
A Hybrid PKI-IBC Based Ephemerizer System

Srijith K. Nair1, Mohammad T. Dashti2,
Bruno Crispo1,3, and Andrew S. Tanenbaum1

1 Dept. Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
{srijith,crispo,ast}@few.vu.nl

2 CWI, Amsterdam, The Netherlands
dashti@cwi.nl

3 DTI, University of Trento, Italy

Abstract. The concept of an Ephemerizer system has been introduced
in earlier works as a mechanism to ensure that a file deleted from the
persistent storage remains unrecoverable. The principle involved storing
the data in an encrypted form in the user’s machine and the key to de-
crypt the data in a physically separate machine. However the schemes
proposed so far do not provide support for fine-grained user settings on
the lifetime of the data nor support any mechanism to check the in-
tegrity of the system that is using the secret data. In addition we report
the presence of a vulnerability in one version of the proposed scheme
that can be exploited by an attacker to nullify the ephemeral nature of
the keys. We propose and discuss in detail an alternate Identity Based
cryptosystem powered scheme that overcomes the identified limitations
of the original system.

1 Introduction

Privacy concerns have brought the question of reliable deletion of private data
into sharp focus. One of the most effective tools used in privacy invasion is data
recovery from persistent storage devices, even when the user had ‘deleted’ the
data. To mitigate this risk, expensive secure hardware devices are sometimes
used to keep information private and irrecoverable when deleted and extensive
and meticulous process of erasure is followed to ensure that deleted files are
indeed completely deleted. For example, US government specification calls for
overwriting non-classified information three times [1]. Common users, however,
do not have the resources nor the know-how to use these processes or equip-
ments.

One of the techniques used to secure data is to encrypt the data on user’s
local storage device and to store the decryption key at a trusted remote stor-
age. This way, both the local as well as the remote storage will have to be
compromised before the data can be obtained. Furthermore, secure deletion of
the decryption key renders the data unrecoverable. However, key management
becomes a complicated issue in this approach. As a solution, Perlman [2] intro-
duced the concept of an Ephemerizer server which is entrusted with the duty

2 Srijith K. Nair et al.

to manage the availability and secure deletion of the keys used in decryption of
the encrypted data.

To formulate the problem more precisely, assume that Alice wants to send
a message M to her confidant Bob at time t0 with following expectations: (1)
only Bob will be able to read the plaintext and (2) after time t1 (t1 > t0), no
one including Bob can read the plaintext. Bob is assumed to be non-malicious
and a willing party in the exchange, but is not trusted to have the capability to
securely delete the message after t1. An attacker, who wants to gain knowledge
of the message exchanged, is assumed to have the capability to break into the
computer system of any ordinary user and seize all equipments, extract any
data from persistent storage that is presently stored or previously deleted or
kept encrypted, including forcing the user to disclose passwords used to secure
decryption keys. We also assume an open communication medium in which all
transmissions can be intercepted, recorded, modified, and retransmitted.

We describe the basic working of the original Ephemerizer system, as pro-
posed in [2], in Section 2 and then explain in detail one of the proposed versions
of the scheme. We show the existence of a vulnerability in this protocol, which
allows an attacker to subvert the ephemeral nature of the system. We also iden-
tify some shortcomings associated with the scheme, which we consider to be
crucial for the security of the system. We then propose a modified Ephemerizer
scheme based on Identity Based Public Key Cryptography (IB-PKC). As far
as we are aware of, the scheme proposed in this paper is one of the very few
systems that exploit the power of IB-PKC, without suffering the associated dis-
advantages. The cryptography primitive is briefly explained in Section 3 while
the proposed scheme is presented in Section 4. In Section 5 the security aspects
of the proposed scheme is discussed in detail and we show that our scheme
can support richer security features than the original scheme. We conclude in
Section 6.

