TRUSTED COMPONENT SHARING BY
RUNTIME TEST AND IMMUNIZATION FOR
SURVIVABLE DISTRIBUTED SYSTEMS

Joon S. Park’, Pratheep Chandramohan?, Ganesh Devarajan3 , and Joseph

. 4
Giordano

L1231 aboratory for Applied Information Security Technology (LAIST), School of Information
Studies, Syracuse University; *Information Directorate, Air Force Research Laboratory

Abstract:

Keywords:

1.

As information systems became ever more complex and the interdependence
of these systems increase, the survivability picture became more and more
complicated. The need for survivability is most pressing for mission-critical
systems, especially when they are integrated with other COTS products or
services. When components are exported from a remote system to a local
system under different administration and deployed in different environments,
we cannot guarantee the proper execution of those remote components in the
currently working environment. Therefore, in the runtime, we should consider
the component failures (in particular, remote components) that may either
occur genuinely due to poor implementation or the failures that occurred
during the integration with other components in the system. In this paper, we
introduce a generic architecture and mechanisms for dynamic component-
failure detection and immunization for survivable distributed systems. We
have also developed a prototype system based on our approaches as a proof of
our ideas.

Component Immunization; Recovery; Survivability.

INTRODUCTION

Although advanced technologies and system architectures improve the
capability of today’s systems, we cannot completely avoid threats to them.
This becomes more serious when the systems are integrated with

128 Joon S. Park, Pratheep Chandramohan, Ganesh Devarajan,

Commercial Off-the-Shelf (COTS) products and services, which usually
have both known and unknown flaws that may cause unexpected problems
and that can be exploited by attackers to disrupt mission-critical services.
Usually, organizations including the Department of Defense (DoD) use
COTS systems and services to provide office productivity, Internet services,
and database services, and they tailor these systems and services to satisfy
their specific requirements. Using COTS systems and services as much as
possible is a cost-effective strategy, but such systems—even when tailored to
the specific needs of the implementing organization—also inherit the flaws
and weaknesses from the specific COTS products and services used.
Traditional approaches for ensuring survivability do not meet the challenges
of providing assured survivability in systems that must rely on commercial
services and products in a distributed computing environment" 2>,

The damage caused by cyber attacks, system failures, or accidents, and
whether a system can recover from this damage, will determine the
survivability characteristics of a system. A survivability strategy can be set
up in three steps: protection, detection and response, and recovery*” ' ', To
make a system survivable, it is the mission of the system, rather than the
components of the system, to survive. This implies that the designer or
assessor should define a set of critical services of the system to fulfill the
mission. In other words, they must understand what services should be
survivable for the mission and what functions of which components in the
system should continue to support the system’s mission®’.

2. DEFINITION OF SURVIVABILITY

The definitions of survivability have been introduced by previous
researchers”” %, In this paper, we define survivability as the capability of an
entity to continue its mission even in the presence of damage to the entity.
An entity ranges from a single component (object), with its mission in a
distributed computing environment, to an information system that consists of
many components to support the overall mission. An entity may support
multiple missions. Damage can be caused by internal or external factors such
as attacks, failures, or accidents. If the damage suspends the entity’s mission,
we call it critical damage (CD), and if it affects overall capability, but the
mission can still continue, we call it partial damage (PD). Since we believe
survivability is a mission-oriented capability, there are basically three
abstract states of the system: normal, degraded, and suspended. A system is
in the normal state (Sy) when it is running with full capability. It is in the
degraded state (S;) when it is running with limited capability because of PD,
which does not suspend the overall mission. Finally, the system is in the

Trusted Component Sharing by Runtime Test and Immunization for ... 129

suspended state (S,) when it cannot continue its mission because of CD.
When partial recovery (PR) occurs to an infected component, only the
mission-related service is recovered, so the service is still in a degraded
mode with limited capacity. When there is a total recovery (TR) such as that
resulting from component substitution, service is provided at full capacity.
As understood intuitively, PR and TR on Sy, PD and PR on S,, and PD and
CD on S, do not change their current states. From the survivability point of
view, we may put up with partial damages (PD) on the system as long as the
mission carries on. We may simply insulate the damaged components from
others instead of recovering them, although the performance of the overall
system may degrade. However, if the damage is so critical that the system
cannot continue its mission, we must recover the damaged components as
soon as possible in order to continue the mission. We describe the concept of
survivability using a finite state machine. Abstractly, we can consider the
damages and recovery actions as inputs to a survivable entity. Furthermore,
we can classify the outputs of the entity into two abstract cases, one for the
outputs when the mission performed (M) successfully, and one for the
outputs when the mission failed (F). This generates Table 1, which shows
the transitions and outputs for each pair consisting of a state and an input.
Based on this table, we generate a finite state machine in Figure 1.

