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Abstract. Because software security patches contain information about
vulnerabilities, they can be reverse engineered into exploits. Tools for
doing this already exist. As a result, there is a race between hackers and
end-users to obtain patches first. In this paper we present and evaluate
FirePatch, an intrusion-tolerant dissemination mechanism that com-
bines encryption, replication, and sandboxing such that end-users are
able to win the security patch race.

1 Introduction

Automatic software updates for bug fixes are essential for Internet applications.
It is particularly important when a software update fixes a security hole. Soft-
ware vendors, for fear of liability, release patches for security holes as soon as
possible. They do so without publicizing what the bug is, for fear that hackers
will exploit the vulnerability before end-users have an opportunity to install the
patch.

In practice the time between when a patch is released to the time that it
is installed is long and typically measured in days [1, 6]. A counterintuitive
observation is that a long patching cycle is worse than no patching cycle at
all. This paradox stems from the fact that a security patch can be reverse-
engineered to reveal the vulnerable code. In other words, if the software vendor
cannot provide the mechanism to distribute and install a patch quickly, the end
user might be better of if the patch is not released at all.

Even if users are notified about a vulnerability and are able to download a
patch in time, installing a patch is an inconvenience and might lead to down-
time of critical services. Patches might also contain bugs that break system
configuration or introduce new vulnerabilities. It has even been suggested that
patch installation should be delayed until the risk of penetration is greater than
the risk of installing a broken patch [2].

Fortunately, protection against security vulnerabilities can be done in the
network layer by installing stateful packet filters like Shields [14], Self-Certifying
Alerts [4], or vulnerability-specific predicates [9] that inspect and modify incom-
ing packets. Such patches do not interrupt the execution of applications and
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are a viable intermediate solution until the user is able to install a permanent
fix to the software. Also, automatic patching infrastructures have emerged that
greatly reduce the time software is left vulnerable. For instance, a recent study
on the Microsoft Windows Update mechanism [6] shows that the automation
of notification, downloading, and installation of patches ensures that as much
as 80% of the end-clients are updated within one day of patch release.

This still gives a malicious agent ample time to construct and execute an
attack. For instance, by examining the binary difference between a vulnerable
version of the Microsoft Secure Socket Layer (SSL) library and a corresponding
patch, Flake [5] constructed a program that reliably exploited this vulnerabil-
ity within 10 hours. Marketplaces for buying and selling exploits already exist
[12]. It is therefore imperative that software vendors disseminate patches with
low end-to-end latency. Such a patch dissemination service must be resilient
to denial-of-service (DoS) attacks and intrusions as hackers might target the
service to increase their opportunity to exploit the vulnerabilities exposed by
the patches.

This paper describes FirePatch, a scalable and secure overlay network for
disseminating security patches. FirePatch employs the following three tech-
niques:

1. A patch is disseminated in two phases. First, an encrypted version of the
patch, which cannot be reverse engineered, is disseminated. Some time later,
the decryption key is disseminated. As the key will typically be significantly
smaller than the patch, it can be disseminated much faster to a large col-
lection of machines.

2. In order to deal with DoS attacks against dissemination of patches, attempt-
ing to increase the time during which a vulnerability can be exploited, we
have developed a distributed software mirroring service. While replication
makes DoS attacks more difficult, it increases the likelihood that individual
servers are compromised—a highly undesirable situation for a server that
disseminates security patches to clients. Therefore, our service is also made
tolerant of Byzantine failures.

3. For machines that are not on-line at the time that a patch is disseminated,
we have developed a simple protocol for secure download and installation of
patches, run each time a machine goes on-line. While this goes on, a packet
filter prevents the machine from participating in other network communi-
cation.

The rest of this paper is organized as follows. In the next section we present
related work. In Section 3 we outline the architecture of FirePatch and state our
assumptions. Section 4 describes our two-phase dissemination protocol which we
use in our dissemination overlay described in Section 5. FirePatch is evaluated
in Section 6. Section 7 concludes.
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2 Background and Related Work

A study done on several software vulnerabilities appearing in the last half of the
1990’s [1] found that almost all intrusions can be attributed to vulnerabilities
known by both the software vendor and by the general public and to which
patches existed. The study found that vulnerable software remained unpatched
for months or even years. The primary reason for such long patching cycles was,
the authors claim, that the studied software was not enrolled with an automatic
updating service. Instead, end-users were required to discover the existence of
both vulnerabilities and patches on their own by browsing the vendors web-sites,
visiting bulletin-boards, etc.