2 The Ephemerizer System

The Ephemerizer as proposed in [2] acts as a central server that allows parties
to keep data private for a finite time period and then make it unrecoverable
after that. Alice and Bob executes the protocol steps with the participation of
this trusted third party. This concept was later used in a system designed to
provide assured delete [3].

The underlying idea behind the scheme’s working is that Alice would send
the message to Bob encrypted with a key that needs to be fetched from the
Ephemerizer. The Ephemerizer would check for the expiry date associated with
the key’s usage before responding to the request from Bob. The original paper
presented two versions of the scheme - one using triple decryption and the other
using blind decryption. We discuss the triple decryption method in detail next
since our analysis has identified an attack against this version of the protocol,
which is presented later in Section 2.2.

242 Srijith Nair, Mohammad Dashti, Bruno Crispo, and Andrew Tanenbaum

A Hybrid PKI-IBC Based Ephemerizer System 3

2.1 Triple Encryption Method

Throughout the rest of the paper, we use {M}KA
to denote asymmetric key

encryption of M with public key of entity A and [M]K to denote symmetric key
encryption of M with symmetric key K. We assume the existence of a trusted
public key infrastructure (PKI) from which users can obtain certified public
keys of other users.

Step 1 - The Ephemerizer E creates sets of asymmetric key pairs, associate
them with different expiration time and advertises tuples - (public key, key ID,
expiration time).

Step 2 - Alice chooses one of the keys, Keph, based on the expiration time she
requires, and encrypts the data M with a random secret key S to obtain [M]S .
She then encrypts S with Bob’s long-term public key (Kbob) and the result with
Keph.The resulting value is encrypted again with a random session key T to get
[{{S}Kbob

}Keph
]
T
. T is then encrypted with Bob’s public key and an integrity

check value [4] HMAC(T,{{S}Kbob
}Keph

) is calculated. Finally, Alice sends the
following to Bob:

A → B : {T}
Kbob

, [{{S}Kbob
}Keph

]
T
, [M]

S
, keyID, Keph, HMAC(T, {{S}Kbob

}Keph
)

Step 3 - Bob, on receiving this message, decrypts the first part of the cipher-
text using his long term private key to obtain T and uses T to decrypt and
obtain {{S}Kbob

}Keph
. He then verifies the HMAC value and if this check is

successful, chooses a random secret key J to secure his communication with the
Ephemerizer, encrypts J using Keph and sends the following to the Ephemerizer:

B → E : keyID, {J}Keph
, [{{S}Kbob

}Keph
]
J

Step 4 - The Ephemerizer identifies Keph using keyID. If Keph hasn’t expired,
the Ephemerizer uses it to decrypt and obtain J . Using Keph’s private key
and J , the Ephemerizer then decrypts the third part of the message to obtain
{S}Kbob

and uses J to re-encrypt the decrypted part and sends it back to Bob.

E → B : [{S}Kbob
]J

If Keph has expired, Ephemerizer sends back an error message to Bob indi-
cating the unavailability of the key.

Step 5 - Since Bob knows the value of J and his own long-term private key, he
can then decrypt the message from E and retrieve the value of S which is then
used to decrypt ME to obtain M .

A Hybrid PKI-IBC Based Ephemerizer System 243

4 Srijith K. Nair et al.

The Ephemerizer periodically scans its database of asymmetric key pairs
and securely delete all key pairs that have an expired time value. Therefore,
after the expiry of time t1, no one will be able to recover the plaintext M if
all the participants (Alice, Bob, and the Ephemerizer) have truthfully executed
the protocol.

2.2 Attack Against Triple Encryption Scheme

Our analysis showed that the triple encryption version of the Ephemerizer
scheme presented in [2] is susceptible to a serious oracle attack which can
be exploited by an attacker to gain access to {S}Kbob

, in effect nullifying the
ephemeral nature of the system. The attack plays out as follows.

