
A Credential-Based System for the Anonymous

Delegation of Rights

Liesje Demuynck⋆, Bart De Decker, and Wouter Joosen

Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, 3001 Heverlee, Belgium

{Liesje.Demuynck,Bart.DeDecker,Wouter.Joosen}@cs.kuleuven.be

Abstract. An anonymous delegation system enables individuals to re-
trieve rights and to delegate different subparts of these rights to different
entities. The delegation procedure is anonymous, such that no collusion
of entities can track an individual’s delegation behavior. On the other
hand, it is ensured that a user cannot abuse her delegation capabilities.
This paper introduces a general delegation model and presents an im-
plementation. Our implementation is based on credential systems and
provides both anonymity for the individual and security for the organi-
zations.

1 Introduction

The concept of authentication and authorization has long been studied in com-
puter science. Intuitively, all solutions follow the same procedure: the user first
retrieves her access rights from a trusted authority and afterwards shows it to
a service provider. For security reasons, the retrieval protocol will typically be
performed in an identified or pseudonymous manner. The showing protocol, on
the other hand, may be performed in an anonymous but controlled fashion:
users are anonymous but can still be held accountable for their actions [2, 4].

In many applications, the owner of a right may need to delegate (part of)
her right to a different entity. Consider, for example, a doctor having access to
a medical database. When she is absent from the hospital, she may grant one
of her assistants access to some specific files in the database. She may prefer
this delegation procedure to be anonymous, such that no central authority can
monitor her delegation behavior. On the other hand, it should be ensured that
she cannot abuse her delegation capabilities in any way.

Wohlgemuth et al. [12] present a privacy-preserving delegation system in the
context of business processes with proxies; a user delegates some of her rights to
a proxy, who may then use these rights to access services on the user’s behalve.
The authors do not assume a delegate to be anonymous. In addition, a lot of
trust is put in a central certification authority, who knows what subrights are
issued and to which proxies. Finally, re-delegation is not achieved.

⋆ Ph. D. fellowship of the Research Foundation - Flanders (FWO).



2 Liesje Demuynck, Bart De Decker, and Wouter Joosen

This paper introduces a formal model for a delegation system and presents
an implementation based on anonymous credentials. Our model can be used in
various applications and achieves, among others, controlled re-delegation and
the revocation of rights. Anonymity is provided for the delegator as well as for
the delegate. At the same time, the security of individuals and service providers
is protected and users can be held accountable for their actions.

The outline of this paper is as follows. Section 2 presents a formal model
for the delegation system. Section 3 introduces the basic building blocks for the
implementation: commitments, anonymous credentials and verifiable encryp-
tions. The system itself is described in Section 4 and evaluated in Section 5. We
conclude in Section 6.

2 General delegation model

We first present a general model for the anonymous delegation of rights. Section
2.1 gives a global overview of the system’s entities and protocols. Section 2.2
then states some assumptions on the behavior of these entities and Section 2.3
describes a general set of requirements on the system’s behavior.

2.1 Roles and protocols

Roles. An entity in the system is either a user U or an organization O.
An organization must at all times be identifiable. It is either a registrar RG,

an issuer I, a verifier V or a revocation manager RM. A registrar registers
users to the system and an issuer issues rights to these users. A right contains
a set of specifications and a validity period. It can be shown to a verifier or it
can be used to issue sub-rights. These sub-rights can in turn be used to issue
sub-rights of themselves. As such, a delegation tree of a right is constructed.
The root of this tree is the right itself, while all other nodes are sub-rights of
their parent-node. When abuse of a right is detected, or when it is no longer
needed, the right as well as all other rights in its delegation tree, are revoked
by the revocation manager.

In contrast to an organization, a user may be anonymous within the system.
It can be either a delegator Do or a delegate De. Do delegates part of her right
to De. We will refer to Do’s right as the main-right and to De’s new right as the
corresponding sub-right. Note that a right can be both a main-right w.r.t. one
right and a sub-right w.r.t. another right. (e.g. an access right to sections {A, B}
of a database may be a sub-right w.r.t. an access right to sections {A, B, C},
and a main-right w.r.t an access right to section {A}). Similarly, a user can be
both a delegator and a delegate with respect to different users in the system.