With approximately 300 million clients, Microsoft Windows Update is cur-
rently the world’s largest software update service [6]. The service consists of
a (presumably large) pool of servers that clients periodically pull for updates.
Other commercial patch management products like ScriptLogic’s Patch Au-
thority Plus2 and PatchLink Update3 enable centralized management of patch
deployment on the Windows platform. However, it is unclear how any of these
systems protect themselves from intrusion and if they address the possibility
that hackers reverse-engineer patches into exploits.

Open-source communities, like the Debian GNU/Linux Project4, organize
their software update services similarly to Windows Update as a pool of servers
that clients periodically pull for updates. Clients can freely choose which server
to pull. The servers are organized into a hierarchy with children periodically
querying their parent for updates. As these communities rely on donated third
party hosting capacity, an attacker can easily intrude into the server pool.

The ratio of how often a patch is released and how quickly it must be
received by clients implies substantial overhead for pull-based retrieval mech-
anisms like those used in the above systems. Pushing is better suited for this
type of messaging, but incurs overhead to maintain an up-to-date list of clients.
Peer-to-peer content distribution systems, like SplitStream, Bullet, and Chain-
saw [3, 10, 11] approach this by spreading both maintenance and forwarding
load to all clients. Although the elimination of dissemination trees in Chainsaw
makes it more robust to certain failures than SplitStream and Bullet, these
systems do not tolerate Byzantine failures. SecureStream [7] provides Byzan-
tine tolerant dissemination by layering a Chainsaw-style gossip mesh on top of
our Fireflies membership protocol [8] similarly to FirePatch. However, Secure-
Stream targets multimedia streaming, which allows for certain packet loss.

A promising approach to detecting vulnerabilities in existing software is to
use machine clusters that emulates a large number of independent hosts in order
to attract attacks. Such “honeyfarms” have been shown to be able to emulate
the execution of real Internet hosts in an scalable manner [13] and can be used

2 http://www.scriptlogic.com/products/patchauthorityplus/
3 http://www.patchlink.com/
4 http://www.debian.org/
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to generate self-certifying alerts (SCAs) [4] automatically upon detection of
intrusion.

3 Architecture and Assumptions

We distinguish three roles: patchers, clients, and mirrors. Patchers are typically
software providers that issue patches. For simplicity, we will assume a single
patcher in this paper, although any number of patchers is supported. Clients
are machines that run software distributed by the patcher, mirrors are servers
that store patches for clients to download, and notify clients when a new patch
is available.

We assume that the patcher is correct and is trusted by all correct clients. In
particular, using public key cryptography clients can ascertain the authenticity
of patches. In our system, clients are passive participants, and in particular do
not participate in the dissemination system. Thus we do not have to assume
that clients are correct.

In order to increase the patcher’s upload capacity and ability to fight attacks,
we employ a distributed network of mirror servers. The more mirrors, the harder
it is to mount a DoS attack against the network. However, the easier it is
to compromise one or more mirrors. We allow a subset of mirrors to become
compromised, but assume that individual compromises are independent of one
another, and that the probability that a mirror is compromised is bounded by
a certain Pbyz. However, we do allow compromised mirrors to collude when
mounting an attack.

The patcher publishes (and signs) the list of servers that it considers mirrors
for its patches. This list contains a version number so the patcher can securely
update this list when necessary.

We assume that all communication goes over the Internet, the shortcomings
of which are well-known. In order to deal with spoofing attacks, all data from
the patcher is cryptographically signed, and we assume that the cryptographic
building blocks are correct and the private key is securely kept by the patcher.

4 Two-Phase Dissemination

We refer to the time from when a software vulnerability is first made public
to when the number of exploitable systems shrinks to insignificance as the
window of vulnerability, or WOV for short. We have devised a dissemination
protocol that, when layered on top of a secure broadcast channel, makes the
WOV independent of message size. The net result of such an invariant is that
the WOV can be kept fixed and small despite the fact that voluminous data
has to be transferred over the wire.

We disseminate patches (or any data) in two phases. In phase one, we dis-
tribute an encrypted patch, and in the second phase, we disseminate the small
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Fig. 1. Cleartext dissemination Fig. 2. Two-Phase dissemination

fixed size decryption key. More formally, our general applicable protocol is spec-
ified as follows. Let d be a message that a source s wants to disseminate to a set
of clients. In the first phase, s generates a symmetrical encryption key K and
a unique identifier UID, and broadcasts a 〈ENVELOPE, UID, K(d)〉 message,
signed by s. Upon receipt and verification of the signature, a client stores this
message locally. In the second phase, s broadcasts 〈KEY, UID, K〉 to all clients.
Upon receipt, clients can decrypt the ENVELOPE message. The UID contains
a version number so clients can distinguish newer from older versions of patches.