The attacker captures the message sent between Bob and Ephemerizer in
Step 3 and Step 4. After identifying Keph using keyID, it then generates a ran-
dom key X and encrypts it with Keph. The attacker encrypts the second part
of the original message in Step 3, {J}eph, with X and sends the whole message
as shown below, to the Ephemerizer.

Att. → E : keyID, {X}
Keph

, [{J}
Keph

]
X

As long as this attack message is sent before the expiry of the key cor-
responding to keyID, the Ephemerizer cannot differentiate it from a genuine
request from an user. Hence, it decrypts X using the private key of Keph and
using the relevant keys it decrypts the third part of the attack message to ob-
tain J . This value of the random session key, used by Bob to encrypt his dialog
with the Ephemerizer, is then sent back to the attacker.

E → Att. : [J]
X

Since X is known to the attacker, he can decrypt this message from the
Ephemerizer and obtain J , which in turn can be used to decrypt the message
sent to Bob in Step 4 to get {S}Kbob

. Thus, the purpose served by the ephemeral
key Keph is completely nullified, since {S}Kbob

is now known to the attacker
and is not protected by Keph in a time-bound manner. Knowing {S}Kbob

, the
attacker can wait as long as required to break into Bob and retrieve the long-
term private key of Bob, and decrypts the value of S, even after Keph has been
deleted from the Ephemerizer’s database.

Workaround This attack can be mitigated by using separate ephemeral keys
to encrypt {S}Kbob

and J . In Step 1, the Ephemerizer would generate 4-tuple
(Keph1,Keph2, keyID, expiry date) instead of the 3-tuple. In Step 2 Alice would
use Keph1 to encrypt {S}Kbob

and in Step 3, Bob would use Keph2 to encrypt
J . Thus the message sent by Bob to the Ephemerizer in Step 3 would become

B → E : keyID, {J}Keph1
, [{{S}Kbob

}Keph2
]
J

244 Srijith Nair, Mohammad Dashti, Bruno Crispo, and Andrew Tanenbaum

A Hybrid PKI-IBC Based Ephemerizer System 5

Since two different keys are needed to decrypt the second part and the inner
encryption of part three of the message, the attack described previously will
not work. However this workaround involves the generation and storage of a
second asymmetric key pair for every tuple and hence is less efficient. Moreover
this modified scheme still does not resolve the important shortcomings pointed
out in the next section.

2.3 Shortcomings

A limitation of the proposed scheme is that Alice does not have the flexibility
to define her own expiry dates for the data. Instead she has to choose an expiry
date advertised by the Ephemerizer, thus constraining herself to the granularity
implemented by the Ephemerizer server.

The secure working of the Ephemerizer system assumes that the recipient
Bob uses volatile memory to perform all his temporary computations and that
he can securely delete the symmetric key obtained from the Ephemerizer as
well as the temporarily decrypted plaintext data once its use is over. This is a
reasonable assumption since it is easier to securely delete data in the volatile
memory than on a persistent storage device [5]. However, the schemes proposed
in [2] do not provide any mechanism to verify that the platform used by Bob
does indeed provide a secure temporary work-area for the sensitive data. Sim-
ilarly, the schemes do not provide any provision for Alice to specify additional
restrictions on the access of the decryption key by Bob. For example, Alice may
want to restrict Bob’s access to the message only when he is within, say, the
company network. As such the proposed schemes do not provide any mechanism
to specify additional conditions for access to the data.

We argue that these limitations cripples the system’s usability and security.
In the rest of the paper we present an alternative scheme to provide the en-

visioned ephemeral service using IB-PKC primitive as the underlying basis. We
show that this proposed scheme can address the above-mentioned limitations
associated with the original scheme.

3 Identity Based Cryptography

As early as in 1984 Shamir [6] had proposed the use of an encryption scheme in
which an arbitrary string can be used as a public key. However, it was only in
2001 that a mathematically sound and practically efficient identity-based public
key cryptosystem was proposed by Boneh and Franklin [7]. An IB-PKC system,
based on bilinear pairing, will be used in our proposed scheme. In this section
we provide a brief introduction to the crypto-primitive.