Table 1. State Table for Survivable Systems

Transition Function (f) Output Function (g)
State Next State Output (O)
(S) Input (I) Input (I)
PD CD PR TR PD CD PR TR
So S S, So So M F M M
S Sy S, S So M F M M
S, S, S, Si So F F M M

The finite-state machine M = (S, L, O, f. g, s¢) consists of a finite set S of
states (where S is an initial state), a finite input alphabet I, a finite output
alphabet O, a transition function f that assigns each state and input pair to a
new state, and an output function g that assigns each state and input pair to
an output. In this state diagram, we have three states (normal state (S,),
degraded state (S;), and suspended state (S;)), four types of inputs (partial
damage (PD), critical damage (CD), partial recovery (PR), and total recovery
(TR)), and two outputs (when mission performed (M), and when mission
failed (F)).

To continue the mission, the system must stay in either Sy or S;. Some
strict missions do not allow the critical components to stay even one moment

130 Joon S. Park, Pratheep Chandramohan, Ganesh Devarajan,

in the suspended state (S,) until the mission is completed. However, in
reality, we believe most missions may allow critical components to stay in
the suspended state (S,) for a moment until they are recovered and the state
is changed to the degraded state (S;) or normal state (S,).

—_—_
Start

<States> <Inputs> <OQutputs>

Sp : Normal State PD : Partial Damage M : Successful Results
S; : Degraded State CD : Critical Damage F : Failed Results

S, : Suspended State PR : Partial Recovery

TR : Total Recovery

Figure 1. Abstract State Diagram for Survivable Systems

We could decompose S; and S, into sub-states to represent detailed
transitions based on the actual missions and applications described in*’. In
this paper, however, we introduce a generic approach to describe the concept
of survivability with the abstract inputs, states, and outputs. We believe the
three states (S, Si, and S,), the four kinds of inputs (PD, CD, PR, TR), and
the two kinds of outputs (M, F) can represent the state transitions of a
survivable entity based on our mission-oriented survivability definition.

3. RELATED WORK
3.1 Black-box and white-box testing

Currently, existing technologies for identifying faulty components are
more or less static in nature. One of those approaches employs black box
testing for the components. In this technique, the behavioral specification® is
provided for the component to be tested in the target system. The main
disadvantage of this technique is the specifications should cover all the
detailed visible behavior of the components, which is impractical in many

Trusted Component Sharing by Runtime Test and Immunization for ... 131

situations. Another approach employs a source-code analysis, which depends
on the availability of source code of the components. Software testability
analysis® employs a white-box testing technique, which determines the
locations in the component where a failure is likely to occur. Unlike black
box testing, white box testing allows the tester to see the inner details of the
component and later help him to create appropriate test data. Yet another
approach is software component dependability assessment®®, a modification
to testability analysis where each component is tested thoroughly. These
techniques are possible only when the source code of the components is
available.

3.2 Fault injection

In the past'” we have employed a simple behavioral specification
utilizing execution-based evaluation. Their approach combines software
fault injection” ** ** 3* at component interfaces and machine learning
techniques to: (1) identify problematic COTS components; and (2)
understand these components’ anomalous behavior. In their approach of
isolating problematic COTS components, they created wrappers and
introduced them into the system under different analysis stages to uniquely
identify the failed components and to gather information on the
circumstances that surround the anomalous component behavior. Finally,
they preprocess the collected data and apply selective machine learning
algorithms to generate a finite state machine for better understanding and
increasing the robustness of the faulty components. In other research’ the
authors have developed a dynamic problem determination framework for a
large J2EE platform, employing a fault detection approach based on data
clustering mechanisms to identify faulty components. This research also
employed a fault injection technique to analyze how the system behaves
under injected faults.