Protocols. A summary of the system protocols is given in Table 1.
U registers to the system by performing the Registration protocol with RG.

She retrieves a right R satisfying specifications RSpecs by performing the Is-

sueRight protocol with issuer I. As a result, I receives a transcript IssueTrans.

170 Liesje Demuynck, Bart De Decker, and Wouter Joosen 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A Credential-Based System for the Anonymous Delegation of Rights 3

Table 1. general delegation model - protocol overview.

U↔ RG : Registration(certifications)
I ↔ U : IssueRight(RSpecs) returns R ; IssueTrans

Do ↔ De : DelegateRight([I ], MR, SRSpecs) returns SR; IssueTrans
U ↔ V : ShowRight(R, showProperties)

RM : RevokeRight(revTag)

The DelegateRight protocol takes as input both a main-right MR and a spec-
ification SRSpecs of the new sub-right. It outputs a transcript IssueTrans for
delegator Do and a sub-right SR for delegate De. Potentially, an additional
issuer I may be involved in the protocol.

A right R can be shown to V by means of the ShowRight protocol. Attribute
showProperties specifies the right’s properties which are revealed to V. Note
that this may be only a subpart of the entire right. As an example, consider a
right granting full database access to U. When showing this right to V, U may
decide to only reveal her access rights for a particular subpart of the database.

Finally, a right can be revoked by means of the RevokeRight protocol. The
input to this protocol is a revocation tag revTag. This tag can be found as a
unique subpart of the IssueTrans transcript.

2.2 Assumptions

We employ the following assumptions concerning the entities in the system.

– System registrar and organizations can be trusted to perform their tasks
correctly, i.e. they follow the protocols. This is a reasonable assumption and
can, for example, be enforced by collecting secure logs of the parties’ activities.

– All entities in the system can freely exchange their information. In particular,
users may exchange information about the rights they have received. Note,
however, that entities will not give away any information of which the secrecy
is important to themselves. Examples of such information are secret keys and
revocation information of sub-rights issued by themselves.

2.3 Requirements

We consider anonymity and security requirements. Anonymity requirements
are optional and provide the user with a set of privacy guarantees. Security
requirements are mandatory and protect the organization from malicious users.

Anonymity and linkability requirements.

A1. Privacy preserving show protocol. The ShowRight protocol should not reveal
more information than what is absolutely necessary to gain access to V ’s
services. In particular, the following requirements should be satisfied.
(a) Anonymity. Service access is anonymous.
(b) Unlinkability. Different service accesses based on the same right cannot

be linked to each other.

A Credential-Based System for the Anonymous Delegation of Rights 171
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 Liesje Demuynck, Bart De Decker, and Wouter Joosen

(c) Right indistinguishability. The access protocol does not reveal any in-
formation on how the access right was obtained.

A2. Sub-right unlinkability. Different sub-rights deduced from the same main-
right must not be linkable to each other, even when all parties in the system
(except for the main-right owner) share their information. This ensures that
a user’s delegation behavior cannot be tracked by other entities.

Security requirements.

S1. Unforgeability. Users may not successfully show a right which was not re-
trieved by means of an IssueRight or of a DelegateRight protocol.

S2. Correct sub-rights. The set of rights which are encoded in a sub-right must
be a subset of the set of rights encoded in its corresponding main-right. In
addition, the validity periods of a sub-right must fall within the validity
period of its corresponding main-right.

S3. Non-transferability. The legitimate owner of a right must not be able to pass
on the digital tokens constituting her right. Note that this requirement does
not forbid to pass on a right by the delegation of a sub-right identical to
the original right.

S4. Consistency of rights. Users may not be able to pool their rights in order to
gain an asset (e.g. the access to a service or a new right), which each of them
separately could not have obtained by correctly executing the protocols.

S5. Correct revocation. Rights must be revocable and the revocation of a right
must include the revocation of all the rights in its delegation subtree. In
addition, users must be prohibited to request the revocation of rights which
are not issued or owned by themselves.

S6. Conditional deanonymization. In case of abuse of a right, appropriate mea-
sures should be taken against its owner. We distinguish two types of actions.
– retrieval of the owner’s identity.
– retrieval of the right’s issue transcript, enabling the right’s revocation.