Let P denote a generator of G1, an additive group of some large prime
order q. Let G2 be a multiplicative group of the same order. A pairing is a map
e : G1 × G1 → G2 with the following properties:

A Hybrid PKI-IBC Based Ephemerizer System 245

6 Srijith K. Nair et al.

1. Bilinear: e(aQ, bR) = e(Q,R)ab = e(abQ,R) = e(bQ,R)a, where Q,R ∈ G1

and a, b ∈ Z
∗

q .
2. Non-degenerate: e(P, P) �= 1G2

, where 1G2
is the identity element of G2.

3. Computable: There exists an efficient algorithm to compute e(Q,R) for all
Q,R ∈ G1

It is believed that the bilinear Diffie-Hellman problem in 〈G1, G2, e〉
1 is hard.

Typically the map e is derived from either the Weil [8] or Tate [9] pairing on
an elliptic curve.

An IB-PKC scheme consists of four main steps (1) setup in which a Key
Generation Center (KGC) generates global system parameters and a system
secret key, (2) encrypt where a message is encrypted using an arbitrary public
key, (3) extract during which the system secret key is used by the KGC to
generate the private key corresponding to the arbitrary public key chosen in
the step earlier and (4) decrypt where the private key generated is used to
decrypt the encrypted message.

Interested readers are referred to [7] for a more rigorous explanation of the
mathematics, protocol steps and related proof of security behind the IB-PKC
cryptosystem.

4 Proposed System

In this section we describe our proposed alternative Ephemerizer scheme that
uses IB-PKC to overcome the deficiencies found in the original system.

As in the original scheme, our approach is to keep only the encrypted version
of the data on the persistent storage of the user and to ‘store’ the key needed
to decrypt the data on a different machine, the Ephemerizer server. When the
user needs to access the plaintext data, he retrieves the decryption key from
the server and uses it to decrypt and use the data in a secure manner. The
Ephemerizer server in our scheme also functions as the KGC of the IB-PKC
system.

Three properties of IB-PKC are exploited by our scheme (1) an arbitrary
string can be used to derive the public key of an entity (2) the private key
associated with such a public key is not computed at the same time as the
public key and (3) the private key is generated not by the entity that creates
the public key, but by the KGC. As explained further on, we exploit these
properties by letting Alice embed her finegrained access requirements into the
public key of of Bob and by ensuring that the Ephemerizer, which is also the
KGC of the system, computes the corresponding private key and sends it to
Bob only if the embedded checks have been successfully verified.

Note that, for the ease of explanation, the scheme described here uses the
BasicIdent version of the IB-PKC scheme. This version is not secure against an

1 Given 〈P, aP, bP, cP 〉 with uniformly random choices of a, b, c ∈ Z
∗

q , compute
e(P, P)abc ∈ G2

246 Srijith Nair, Mohammad Dashti, Bruno Crispo, and Andrew Tanenbaum

A Hybrid PKI-IBC Based Ephemerizer System 7

adaptive chosen ciphertext attack and hence an actual implementation of our
scheme would need to use the secure FullIdent version [7].

We divide our scheme into five steps:

Step 1 - As in the original IB-PKC system, the Ephemerizer E generates two
groups G1 and G2, the bilinear map e : G1 × G1 → G2 for the groups and
choose an arbitrary generator P ∈ G1. It also specifies two hash functions H1,
H2 as:

– H1 : {0, 1}∗ → G1

– H2 : G2 → {0, 1}n, n being the bit-length of data to be encrypted

Message space M = {0, 1}n, ciphertext C = G1 × {0, 1}n

E then computes a set of ephemeral secret keys seph uniformly at random
from Z

∗

q and the corresponding public keys Peph = sephP and associates each
(seph, Peph) pair with an expiration time and a keyID. It also computes another
key sE and corresponding PE . E finally publishes the system parameters
〈G1, G2, e, n, P, PE ,H1,H2〉 and the set of tuples (keyID, Peph, expiration time).