33 Bytecode instrumentation

Performing fault injection analysis and providing immunization to the
components either by rewriting the existing code or by creating additional
wrappers is a non-trivial task when the source code for the component is not
readily available. Source code may not be available at all when we are
dealing with COTS components and externally administered components
downloaded dynamically in runtime at local machine. This is an issue that
needs to be addressed before proceeding further. Providing immunization
and performing fault injection at the component interfaces require
modification of the component code; however, we assume that the source

132 Joon S. Park, Pratheep Chandramohan, Ganesh Devarajan,

code is not available in a large disturbed application. Instead, we provide the
immunization to the runtime code (e.g., JAVA Bytecode) by extending the
code instrumentation technique™ *® %' Instrumentation techniques have
previously been used for debugging purposes; to evaluate and compare the
performance of different software or hardware implementations such as
branch prediction, cache replacement, and instruction scheduling; and in
support of profile-driven optimizations™® "%,

4. RUNTIME COMPONENT TEST AND
IMMUNIZATION
4.1 Generic system architecture

Figure 2 shows the generic architecture of our component failure
detection and immunization system. It consists of a Monitoring Agent, an
Immunization Agent, and a Knowledge Base. The monitoring agent is
further divided into two subsystems: the fault injection subsystem and fault
detection subsystem. Before a component is run on a host (especially a
mobile component downloaded from another machine under different
administration), the fault injection subsystem injects faults into the
component, while the fault detection system analyzes component behavior in
response to the injected faults. The component’s internal structure
information, such as method interface, arguments, local variables, etc., is
accessible in runtime; thus, this information can be used in the dynamic
component analysis.

If there is no abnormal behavior, the monitoring agent allows the
component to run in the local machine. For the performance reason, we can
finish this analysis with the local components and fix the failures in the
source codes before the operation starts (if the source codes are available).
However, this is not possible for the remote components because their
source codes are usually not available to the local machines. When the
monitoring agent detects abnormal behaviors in the mobile component
through the fault injection analysis, the fault detection subsystem identifies
the reason for failure and informs the immunization agent to immunize the
faulty component accordingly.

The immunization agent builds and deploys immunized components to
the target system. The immunization agent possesses a knowledge base that
consists of a list of procedures for how to provide immunization for
component failures. The immunization agent provides immunization and
increases the survivability of the faulty components. Basically, there are two
options to increase the survivability of the vulnerable components and to

Trusted Component Sharing by Runtime Test and Immunization for ... 133

make it more robust'*: (1) inform the vendor of the software problems and
wait for a patch; or (2) immunize the components with wrappers or
instrument the faulty methods with updated and modified methods for more
robust behavior® ?. The first technique is not feasible for dynamic runtime
recovery from errors; consequently, we have adopted the second approach to
provide immunization and increase the survivability of vulnerable
components.

Contains solution to immunize
the components for particular
attack scenarios

Immi i
knowledge
base

Factory rebuilds the faulty

component by providing generic

or specific immunization to the

components.
=

Host Machine

Report component
failure and reason l

Monitoring Agent

Fault
Detection
and Analysis
Subsystem

Fault
Injection
Subsystem

]

i agent i the Fault Inj
module to inject faults and Fault Detection
module to help analyze and detect the faults

Figure 2. Component Failure Detection and Immunization

4.2 The strategy

Figure 3 summarizes the steps involved in the entire process of detecting
and immunizing faulty components. When we download a component from
the remote location we perform the first test to determine if there are any
dependent components. If so, we also download the dependent component.
The component that is downloaded is an executable file for which we don’t
have the source code. By using an additional tool in runtime (e.g. Jikes BT"
for JAVA bytecode), however, we can determine most of the intricate
structure details of the component that we have downloaded. The test as well
determines the structure of the code (including the data flow and the
interdependencies of the functions inside the component) that is required to
do a runtime test in the local environment. Then, we go into the next phase
of monitoring the component performance.

In the next phase we inject the faults and observe the performance of the
component. The fault injection module injects test inputs (faults) and
analyses the behavior of the component. Different machines (or applications)
may have different fault injection modules based on their test criteria. For

134 Joon S. Park, Pratheep Chandramohan, Ganesh Devarajan,

instance, one module may test internal failures, while another may test the
robustness against cyber attacks. After the test inputs are injected we collect
evidences and reasons for the failures, specific methods, classes that are
affected. If there are any failures detected we check if we can provide some
immunization to that failure from the knowledge base that we have built and
updated regularly. If we have a specific solution for the failure we provide it
from the knowledgebase, otherwise we provide it a generic immunization®”
2 After the immunization is done we send the immunized component to the
monitoring phase again. Now if the component is not having any problem
we go to the next phase where we see if all the fault injections are performed
and the component is functioning without any problem then our goal is
achieved. However, if there is any problem in the monitoring stage after the
immunization we may simply drop the component off.