3 Basic building blocks

Our construction is based on commitments, credential systems and verifiable
encryptions. We briefly introduce these concepts and their primitives. All com-
munication is performed over anonymous communication channels.

Commitments. A commitment [11, 7] can be seen as the digital analogue of
a “non-transparent sealed envelope”. It enables a committer to hide a set of
attributes (non-transparency property), while at the same time preventing her
from changing these values after commitment (sealed property). The primitive

E : Comm,OpenInfo = Comm({attrName := attrValue, . . .})

enables an entity E to create a commitment Comm on a set of attributes.
Additionally, she retrieves a secret key OpenInfo containing, among others,

172 Liesje Demuynck, Bart De Decker, and Wouter Joosen 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A Credential-Based System for the Anonymous Delegation of Rights 5

the attributes encoded into Comm. This key can be used to prove properties
concerning the attributes.

E1 → E2 : ComProps(Comm, P (attr1, . . .))

The public input to this protocol is both a commitment Comm and a boolean
predicate P concerning Comm’s attributes. For example, P may be the predi-
cate (attr1 > 0). If E2 accepts, she is convinced that E1 knows the OpenInfo

belonging to Comm, and that Comm’s attributes satisfy predicate P . She does
not find out any other information concerning Comm or Comm’s attributes.

Credentials. A credential system [2, 4] allows for anonymous yet accountable
transactions between users and organizations. In the remainder of the paper,
we employ the system proposed by Camenisch et al. [4, 1, 6].

A credential Cred is retrieved from I by means of the CredGet protocol.

U ← I : Cred = CredGet({attr1 := G(.), . . .})

It consists of a set of attributes as well as a secret key for showing it to a verifier.
Each attribute is constructed as a separate function G(.) of public values

and attributes encoded into previously shown credentials or commitments. As
an example, attr1 may be constructed as attr1 := Credx.a1+5, where Credx.a1
refers to attribute a1 of a previously shown credential Credx. Issuer I cannot
find out any information concerning the credential’s attributes, apart from the
fact that they are constructed correctly based on G(.).

During the CredShow protocol, U shows her credential Cred to V.

U → V : CredShow(Cred, P (attr1, . . .))

Additionally, U reveals a boolean predicate P concerning public values, at-
tributes occurring in Cred and attributes occurring in previously shown cre-
dentials or commitments. For example, P may be the predicate (attr1 >

Cx.a1 ∧ attr1 < Cx.a2), where Cx.a1 and Cx.a2 refer to attributes a1 and
a2 encoded into a previously shown commitment Cx. V cannot learn any new
information from the execution of the protocol, apart from the fact that U has
a valid credential which is issued by I and of which the attributes satisfy P .

Different show-protocols of the same credential cannot be linked to each
other, nor can they be linked to their issue protocol.

Using the CredSign protocol, a credential can be used to sign a message.

U : Sig = CredSign(Cred, P (attr1, . . .),msg)

The properties of this protocol are exactly the same as for the CredShow pro-
tocol, except for the additional fact that a message msg is signed using the
credential. For ease of representation, we assume that output Sig contains the
signature as well as the signed data.

A Credential-Based System for the Anonymous Delegation of Rights 173
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 Liesje Demuynck, Bart De Decker, and Wouter Joosen

Verifiable encryptions. Verifiable encryptions [5] have all the characteristics
of regular encryptions. Based on a public key pk, any user U can encrypt a
message. In addition, U can demonstrate properties of the encrypted plaintext.
For example, U can prove to V that the encrypted plaintext is encoded as an
attribute in a previously shown credential or commitment. This is denoted as
a predicate c = VE(x), where c refers to the ciphertext and where x refers to
the credential’s (or commitment’s) attribute.

Note that c is created using a public key pk of which the corresponding
secret key sk may not be known by V. For ease of representation we omit the
specifications of pk and its owner. We merely assume its owner to be an entity
T which can be contacted when decryption is needed. Additionally, T is trusted
not to perform any unwanted decryptions.