Step 2 - Alice chooses a random symmetric key K and encrypts the data M with
it: ME = [M]K . K is then encrypted with Bob’s long-term public key KE =
{K}Kbob

. She then chooses the most appropriate value of Peph from the avail-
able set such that (needed expiry date < expiry date of key). She then chooses
as Bob’s IB-PKC public key IDb = ‘Eph|Expiry : needed − expiry − date′,
where Eph is the identity of the Ephemerizer.

For example, if the set of ephemeral keys available were (ID1,P1,2006−28−
12−22 : 00), (ID2,P2,2006−28−12−22 : 30) and (ID3,P3,2006−28−12−23 : 00)
and Alice wants to make the data unrecoverable after 2006-28-12-22:15, she
would choose ID2, P2 and assign IDb = ‘Eph|Expiry : 2006−28−12−22 : 15′.
For the rest of the paper, we will assume she chose Peph. She then computes
QIDb

= H1(IDb), chooses rb ∈ Z
∗

q and encrypts KE by computing:

Cb = 〈Ub, Vb〉 = 〈rbP,KE ⊕ H2(g
rb

b)〉
where gb = e(QIDb

, Peph) ∈ G2

Alice then sends the following to B:

A → B : {IDb, Cb}Kbob
, ME , keyID

Step 3 - Bob uses his long-term private key to decrypt the first part of the
message received from A to obtain IDb and Cb and saves them locally with the
rest of the message.

When Bob needs to decrypt and obtain M , he creates an arbitrary public
key IDe for E, a random key J and computes QIDe

= H1(IDe) and computes

A Hybrid PKI-IBC Based Ephemerizer System 247

8 Srijith K. Nair et al.

Ce = 〈Ue, Ve〉 = 〈reP, (IDb|J) ⊕ H2(g
re
e)〉

where ge = e(QIDe
, PE) ∈ G2

Bob then sends the following to E:

B → E : IDe, keyID, Ce

Step 4 - When the Ephemerizer receives the message from Bob, it first makes
sure that keyID has not expired. If the key has expired, seph and Peph are
deleted from the secure database and an error message is sent back to Bob.
Periodically, E also scans this database on its own and deletes all expired
tuples. If the key associated with Bob’s request is still valid, E calculates
QIDe

= H1(IDe), de = sEQIDe
and Ve⊕H2(e(de, Ue)), which yields ‘IDb|J ’. E

then examines IDb to check for the expiration time that A has specified. Only
if this expiration time is also valid would E compute QIDb

= H1(IDb) and
db = sephQIDb

, where seph corresponds to the keyID specified and generated
in Step 1. E then sends to Bob:

E → B : [db]J

Step 5 - Since Bobs knows the value of J , he uses it to decrypt the message sent
by E and obtain db, which is then used to calculate Vb ⊕ H2(e(db, Ub)) = KE .
He then uses his long-term private key to decrypt KE to obtain K which is then
used to decrypt ME to finally obtain M . M , J , db and K are deleted securely
by Bob after use.

Note that since the output of H2 is used as a one-time pad to encrypt data,
n used in the definition of H2 should be at least |maximum length of IDb | +
|maximum length of key J |. The security of the proposed system relies on the
security of the original IB-PKC system and interested readers are referred to [7]
for detailed analysis.