Start

Download
Component

L Download
dependant
Component
y Yes T
component?
No

Monitor
Components

I

Perform Fault
Injection

s Component
Fully Tested?

Can Detect
Faults ?

Achieved Goal

Spacific Yes Perform
izati Specific
Possible ? Immunization

Reasons ?.

No

Perform
Generic
Immunization

Figure 3. Strategy for Identifying Component Failures and Immunization

We can provide component immunization in runtime by either class-level
modifications or method-level modifications. By class-level modification the
references to the original class definitions are replaced by another subclass

Trusted Component Sharing by Runtime Test and Immunization for ... 135

of the original class. By method-level modification, we modify some of the
runtime (executable) code in the original method by adding new runtime
code (i.e. Java bytecode in our implementation) or deleting some runtime
code or both at the same time. The latter provides more flexibility to build
more powerful immunized class. At the same time method level
modification is more difficult to implement than class level modifications
because it involves direct modification of already existing Java bytecode
whereas the class-level modification just involves rearranging references in
the class file. The main advantage of using method level instrumentation
techniques is that all the modifications are transparent to other components,
which make calls to the modified components because the semantics and
syntax are still maintained after modifications.

S. PROTOTYPE DEVELOPMENT

Although the detailed techniques for component-failure detection and
immunization are slightly different based on the programming languages,
applications, and local policies, we believe our approach is applicable to
most of distributed systems, which require survivability. We focus on the
component failure scenarios here, but we believe our approach can be
extended with cyber attacks. In our experiment, we detect component
failures such as naming collisions, infinite loops, multi-threading problems,
and array out-of-bound problems, and successfully immunized them in
runtime so that the component’s service can continue in a reliable manner. In
the following description, we mainly concentrate on the problems of naming
collisions because they cannot be rectified in the programming time and this
particular paper has a space constraint. The other problems might be avoided
when the programmer takes extra care during programming. However, we
still need to check those problems in a remote component during runtime
under a strict component-sharing policy.

5.1 Detection and immunization of naming collisions

When we perform tests for a local component, naming collision across
other spaces cannot be detected. However, when we perform the test after
the component is downloaded from a remote machine and integrated with
local components there can be naming collisions occurring. There are
possibilities that two or more components, which are being integrated
together, might have the same variable name or even within the same
component the same variable name can be used in different contexts. When
the client program tries to access these variables there are possibilities that it
might get the wrong value.

136 Joon S. Park, Pratheep Chandramohan, Ganesh Devarajan,

Integration After downloading
Remote Organization1 Remote Organization2

package namecollision;

peskage nameacoiision]
public class ComponentB {

public class ComponentA { public ComponentB() {
public ComponentA(){ | | ...
......... }
) A

........ puckc int newnameB{(){

public int newnameA({ inti= 30;
inti=10; roturn i ;
-—t» roturmni ; }
}

public int newnameC{){
.......... inti=20;
public static void main(String[] args) {
ComponentA componentA1 = new

ComponentA{), - | .
.......... public static void main{String[] args) {
} ComponentB componentB1 = new
ComponentB();
L Y I
}
}

Local Integrating Organization

package namecollision;

public class NameCollision {

public static void main(String[] args) {

~I">ComponentA compa = new remotea.ComponentA();

System.out.printin(“value of i from component A * + compa.newname());
ComponentB compb = new remoteb.ComponentB();

System.out.printin("value of i from component B " + compb.newnameB()); -

Figure 4. Detection and Immunization of Naming Collision

The downloaded component’s internal structure information such as
method interface, arguments, local variables, etc. is collected in runtime after
analyzing the Java bytecode. Using the structure information and fault
injection module, the local machine performs a fault injection test to
determine all the return values in the component. This enables the local
machine to figure out the architecture of the component and then to decide,
which are all the function values required. Once the functions are selected
the component is passed into the naming collision test stub where we test if
there is any other component with the same variable name returning the
value. If the testing says there are no variables with the same variable name
then integration is taken to the next level.