If t0 is the time when the first client receives a patch p, if t1 is the time when
the last client receives p, and if ∆attack is the time needed by an attacker to
reverse engineer p into a workable exploit, then, as illustrated in Fig. 1, the WOV
opens at time t0 + ∆attack and closes at time t1. In traditional dissemination
the size of the patch determines the length of the WOV. The advantage of the
two-phase dissemination scheme is, as illustrated in Fig. 2, that the WOV only
depends on phase two. That is, the dissemination of a small fixed size decryption
key.

The time between the two phases is a policy decision. One extreme is to
do the second phase immediately when the first phase completes. This would
require a mechanism by which the patcher detects when all recipients have re-
ceived the encrypted patch and are ready to install it. However, this is not a
viable approach as disconnected clients can delay the completion arbitrarily.
More alarmingly, malicious clients can prevent the second phase for happening
by never acknowledging receipt. A better scheme is to start phase two some
configured time after phase one is initiated. For instance, in the Windows Up-
date system, a 24 hour time period between the phases would allow at least
80% of the clients to receive the encrypted patch [6].

5 Secure Dissemination Overlay

As mentioned before, FirePatch employs a network of mirrors to increase
the patcher’s upload capacity and to fight DoS attacks. The mirrors form a
superpeer-like network structure [15] to which clients connect. Thus, the patcher
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Fig. 3. Fireflies membership with three rings

does not broadcast patches and keys directly to the clients, but instead to the
collection of mirrors. The mirrors forward this information to all clients that
are currently connected to the Internet, and provides it on demand to clients
that connect to the Internet at a later time. Each client connects to a minimum
number of mirrors such that at least one mirror is correct with high probability.

5.1 Mirror Mesh

An attacker might be in control of one or more mirrors. Such Byzantine mirrors
are not bound to any overlay protocol and might display arbitrary and mali-
cious behavior. Although cryptographic signatures prevent Byzantine mirrors
from modifying or inserting patches, they can still mount a DoS attack by ne-
glecting to forward data. Our approach to fight such attacks is to ensure that
the dissemination overlay contains sufficient link redundancy and link diversity
such that, with high probability, there exists at least one path of only correct
mirrors from the patcher to each correct mirror and to each correct client.

For this we build on Fireflies [8]—our intrusion-tolerant membership proto-
col that provides to each member a reasonably current view of all live members.
Fireflies ensures, with high probability, that malicious members cannot keep
crashed members in the view of live members, or live members out of these
views. For this, members monitor one another and issue accusations (failure
notices) whenever a member is suspected to have failed. If a member is falsely
accused, it has the opportunity to issue an rebuttal before it is removed from
the views of correct members.

Accusations and rebuttals are disseminated to all member using a secure

broadcast channel, which is constructed by organizing the members in k circular
address spaces, or rings. Each ring is a pseudo-random permutation of the
membership list and is calculated deterministically from the secure hash of
the members’ identities in combination with a ring identifier. A ring defines
successor and predecessor relationships between the members such that each
member has k successors and k predecessors. As an example, consider the seven
members A through G in Fig. 3 hashed into three rings. The successors of C are
{G,E,D}, and its predecessors are {B,A, F}. Each member exchanges notes
and accusations with its successor in each ring.

The number of rings, k, determines the probability that the resulting sub-
mesh of correct members is connected such that Byzantine members cannot
successfully execute omission attacks. It turns out that k grows logarithmically

378 Håvard Johansen, Dag Johansen, and Robbert van Renesse 
 



FirePatch: Secure and Time-Critical Dissemination of Software Patches 7

with the number of members [8]. For instance, if one-third of the members are
Byzantine in a network of 1000 members, then k should be at least 14. With
1, 000, 000 members, k should be at least 19.

5.2 Data Dissemination

FirePatch reliably disseminates patches by an efficient flooding protocol on the
neighbor mesh created by Fireflies, much like ChainSaw [11]. First, a patch is
split into a set of fixed sized blocks that are individually signed by the patcher
and disseminated through the mesh. A mirror m1, upon receiving block b, noti-
fies all of its neighbors by sending them a 〈BLOCK-NOTIFY, block-id〉 message,
where block-id is the signature of the block. Upon receiving this notification,
m2 can request this block by issuing a 〈BLOCK-REQUEST, block-id〉 message
to m1. m1 then responds with a 〈BLOCK, block〉 message containing the re-
quested block. Upon receiving the block, m2 verifies the signature and stores the
block locally. m2 then notifies all its neighbors, except m1 that it has received
the block.