5 Discussion

5.1 Security

IB-PKC has not gained widespread usage mainly because it suffers from an
inherent key escrow problem. The KGC, knowing the secret seph, can compute
the associated private key. Though several solutions have been proposed to
counter the inherent key escrow problem, including threshold key issuing using
multiple KGCs [7], generating the private key using multiple independent pri-
vate keys issued by multiple KGCs [10], certificate-based encryption [11] and
certificateless public key encryption [12], none of them can be directly used in
our scheme. On one hand the schemes proposed in [11] and [12] do not allow
arbitrary strings as public key and hence prevents Alice from specifying her

248 Srijith Nair, Mohammad Dashti, Bruno Crispo, and Andrew Tanenbaum

A Hybrid PKI-IBC Based Ephemerizer System 9

own expiration time, while on the other, proposals like 1[10] require Bob to
authenticate with multiple KGCs every time he needs to decrypt the data.

This is the reason why we do not completely replace the traditional PKI
based system in favor of a system solely based on IB-PKC. Instead we use a
hybrid scheme using each cryptosystem’s strength to provide specific security
requirements.

By encrypting K with Bob’s traditional long-term public key the system
completely side-steps the key escrow problem. A malicious Ephemerizer will
not be able to obtain M with just its knowledge of db, the private key cor-
responding to IDb. It will also have to compromise Bob’s machine to obtain
his long-term private key. This provides the same security setup as the original
Ephemerizer scheme of Perlman. The use of IB-PKC allows Alice to specify her
own finegrained expiration time and also help extend the scheme fairly easily,
as discussed further on.

In Step 2, IDb is sent to Bob encrypted with his long-term public key. This
prevents an attacker from knowing the value of IDb and using the knowledge
to obtain db.

In Step 4 db is sent by the Ephemerizer to Bob encrypted using a symmetric
key J that is randomly selected by Bob just for that session of the protocol run
and deleted afterward. Thus even if an attacker captures the message sent to
Bob in Step 4, it cannot decrypt and obtain M , since J is deleted immediately
after Step 5.

The Ephemerizer will send db to B only if both seph and the expiration
time specified in IDb are valid. Thus Alice is able to specify her expiry date
at whatever granularity she prefers (as long as she chooses the right seph).
Additionally, once Ephemerizer finds out that a particular seph has expired, it
is permanently deleted from its secure database. Thus, even if the Ephemerizer
and Bob is compromised after the expiry of seph, the attacker would not be able
to use seph to obtain M .

Note however that there could be a time gap between the expiry specified in
IDb and that of seph, between which an attacker could compromise E and gain
access to seph. We argue however that since the time gap can be made as small
as possible by judicious choice of seph, this risk is as acceptable as the chance
of Ephemerizer server being compromised before the expiry date specified by
Alice. Furthermore, the access to seph does not mean that the attacker can
successfully generate db. If the whole computational process at the Ephemer-
izer’s end, including the IB-PKC equivalent of decrypt as specified in Step 4, is
implemented in a secure coprocessor [13], the comparison between the current
time and the expiration time specified in IDb can be performed in a secure and
tamper resistant manner. Thus, even if seph is valid, the computation of QIDb

will fail due to expiration time check and by extension so will the computation
of db. As the Ephemerizer server is a dedicated machine operated solely for the
purpose of managing the ephemeral keys, its use of tamper-resistant hardware
is not a far-fetched assumption. A similar reasoning applies to attacks aimed at
changing E’s system clock.

A Hybrid PKI-IBC Based Ephemerizer System 249

10 Srijith K. Nair et al.

5.2 Supporting Richer Access Control

The scheme proposed above does not explicitly describe how Alice can specify
further conditions for release of db to Bob. This was consciously done to keep
the basic protocol simple and easy to explain. In this section we explain how
the basic scheme can be extended to support extra conditions that Alice may
like to impose.

In the basic scheme proposed in Section 4, IDb was used by Alice to specify
her fine-grained expiration time. This was checked in the later stages of the
protocol run, by the Ephemerizer, to ensure its validity before db was sent to
Bob. Extending this to include other checks is straight forward.

In Step 1, along with the publication of the system parameters, the Ephemer-
izer could state which other conditional checks are offered by it as a service to
the users. These extra checks could include, for example, IP address access
check, secure system check etc.