Now if there are variables with the same variable name from different
component then our immunization code for this scenario will be creating an
instance for the remote class. Using this instance we access the method name

Trusted Component Sharing by Runtime Test and Immunization for ... 137

and through that we access the variable value(e.g. compa.newnameA()). The
renaming process to avoid naming collision is to be performed mainly when
we convert the private function to public function. The original source code
writer’s intension would have been that the function was a private function
its scope is well defined and hence he can reuse the variable name. If there is
a private function then this will not affect our processing as that variable it
limited to the scope of that class. However, if there are two variables from
the same component with the same name then we can go about changing the
name as per the naming convention so that it becomes easier for the
programmer who is working with the source code generated from the
bytecode to differentiate from the other common variable named item.

The main advantage of this system is that we can get access to the
variables which where initially not possible to access and then by renaming
them we are able to distinguish between the two similarly name variable.
This as well helps in the optimal code re-usage. In reality, performing
instrumentation is a non-trivial task because it involves precision handling of
instructions. In most of the cases the instrumentation requires dealing with
intermediate-level code (e.g., Java bytecode) or low-level code (e.g.,
Assembly), which requires ultra care when modifying these kinds of code.
Basically our principle can be applied to more complex problems but the
complexity of the immunization code increases quite considerably when
dealing with complex problems. An important point should be noted here
that it is not always possible to apply immunization by changing the code
(Java bytecode in this case). In some cases the reason for the failure is not
known even after performing thorough fault injection analysis. In other cases
code segments can be inherently complex to be discerned for further
modifications (immunization). In such scenarios specific immunization is
not possible, so we need to provide generic immunization by rebuilding the
faulty component or deploying it in a new conducive environment.

As depicted in Figure 4, we download two components from remote
location A and remote location B. After the download we first modify the
package name so that the downloaded component can also become a part of
the new component being developed. Supposing the programmer is
interested in the method newnameB() after looking into the component’s
architecture. He simply modifies the private method to a public method and
then finds out that there exists a naming collision within the same
component. In order to access the variable value the method has to be made
public. Now that the fault injector has made the method public with a return
value, he can access that variable value by simply creating an instance of the
remote object in the local component and hence being able to access that
newly converted public methods’ return variable value.

138 Joon S. Park, Pratheep Chandramohan, Ganesh Devarajan,

5.2 Evaluation results

We implemented the prototype for the component evaluation phase of
our fault detection and runtime immunization approach to determine the
existence of naming collisions. After we generate the source codes we
perform three stages of tests to: (1) identify the variables in use; (2) ascertain
the scope of each variable; and (3) determine if naming collisions will occur
when their respective intermediate values are accessed.

There are two scenarios of accessing the variables in other components.
Suppose component A tries to access a variable “i” in component B, and
they both are in the same package, where classl is in component A and
class2 is in component B. The procedure followed to access that variable is
by classname.methodname.variablename—in our example, class2.func2.i.
Through this method component A will be able to access the variable “i” in
component B. Still, there is a possibility that the variable “i” may not be
accessible as it could be in the private member function of the component B.
For this reason, we need to extend the scope of that method to public. When
we extend the variable’s scope there is a chance that there is another variable
“” in the same component, which is globally defined or within the same
method with another initialization to the same variable. Consequently, the
accessing component might be getting the last assigned value to that variable.
In order to access the initial value, we will have to assign different names to
those variables that cause naming collisions.

The second scenario occurs when a component is trying to access the
variables from different components. Suppose component A is accessing the
variable “i” from component B, as well as variable “i” from component C.
The first step for the component to access the variables from different
components will be to put them all into the same package. After this, we
have to check the scope of the variable to determine if it is possible for
another component to access this variable; if not, then we will have to extend
the scope of the variable and then verify it doesn’t cause any naming
collisions, and then provide access to the component attempting to access
that variable. Suppose class 2 is in component B and class 3 is in component
C, and methods func?2 is in class2 and func3 is in class3, to access the value
of the “i” in component B, the code will be class2.func2.i. Similarly, the
variable “1” in component C can be accessed using the code class3.func3.i.
To avoid further confusion, we can assign these variables to different names
after abstracting them in component A so that naming collisions do not occur
in the root component.

Trusted Component Sharing by Runtime Test and Immunization for ... 139

Table 2. Naming Collision Results

Number Number Total Naming Naming Detected
of of Number | collisions Collisions and
Components | Components of without with Scope | Immunized
Tested with variables Scope Extension
Naming reused Extension
Collision
81 37 104 30 36 66

Table 2 shows the test results for the components that were tested in our
experiment. Most of the components that where tested were downloaded
from IBM’s Alpha works website, while the rest were from various other
sources. Each component has a minimum of 100 lines of code or more.