The use of credentials, commitments and verifiable encryptions offers nu-
merous advantages in the construction of privacy-sensitive applications. Cre-
dentials are unforgeable and allow for service accesses which are anonymous
and unlinkable. By combining them with commitments and verifiable encryp-
tions, additional properties such as non-transferability, consistency of creden-
tials, conditional deanonymization and revocation can easily be added using
standard techniques [2, 4]. These properties will turn out to be very handy in
our final construction.

4 The delegation system

We first give a general outline of the system and its components. Afterwards,
the system and its protocols are described in more detail.

4.1 General outline of the system

All rights in the system are represented as digital credentials. In particular,
main-rights and sub-rights have an identical credential structure. The creden-
tial’s attributes consist of a tuple (id, e,RSet), where id is the owner’s identity, e

is the right’s revocation tag and RSet is a specification of the right. A sub-right
is issued by constructing a new tuple (id′, e′,RSet′) and by signing a commit-
ment on this tuple. Note that we sign a commitment rather than the actual
tuple (id′, e′,RSet′). This way the tuple is hidden from any third parties. The
signature is created by the main-right’s credential and by using the CredSign

protocol. In a final step, this signature is exchanged with I for a new credential.
To achieve correct revocation, the sub-right’s revocation tag e′ may not be

arbitrarily chosen by Do. Instead, it must be requested from RM through an
auxiliary IssueRevTags protocol. During the protocol, Do retrieves a credential
Credrev containing e and a list of random revocation tags. RM does not know
the values of these tags, but she is able to recover them as soon as the corre-
sponding main-right is revoked. Furthermore, by means of the attribute value

174 Liesje Demuynck, Bart De Decker, and Wouter Joosen 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A Credential-Based System for the Anonymous Delegation of Rights 7

e occurring in both credentials, Credrev is invisibly bound to the main right’s
credential.

An example is given in Figure 1. Doctor Jones has access to sections A, B

and C of the hospital’s database. This is represented by a credential CredABC

containing a revocation tag e. In addition, she owns a credential Credrev which
is retrieved during an IssueRevTags protocol. Credrev encodes CredABC ’s re-
vocation tag e. As such, it can only be used to delegate sub-rights based on
CredABC . In addition, Credrev contains a set (e1, . . . , en) of random revocation
tags. Whenever a sub-right is issued, its new revocation tag must be one of
these values ei encoded into Credrev. In our example, Dr. Jones has delegated
two sub-rights based on CredABC . Due to the randomness of the ei’s, their
corresponding credentials cannot be linked to each other.

CredABC

(“Jones”, e, {ABC})

Credrev

(e, (e1, e2, . . . , en))

�
�

�
�

�
�

���

�
�

�
�

�
�

���

CredA

(“Smith”, e1, {A})

CredBC

(“Yang”, e2, {BC})

Fig. 1. Example credential structures

4.2 Protocol description

The delegation system is depicted in Figures 2 and 3. We now give a detailed
description of the protocols.

Registration. U registers to the system by authenticating to RG. She then re-
ceives a credential Credu containing her global identifier idu. In the remainder of
the paper, we will refer to this credential as Creddo, Credde or Credu, depending
on its owner’s role as a delegator, a delegate or a user.

IssueRight. U first proves to be registered to the system. If successful, she
retrieves a credential Credright containing three attributes: a copy of attribute
id in Credu, an issuer-chosen revocation tag e and a specification RSet of rights.
We will refer to this credential as Credright, Credmain or Credsub, depending on
its function as a general right (which can be both a main-right or a sub-right),
a main-right or a sub-right.

IssueRevTags. This protocol can be executed multiple times for the same value
e. It provides Do with n additional revocation tags for her sub-rights. First,
Do creates a commitment Crev containing random values e1u, . . . , enu. This
commitment, together with the main-right’s revocation tag e and a verifiable
encryption encr of (e1u, . . . , enu) are sent to RM. Do also proves that encr

is constructed correctly. After receiving random values e1i, . . . , eni from RM,
Do proves that value e is the same revocation tag as is encoded in her main-
right. For this, she creates a credential-based signature Sigrev. This ensures
that RM is provided with sufficient evidence of the transaction. Finally, when

A Credential-Based System for the Anonymous Delegation of Rights 175
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 Liesje Demuynck, Bart De Decker, and Wouter Joosen

• Registration.