To enable clients to reassemble the patch from the blocks, the patcher dis-
seminates a signed 〈PATCH, UID, block-id list〉 message, where UID is the
unique patch identifier. Upon receiving such a message for the first time, a mir-
ror forwards it immediately to all its neighbors except the neighbor from which
the message was received. Finally, after some time, the patcher reveals the con-
tent of the patch by disseminating a signed 〈KEY, UID, key〉 message. These
messages are disseminated similarly to the BLOCK-NOTIFY and PATCH mes-
sages. Figure 4 summarizes the FirePatch dissemination protocol.

To run this protocol, each mirror maintains a TCP connection to each of
its neighbors. Mirrors strive to keep all connections busy downloading missing
blocks while trying to minimize the number of redundant blocks that they
both send and receive. For this we use two techniques. The first technique is
to randomize the order in which BLOCK-NOTIFICATION messages are sent.
This helps disperse the block randomly upstream from the patcher such that
mirrors are able to request different blocks from different neighbors. This is
particularly important during the initial phase of the dissemination. The second
technique is to schedule block requests randomly such that a request for the
same block is not made to more than one neighbor unless some timeout has
expired and the other connections are not busy.

5.3 Disconnected Nodes

A problem with the approach so far is that not all clients may be up and
connected to the Internet at the time that the patch is being disseminated.
When at some later time such a client connects to the Internet, it is vulnerable
as hackers have now had ample time to create an exploit and may be lurking on
such clients. We thus need a protocol for connecting clients to get the patches
it is missing without being compromised.
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on receive 〈BLOCK, block〉 from m:

blockid = block.signature

if blockid in missingBlocks:

blockStore.add(blockid, block)

missingBlocks.remove(blockid)

for patch in patches:

if patch.completed(): decrypt_and_install(patch)

for n in neighbors:

if n != m: send 〈BLOCK-NOTIFY, blockid〉 to n

schedule_next_request(m)

on receive 〈BLOCK-NOTIFY, blockid〉 from m:

if not blockid in blockStore: availableBlocks[m].add(blockid)

on receive 〈BLOCK-REQUEST, blockid〉 from m:

if blockid in blockStore:

send 〈BLOCK, blockStore[blockid]〉 to m

on receive 〈PATCH, uid, blockList〉 from m:

if not uid in patches:

patches.add(uid, blockList)

for blockid in blockList: missingBlocks.add(blockid)

for n in neighbors:

if n != m: send 〈PATCH, uid, blockList〉 to n

on receive 〈KEY, uid, key〉 from m:

patches[uid].setKey(key)

if patches[uid].completed(): decrypt_and_install(patches[uid])

for n in neighbors:

if n != m: send 〈KEY, uid, key〉 to n

proc schedule_next_request(m)

queue = randomize( missingBlocks ∩ availableBlocks[m])

next_request = queue[0]

for blockid in queue:

if blockid not requested: next_request = blockid; break

send 〈BLOCK-REQUEST, next_request〉 to m

Fig. 4. Pseudo-code for the FirePatch dissemination protocol

Our approach is as follows. When running, clients store the list of all mirrors
(disseminated by the patcher just like patches and keys) on disk. When a client
connects, a local firewall is initially configured to block all network traffic except
certain message formats to and from the mirrors selected at random from the
stored list. A client connects to a minimum number of mirrors in order to make
it likely that at least one of the mirrors is correct . If all clients connect to all
mirrors an unreasonable load might ensue on the mirrors.
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First, the client sends a 〈RECOVER, v〉 message to each selected mirror,
where v is the version of the latest installed patch at the client. Each mirror
responds with notifications of the missing patches as in the protocol described
above for connected clients, and the client proceeds to download the necessary
patches and keys while all other messages are ignored and dropped. When
completed, the client reconfigures its firewall to allow arbitrary communication.

6 Evaluation

Our prototype implementation5 is written in Python and has been evaluated on
a local cluster consisting of 36 3.2 GHz Intel Prescott 64 machines with 2 GB
of RAM. The machines were connected by a 1 Gbit Ethernet network. We ran
10 mirrors on each machine for a total 360 mirrors. In addition, one dedicated
machine was used to run a mirror that acted as the patcher. To limit the effect
of network congestion, the outbound bandwidth of each agent was, using a
hierarchical token bucket, limited to a rate of 500 kB/s with a max burst size
of 1 MB. In addition, each agent divided its total bandwidth equally amongst
all its active neighbors. In all experiments we used k = 9 rings, resulting in
each mirror having 18 neighbors. Hence, bandwidth between two mirrors was
approximately 28 kB/s.