The total number of components tested was 81. Out of the 81
components, 37 components experienced naming collision problems, both
before and after their respective scopes were extended. A total of 104
variable names were reused in different scopes in the various components.
Out of these 104 variables, 30 variables had scopes that were not well
defined, causing naming collisions even without an extension in scope.
There were a total of 36 variables that caused naming collisions after their
scope was extended. We were able to detect all 66 instances where variables
caused naming collisions.

6. CONCLUSION AND FUTURE WORK

Although many current systems are being developed using Java, there
are also many other distributed software components developed using other
technologies such as Windows COM" (e.g., DLLs), Unix Shared Libraries
(e.g., SO files), and even .Net libraries. The .Net platform is relatively new
and is a major competitor for Sun’s Java. The .Net uses Intermediate
Language (IL), which is very similar to the Java Intermediate Bytecode and
uses a Common Language Runtime (CLR) also very similar to Java Virtual
Machine (JVM) to load the code in to memory. Since .Net and Java share
common object oriented model, memory models, semantics and architecture.
Our instrumentation and immunization techniques can be directly applied
with little modifications. In contrast, DLLs and Shared Libraries are quite
different from the bytecode (intermediate code) because these are libraries in
assembly code (low level). In the past there has been some research
conducted in this area, and in" they have formulated a technique to intercept

140 Joon S. Park, Pratheep Chandramohan, Ganesh Devarajan,

and instrument COM applications. We can apply our methodologies
theoretically to these platforms but in reality we may face some technical
challenges. Instrumenting Windows COM applications is more difficult than
instrumenting Java bytecode because of the inherent complexity of the COM
technology. Our future goal is to apply our current immunization techniques
to other platforms by overcoming these complexities.

Furthermore, we consider that cyber attacks may involve tampering of
existing source code to include undesired functionality, replacing or
modifying a genuine component with a malicious one. Software components
can be subject to two major kinds of attacks, (1) An attack involving the
modification of existing source code to introduce additional malicious
functionality, and, (2) An attack involving the introduction of a malicious
piece of code independent of the original program that can be started when
the original component is used and run independent of it (e.g. a Trojan
Horse). Our goal is to detect this unauthorized integrity change in code by
extending our previous work’> and extract the malicious parts out of the
component while retaining its originally expected functionality.

ACKNOWLEDGMENTS

This work was supported by the US Air Force Research Lab's extended
research program, based on the SFFP (Summer Faculty Fellowship Program)
award in 2004, sponsored by the Nation Research Council (NRC) and the
Air Force Office of Scientific Research (AFOSR).

REFERENCE

1. Dimiter R. Avresky, Jean Arlat, Jean-Claude Laprie, Yves Crouzet. Fault Injection for the
Formal Testing of Fault Tolerance. The Twenty-Second Annual International Symposium
on Fault-Tolerant Computing, July 8-10, 1992: 345-354.

2. Abadi and L. Lamport. Composing Specications. ACM Transactions on Programming
Languages, 15(1): 73-132, January 1993.

3. Anant Agarwal, Richard Sites and Mark Horwitz. ATUM: A New Technique for Capturing
Address Traces Using Microcode. In Proceedings of the 13" International Symposium on
Computer Architecture, 119-127, June 1986.

4. Amitabh Srivastava and Alan Eustace. "ATOM A System for Building Customized
Program Analysis Tools." In Proceedings of the SIGPLAN 94 Conference on
Programming Language Design and Implementation (PLDI), pages 196-205, June 1994.

5. BCEL - Bytecode Engineering Library http://bcel.sourceforge.net/

Trusted Component Sharing by Runtime Test and Immunization for ... 141

6. BIT: Bytecode Instrumenting Tool http://www.cs.colorado.edu/~hanlee/BIT/index.html
7. M. Chen, E. Kiciman, E. Brewer, and A. Fox. Pinpoint: Problem Determination in Large,
Dynamic Internet Services. In Proceedings of the IEEE International Conference on
Dependable Systems and Networks, DSN, 2002.

8. Ajay Chander, John C. Mitchell, Insik Shin. Mobile Code Security by Java Bytecode

Instrumentation. In Proceedings of the 2001 DARPA Information Survivability Conference
& Exposition (DISCEX II), pages 1027-1040, Anaheim, CA, June 2001.