Implementing the IP address check would be as simple as Alice stating
the allowed IP address or range of addresses in IDb. For example IDb =
‘Eph|Expiry : 2006 − 28 − 12 − 22 : 15|IP : 132.168.2.∗’ would mean that
Alice wants to allow Bob to access the data M only until 22:15 hrs of 2006-
28-12 and only from the address range 132.168.2.1 - 132.168.2.254. In Step 4 of
the protocol run, when the Ephemerizer retrieves the value of IDb from Ce, it
checks the IP address that Bob is using along with the validity of the expiry
date and proceeds only if both the checks succeed. The assumption is that a
spoof-proof method to determine the IP address of a remote host exists, maybe
using techniques like [14]. The support for wildcards would require the use of
the identity-based encryption with wildcards cryptoprimitive [15].

The original Ephemerizer scheme as well as the one proposed in this pa-
per depends on the ability of Bob to securely delete the temporary plaintext
data as well as all the data that he receives from Ephemerizer. To increase
the users’ faith in the system, Alice should be able to verify that Bob is in-
deed using a secure system when accessing the secret data. The original scheme
had no mechanism to check for the presence of such a system. However our
proposed scheme can be extended fairly simply to support this verification.
For this extension to work, Bob would need to use special hardware like the
Trusted Platform Module [16], which has the ability to perform remote at-

testation [17] or a richer semantic remote attestation [14]. Alice would spec-
ify the Platform Configuration Register (PCR) that she trusts to be that
of a secure system in IDb, IDb = ‘Eph|Expiry : 2006 − 28 − 12 − 22 :
15|PCR1 : 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12’. It is assumed that
Alice has some mechanism to find out the correct PCR value of a trusted se-
cure system.

Once the Ephemerizer receives the decryption request from Bob, and has
decrypted the value of IDb, it initiates a protocol similar to the ‘Integrity Chal-
lenge Protocol’ of [18] to verify the integrity of Bob’s system.

250 Srijith Nair, Mohammad Dashti, Bruno Crispo, and Andrew Tanenbaum

A Hybrid PKI-IBC Based Ephemerizer System 11

E → B : ChReq(n, PCR1)
B → E : sig{PCR1, n}AIK

The Ephemerizer sends Bob a PCR challenge request, along with a nonce
to prevent replay attacks. Bob’s machine’s TPM uses its Attestation Identity
Key (AIK) to sign the PCR value requested and then sends the signed PCR
value back to the Ephemerizer along with the nonce sent with the request. At
the Ephemerizer, the AIK signature is first verified and then the reported PCR
value can be used in calculating QIDb

and db. Thus a wrongly reported PCR
would create a wrong IDb and hence a wrong QIDb

and db, preventing Bob
from accessing the protected data.

In general, the proposed scheme can be extended to support any number of
extra restrictions by specifying them appropriately in Bob’s public key IDb, as
long as the Ephemerizer has the ability to perform these checks.

6 Conclusion and Future Work

In this paper we analyzed the Ephemerizer system proposed by Perlman [2] and
used in [3] as a system that allows parties to securely share data, by keeping the
encrypted data and the decryption key in physically separate entities, for a finite
time period and then making it unrecoverable after that. However, as noted in
this paper, the schemes do not allow the parties to specify more detailed and
flexible usage restrictions on the data. In addition one of the version of the
original scheme suffers from a fatal oracle attack as described in the paper.

We proposed an alternate scheme to implement the Ephemerizer system
with none of the identified flaws and functional constraints. Our scheme exploits
the properties of Identity Based cryptosystem and is one of the few systems
that utilise the power of the crypto-primitive without suffering the associated
disadvantages. The security of the proposed scheme and its ability to support
flexible usage restrictions were then discussed in detail.

We plan on developing a formal proof of correctness of our scheme as well as
an implementation of the same to prove that the scheme is indeed secure and
implementable.