U user authentication
� RG

U Credu = CredGet({id := idu})
� RG

• IssueRight.

U CredShow(Credu, null)
� I

U

Credright = CredGet(
{Owner := Credu.id, revTag := e, rights := RSet})

� I

• IssueRevTags.

Do: choose random values e1u, . . . , enu

Crev, Orev = Comm({e1u := e1u, . . . , enu := enu})
encr = VE(e1u, . . . , enu)

Do e, encr, Crev,ComProps(Crev, {encr == VE(e1u, . . . , enu)})
� RM

RM : choose random values e1i, . . . , eni

Do e1i, . . . , eni
� RM

Do: Sigrev = CredSign(Credright, {revTag == e},
(e, e1i, . . . , eni, encr))

Do Sigrev � RM

Do

Credrev = CredGet(
{revTag := e, e1 := Crev.e1u + e1i, . . . , en := Crev.enu + eni})

� RM

Fig. 2. Credential-based implementation of the delegation model (1/2)

e has not been revoked, a credential Credrev is issued by RM. The attributes
of this credential consist of e and of the new revocation tags e1, . . . , en which
are constructed as ek = eki + eku for k = 1, . . . , n. Note that the resulting ek’s
are unknown to RM ; she only knows that they are constructed correctly as
ek = Crev.eku + eki. Moreover, their values cannot be manipulated by Do.

DelegateRight. This protocol consists of two phases which can be separated in
time. It may be preceded by an optional identification step from De to Do.

During the first phase, De creates a commitment Cde on her global identi-
fier idde. She sends it to Do and proves that it is constructed correctly. Upon
success, Do creates two commitments Cdo and Csub. Cdo encodes her main-
right’s revocation tag e, while Csub contains both the revocation tag ei and
the right-specifications SRSet of the prospective sub-right. Commitments Cdo,
Cde and Csub are then signed by means of the CredSign protocol for credentials
Credmain and Credrev. This results in a signature tuple (Sigsub1,Sigsub2) which
is sent with the key Osub to De. The signatures ensure the following properties:

– The signer owns credentials Credmain and Credrev.
– The same revocation tag e is encoded in both Credmain and Credrev.
– The rights encoded into Csub are a subset of the rights encoded into Credmain.
– Csub’s attribute subRevTag is one of the revocation tags encoded in Credrev.

176 Liesje Demuynck, Bart De Decker, and Wouter Joosen 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A Credential-Based System for the Anonymous Delegation of Rights 9

• DelegateRight.

De: Cde, Ode = Comm({id := idde})

Do Cde, CredShow(Credde , {id == Cde.id})
� De

Do: Csub, Osub = Comm({subRevTag := ei, rights := SRset})
Cdo, Odo = Comm({revTag := e})
Sigsub1 = CredSign(Credmain , {revTag == Cdo.revTag ∧

rights ⊃ Csub.rights}, (Cdo, Cde, Csub))
Sigsub2 = CredSign(Credrev , {revTag == Cdo.revTag ∧

Csub.subRevTag ∈ {e1, . . . , en}}, (Cdo, Cde, Csub))

Do Osub, Sigsub1, Sigsub2
� De

De: retrieve ei and SRset from Osub

Sigde = CredSign(Credde , {id == Cde.id}, (Sigsub1, Sigsub2))

I Sigde
� De

I

Credsub = CredGet({owner := Cde.id,
revTag := Csub.subRevTag, rights := Csub.rights})

� De

• ShowRight.

Do CredShow(Credright, {revTag �∈ BL ∧ rights ⊃ NSet})
� V

• RevokeRight.

E request revocation of the right with revocation tag revTag
� RM

RM. set L = {revTag}, while L �= {} do the following
1. remove value e from L, add e to blacklist BL

2. check archive for Sigj
rev on tuple (e, ej

1i, . . . , e
j
ni, encrj)

3. for each Sigj
rev found do the following

a. decrypt encrj and retrieve tuple (ej
1u, . . . , ej

nu)

b. add values e
j
k = e

j
ku + e

j
ki to L, for all k ∈ {1, . . . , n}

Fig. 3. Credential-based implementation of the delegation model (2/2)

During the second phase, De sends a signature Sigde to I. This signature
includes tuple (Sigsub1,Sigsub2) and additionally proves that De is the owner of
identifier idde encoded into Cde. If Sigde is accepted by I, and if (Sigsub1,Sigsub2)
has not been shown to I before, De retrieves a new credential of which the
attributes are based on the values encoded into Csub.