In our first experiment we measured the effect of the block size on the end-
to-end latency. Our experiment consisted of injecting 2 MB patches with block
sizes varying between 4 kB and 2 MB. We used a 240 second delay between
consecutive patches to prevent interference. A 20 B decryption key was released
after a fixed delay of 180 seconds after each patch. To achieve acceptable 95%
confidence intervals, we repeated each experiment 20 times.

Figure 5 shows the resulting average total dissemination time6. As can be
seen from the figure, the block size has a significant impact on the end-to-end
latency. As expected, the messaging overhead increases with the number of
blocks. Also, as the block size increases, the efficiency of our randomized block
selection algorithm decreases, producing more duplicate messages and hence a
longer dissemination time. We observe that in our set-up the optimal block size
is between 16 kB and 64 kB.

Next we tested FirePatch’s resilience to attacks from an increasing fraction
of Byzantine mirrors in both phase-one and in phase-two of our dissemination
protocol. We fixed the block size at 32 kB and repeated the previous exper-
iment with the fractions of Byzantine mirrors varying between 0% and 20%.
Each Byzantine mirror was configured to execute omission attacks by notifying
block arrivals but not responding to block requests from neighbors. Byzantine
mirrors were chosen randomly from the list of all mirrors. In all our experiments
Byzantine mirrors were not able to prevent correct mirrors from completing ei-
ther phase-one or phase-two.

5 The source code is available on http://sourceforge.net/projects/fireflies.
6 The measured 95% confidence intervals were small and are left out for clarity.
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Figure 6 shows the resulting average time for an increasing fraction of the
mirrors to complete phase-one of our protocol. As expected, the graph displays a
clear gossip-like behavior by starting slow, speeding up, then ending slow. When
under attack by 20% of the mirrors, we observed a delay of less than 1 second
compared to when all mirrors were correct. This indicates that FirePatch is
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highly resilient to omission attacks. Note that for larger systems we expect the
dissemination time to grow logarithmically in the number of mirrors because
the diameter of the Fireflies mesh grows logarithmically.

Figure 7 shows a similar graph of the completion of phase-two. As expected,
the dissemination of the smaller decryption key in phase-two is significantly
faster than for the larger sized patch in phase-one. Also, omission attacks had
little impact. Figure 8 shows the reduction of the WOV size due to our two-
phase dissemination protocol when the patch size varies between 128 kB and
4 MB.

Next we compare our phase-one dissemination protocol with näıve push
and pull mechanisms. For the push mechanism we modified our code such that
mirrors transmitted the blocks instead of block notifications. To implement a
pull mechanism we modified our block request scheduler such that it would not
make more than one request for a block unless a static timeout of 20 seconds
had expired. The performance of pull, push, and FirePatch dissemination for
varying patch sizes is shown in Fig. 9.

To test FirePatch in a more realistic environment, we deployed our code
on PlanetLab7. We set the fraction of Byzantine mirrors to 20% and removed
the bandwidth limitation. Figure 10 shows the result of one experiment that
we ran on the 30th of October 2006 where a 2 MB patch and a 20 B key
were disseminated in a mesh of 279 mirrors. In this particular setup 80% of
the mirrors had completed phase-one within 24 seconds and phase-two within
0.58 seconds. However, we also observed that a few mirrors used a significantly
longer time. It turned out that these mirrors had become unresponsive due
to heavy CPU and network load from other projects. This was particularly
noticeable during phase-two where all but two mirrors received the key within
19 seconds. The last two mirrors became unresponsive between the phases but
reintegrated themselves into the mesh and completed phase-two one hour later.
Because each client connects to multiple mirrors, such outages will not prevent
clients from receiving updates.

7 Conclusion

We have investigated a secure approach to distribute software security updates
in a partially connected Internet environment, combining encryption, replica-
tion, and sandboxing upon reconnection of disconnected computers. Our find-
ings are intuitive, but are highly effective.

We have demonstrated that an intrusion-tolerant overlay substrate can be
used to scale the system without adding trusted mirrors. Notice that our two-
phase dissemination protocol has wide and general applicability. We conjecture
that the protocol can be incorporated easily into existing large-scale software
patching schemes. It also enables secure peer-to-peer distribution of virus defi-
nition files.
7 http://www.planet-lab.org/
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