast automatic ids training.
In: Ali Abdallah, Peter Ryan, and Steve Schneider, editors, article from the BCS-FACS In-
ternational Conference on Formal Aspects of Security 2002, vol. 2629, pp. 191-204. LNCS
(Spring 2003)

. Di Pietro, R., Mancini, L.V.: A methodology for computer forensic analysis. article of the 3rd

Annual IEEE Information Assurance Workshop pp. 41-48 (2002)

. Di Pietro, R., Me, G., Mochi, M., Strangio, M.A.: An effective methodology to deal with slack

space analysis. article of the International Conference on E-Crime and Computer Evidence
(ECCE’05) (2005)

Forrest, S., Pearlmutter, B., Warrender, C.: Detecting intrusions using system calls: Alternative
data models. In: article of 1999 IEEE Symposium on Security and Privacy, pp. 133-145. IEEE
(1999)

Gao, Y., Richard III, G.G., Roussev, V.: Bluepipe: A scalable architecture for on-the-spot
digital forensics. International Journal of Digital Evidence 3(1) (2006)

Garfinkel, T.: Traps and pitfalls: Practical problems in system call interposition based based
security tools. article of the ISOC Symposium on Network and Distributed System Security
Symposium (2003)

Garfinkel, T., Pfaff, B., Rosenblum, M.: Ostia: A delegating architecture for secure system
call interposition. Internet Society’s 2003 Symposium on Network and Distributed System
Security (2004)

Goel, A., chang Feng, W., chi Feng, W., Maier, D., Walpole, J.: Forensix: A robust, high-
performance reconstruction system. International Conference on Distributed Computing Sys-
tems Security Workshop (SDCS-2005) (1999)

Hoglund, G., McGraw, G.: Exploiting Software: How to Break Code. Addison-Wesley (2004)
Jones, A.K., Sielken, R.S.: Computer system intrusion detection: A survey. Tech. rep. (1999)
Leigland, R., Krings, A.W.: A formalization of digital forensics. International Journal of
Digital Evidence 3(2) (2004)

Provos, N.: Improving host security with system call policies. Tech. rep. (2002)

Richard III, G.G., Roussev, V.: Next-generation digital forensics. Communications of the
ACM 49(2), 76-80 (2006)

Ruighaver, A.B., Tan, K.M.C., Thompson, D.: Intrusion detection systems and a view to its
forensic applications. Tech. rep. (2000)

Russinovich, M., Solomon, D.: Microsoft Windows Internals. Microsoft Press, 4th edition
(2004)

Schreiber, S.: Undocumented Windows 2000 secrets : A programmers cookbook. Addison-
Wesley (2001)