ShowRight. During the ShowRight protocol, U shows her credential Credright

to V. Additionally, she proves that it contains sufficient rights for accessing V ’s
services and that it has not been revoked. The latter can be achieved using the
efficient privacy-friendly blacklisting techniques of [9, 3].

RevokeRight. Revocation manager RM revokes a right by adding its revocation
tag to a public blacklist BL. If revTag belongs to a main-right, all rights in its
revocation tree are iteratively revoked by retrieving the signatures Sigj

rev on

A Credential-Based System for the Anonymous Delegation of Rights 177
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10 Liesje Demuynck, Bart De Decker, and Wouter Joosen

revTag and by decrypting the encryptions encrj . Note that RM will generally
not be aware of the correct decryption key. In this case, decryption requires the
interaction with a trusted third party.

Before performing a revocation, RM receives a revocation request from an
entity E in the system. Requests from identified entities such as issuers or
verifiers generally pose no problem, as they can easily be held accountable
for their actions. Care must be taken, however, when requests are made by
unidentified entities. These requests will only be granted if the requester can
prove to be the owner of a credential Credrev containing revocation tag revTag.
The proof protocol is given in Figure 4. During the protocol, Do can either
request the revocation of a sub-right issued by herself, or of a right owned by
herself.

Do Sigrev = CredSign(Credrev, {revTag ∈ {e, e1, . . . , en}}, revTag)
� RM

Fig. 4. Revocation request for anonymous users

5 Evaluation

Anonymity and linkability requirements.

A1. Service access is anonymous and unlinkable, even if multiple entities collabo-
rate and freely exchange their information. Since main-rights and sub-rights
have an identical structure, right indistinguishability is also achieved.

A2. Provided that no revocations are performed, subright unlinkability is triv-
ially achieved. When a right is revoked, all revocation tags of this right and
of its sub-rights are retrieved and linked. A “skeleton” of the right’s delega-
tion tree can then be reconstructed. This skeleton contains as its nodes the
revocation tags of possible sub-rights, but not the sub-rights themselves.
Users who are willing to display the specifications of their revoked sub-
rights, may place it at the correct position in the tree. As such, limited but
nevertheless additional information concerning a user’s delegation behavior
may be retrieved.
One way to avoid these unwanted linkabilities is by not allowing any revo-
cations. This is however not a reasonable solution. A good compromise is
the adoption of “medium-size” validity periods. These time periods should
be short enough to avoid most revocations on the one hand but long enough
to avoid burdensome renewals on the other hand.

Security Requirements.

S1. All rights are unforgeable thanks to the unforgeability of credentials and
the unforgeability of the CredSign signature scheme.

S2. Sub-rights are issued correctly. During the DelegateRight protocol, Do ex-
plicitly proves that the sub-right’s validity periods and right specifications
are more strict than or equal to what is specified in the main-right. Note

178 Liesje Demuynck, Bart De Decker, and Wouter Joosen 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A Credential-Based System for the Anonymous Delegation of Rights 11

that Do is not prohibited to issue revoked sub-rights. Issuing such rights
would be useless, however, as they would be refused by V anyway.

S3. Transferability of rights can be discouraged by using non-transferable user
secrets [2, 10]. For this, value idu is constructed as a secret key or a credit
card number. An exception to this adaptation is credential Credrev, which
does not contain idu. Here, transferring is discouraged by the fact that
it may only harm its original owner Do. This is because (1) transferring
Credrev does not enable another user to employ its encoded revocation tags
ei, and (2) transferring Credrev does enable other users to revoke the sub-
rights issued by Do.

S4. When showing multiple rights to the same verifier. Consistency of these
rights can be demonstrated by an additional proof that the Owner attribute
is the same in all credentials.