Acknowledgment

We thanks Chandana Gamage for his invaluable inputs. This work has been
supported by NWO project ACCOUNT 612.060.319 and partially by the EU
project S3MS IST-STREP-27004.

References

1. United States Department of Defense (2006) National Industrial Security Program
Operating Manual. DoD 5220.22-M

A Hybrid PKI-IBC Based Ephemerizer System 251

12 Srijith K. Nair et al.

2. Perlman R (2005) The Ephemerizer: Making Data Disappear. Journal of Infor-
mation System Security, Vol. 1 (1), pp. 51–68

3. Perlman R (2005) File System Design with Assured Delete. Third IEEE Interna-
tional Security in Storage Workshop, pp. 83–88, USA

4. Bellare M, Canetti R, Krawczyk H (1996) Keying Hash Functions for Message Au-
thentication. Advances in Cryptology - Crypto 96, LNCS 1109, Springer-Verlag,
pp. 1–15

5. Crescenzo GD, Ferguson N, Impagliazzo R, Jakobsson M (1999) How to Forget
a Secret. International Symposium on Theoretical Aspects of Computer Science,
LNCS 1563, Springer-Verlag, pp. 500–509

6. Shamir A (1984) Identity-based Cryptosystems and Signature Schemes. Advances
in Cryptology - Crypto 84, LNCS 196, Springer-Verlag, pp. 47–53

7. Boneh D, Franklin F (2001) Identity-based Encryption from Weil Pairing. Ad-
vances in Cryptology - Crypto 2001, LNCS 2139, Springer-Verlag, pp. 213–229

8. Lang S (1973) Elliptic Functions. Addision-Wesley
9. Frey G, Muller M, Ruck H (1999) The Tate Pairing and the Discrete Logarithm

Applied to Elliptic Curve Cryptosystems. IEEE Transactions on Information The-
ory, 45(5)L1717-9

10. Chen L, Harrison K, Smart NP, Soldera D (2002) Applications of Multiple Trust
Authorities in Pairing Based Cryptosystems. InfraSec 2002, LNCS 2437, Springer-
Verlag, pp. 260–275

11. Gentry C (2003) Certificate-based Encryption and the Certificate Revocation
Problem. Advances in Cryptology - Eurocrypt 2003, LNCS 25656, Springer-
Verlag, pp. 272–293

12. Al-Riyani S, PatersonK (2003) Certificateless Public Key Cryptography. Advances
in Cryptology - Asiacrypt 2003, LNCS 2894, Springer-Verlag, pp. 452–473

13. Dyer J, Lindemann M, Perez R, Sailer R, van Doorn L, Smith SW, Weingart S
(2001) Building the IBM 4758 Secure Coprocessor. IEEE Computer Vol. 34, no.
10, pp. 57–66

14. Haldar V, Chandra D, Franz M (2004) Semantic Remote Attestation: A Virtual
Machine Directed Approach to Trusted Computing. USENIX Virtual Machine
Research and Technology Symposium, pp. 29–41

15. Abdalla M, Catalano D, Dent AW, Malone-Lee J, Neven G, Smart NP (2006)
Identity-Based Encryption Gone Wild. Automata, Languages and Programming:
33rd International Colloquium, LNCS 4052, Springer-Verlag, pp. 300–311

16. Trusted Computing Group (2006) http://www.trustedcomputinggroup.org
17. Trusted Computing Group (2006) Trusted Platform Module Main Specification,

Part 1: Design Principles, Part 2: TPM Structures, Part 3: Commands, Version
1.2, Revision 94. http://www.trustedcomputinggroup.org

18. Sailer R, Zhang X, Jaeger T, van Doorn L (2004), Design and Implementation of
a TCG-Based Integrity Measurement Architecture. 13th Usenix Security Sympo-
sium, USENIX, pp. 223–238

252 Srijith Nair, Mohammad Dashti, Bruno Crispo, and Andrew Tanenbaum