S5. Rights are revocable and the revocation of a main-right implies the revoca-
tion of all the rights in its delegation tree. In addition, users cannot request
the revocation of rights which are not issued or owned by themselves.

S6. Conditional deanonymization can easily be added using standard techniques
[4]. During the showRight protocol, U simply provides V with a verifiable
encryption of either her identity or of her right’s revocation tag.

Extensions and adaptations.

In our construction, every right has a validity period and a set of right spec-
ifications. All types of sub-right can be issued, provided that their encoded
constraints are a subset of what is specified in the main-right. In many applica-
tions, however, these system specifications are too limited. We now give some
examples of extensions to the system. A detailed discussion on these and other
extensions and on how to achieve them can be found in our technical report [8].

– By employing limited-show credentials, it is possible to limit the number of
times that a right can be shown to a verifier. Note that in this case, the
issuing of a sub-right which can be shown t times must imply the loss of t

show instances for the main-right.
– The maximal depth of a right’s revocation tree can be set to a fixed number.

As an example, this depth may be set to 1 in the situation where a doctor
may delegate sub-rights to her assistants, but where her assistants are not
allowed to issue sub-rights of themselves.

Our system has the obvious drawback that I needs to be involved in every
delegation. In applications with less strict privacy and functionality require-
ments, this dependability on I can be alleviated by a small transformation of
the system [8]. First, we note that signature tuple (Sigsub1,Sigsub2) contains
sufficient proof that De is entitled to a sub-right. Hence De can show her right
by simply showing (Sigsub1,Sigsub2) and by proving some additional statements
about the signed values. As an example, in order to prove that her right has
not yet been revoked and that it is sufficient for accessing V ’s services. De can
prove the predicates (Csub.subRevTag �∈ BL) and (Csub.rights ⊇ Nset). Note
that this procedure does not maintain the unlinkability of service access, the

A Credential-Based System for the Anonymous Delegation of Rights 179
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12 Liesje Demuynck, Bart De Decker, and Wouter Joosen

indistinguishabilty of rights or the delegation capability of the sub-right. If one
of these features is needed by De, she gets back to the original protocol and
contacts I for a credential.

Finally, our system can easily be extended to allow sub-rights which are
created as a combination of rights situated in different main-rights.

6 Conclusion

This paper introduced a formal model for a delegation system and presented
a credential-based implementation. The system provides both anonymous del-
egation for the individual as well as security for the organizations. A trade-off
has been made between the security requirement of correct revocation and the
anonymity requirement of the delegation process. It is an interesting problem
to investigate whether this conflict can be solved, such that both revocation
and sub-right unlinkability can be achieved.

References

1. Michael Backes, Jan Camenisch, and Dieter Sommer. Anonymous yet accountable
access control. In WPES, pages 40–46, 2005.

2. S. A. Brands. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge, MA, USA, 2000.

3. Stefan Brands, Liesje Demuynck, and Bart De Decker. A practical system for
globally revoking the unlinkable pseudonyms of unknown users. Technical Report
CW472, Katholieke Universiteit Leuven, 2006.

4. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In EUROCRYPT, pages
93–118, 2001.

5. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In CRYPTO, pages 126–144, 2003.

6. Jan Camenisch, Dieter Sommer, and Roger Zimmermann. a general certifica-
tion framework with applications to privacy-enhancing certificate infrastructures.
Tech. Rep. RZ 3629, IBM Zurich Research Laboratory, July 2005.

7. Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In ASIACRYPT, pages 125–142, 2002.

8. Liesje Demuynck and Bart De Decker. Credential-based systems for the anony-
mous delegation of rights. Technical Report CW468, K.U. Leuven, 2006.

9. Liesje Demuynck and Bart De Decker. How to prove list membership in logarith-
mic time. Technical Report CW470, Katholieke Universiteit Leuven, 2006.

10. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Selected Areas in Cryptography, pages 184–199, 1999.

11. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO, pages 129–140, 1991.

12. Sven Wohlgemuth and Günter Müller. Privacy with delegation of rights by iden-
tity management. In Günter Müller, editor, ETRICS, volume 3995 of Lecture
Notes in Computer Science, pages 175–190. Springer, 2006.

180 Liesje Demuynck, Bart De Decker, and Wouter Joosen 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