9. Brian Bershad et al. Efch Overview. http://etch.cs.washington.edu/

10.James R. Larus and Eric Schnarr. "EEL: Machine-Independent Executable Editing." In
proceedings of the SIGPLAN ’95 Conference on Programming Language Design and
Implementation (PLDI), pages 291-300, June 1995.

11.Susan J. Eggers, David R. Keppel, Eric J. Koldinger, and Henry M. Levy. Techiques for
efficient Inline Tracing on a Shared-Memory Multiprocessor. In Pro-ceedings of the
1990 ACM Sigmetrics Conference on Measurement and Modelings of Computer Systems,
8(1), May 1990.

12. A. Ghosh, J. Voas. Inoculating Software for Survivability. Communications of the ACM,
July 1999.

13.Galen Hunt and Doug Brubacher. Deftours: Binary Interception of Win32 Functions.
Proceedings of the 3rd USENLX Windows NT Symposium, pp. 135-143. Seattle, WA, July
1999.USENIX.

14.Galen Hunt and Michael Scott. Intercepting and Instrumenting COM Applications.
Proceedings of the Fifth Conference on Object-Oriented Technologies and Systems
(COOTS'99), pp. 45-56. San Diego, CA, May 1999. USENIX.

15.Jikes Bytecode Toolkit - IBM Alpha Works http://www.alphaworks.ibm.com/tech/jikesbt.

16.8S. Jajodia, C. McCollum, and P. Ammann. Trusted Recovery. Communications of the
ACM, 42(7), pp. 71-75, July 1999.

17.JOIE - The Java Object Instrumentation Environment http://www.cs.duke.edu/ari/joie/

18.J. Knight, M. Elder, and X. Du. Error Recovery in Critical Infrastructure Systems.
Proceedings of the 1998 Computer Security, Dependability, and Assurance (CSDA'98)
Workshop, Williamsburg, VA, November 1998.

19.G. Kapfhammer, C. Michael, J. Haddox, R. Coyler. An Approach to Identifying and
Understanding Problematic COTS Components. The Software Risk Management
Conference, ISACC 2000.

20.J. Knight and K. Sullivan. Towards a Definition of Survivability. Proceedings of the 3
Information Survivability Workshop (ISW), Boston, MA, October 2000.

21.P. Liu, P. Ammann, and S. Jajodia. Rewring Histories: Recovering from Malicious
Transactions. Distributed and Parallel Databases, 8(1), pp. 7-40, January 2000.

22.James R. Larus and Thomas Ball. Rewriting Executable Files to Measure Program
Behavior. Software, Practice and Experience, 24(2), February 1994.

23.H. Lipson and D. Fisher, Survivability -- A New Technical and Business Perspective on
Security. Proceedings of the New Security Paradigms Workshop (NSPW’99), Caledon
Hills, Ontario, Canada, September 21-24, 1999.

24 Henrique Madeira, Diamantino Costa, Marco Vieira. On the Emulation of Software Faults
by Software Fault Injection. International Conference on Dependable Systems and
Networks (DSN 2000). New York, New York, June 25 - 28, 2000.

25.N. Mead, R. Ellison, R. Linger, et al. Survivability Network Analysis Method, SEI
Technical Report: CMU/SEI-00-TR-013, September 2000.

26.Amitabh Srivastava and David Wall. "4 Practical System for Intermodule Code
Optimization at Link-Time."Journal of Programming Languages, vol 1, no 1, pages 1-18,
March 1993.

27.Joon S. Park. Component Survivability for Mission Critical Distributed Systems. Technical
Report, NRC/Air Force SFFP (Summer Faculty Fellowship Program), 2004. .

142 Joon S. Park, Pratheep Chandramohan, Ganesh Devarajan,

28.Joon S. Park and Pratheep Chandramohan. Component Recovery Approaches for
Survivable Distributed Systems. 37th Hawaii International Conference on Systems
Sciences (HICSS-37), Big Island, Hawaii, January 5-8, 2004.

29.Joon S. Park, Pratheep Chandramohan, and Joseph Giordano. Survivability Models and
Implementations in Large Distributed Environments. 16th IASTED (International
Association of Science and Technology for Development) Conference on Parallel and
Distributed Computing and Systems (PDCS), MIT, Cambridge, MA, November 8-10,
2004.

30.Joon S. Park, Pratheep Chandramohan, and Joseph Giordano. Component-Abnormality
Detection and Immunization for Survivable Systems in Large Distributed Environments.
8th IASTED (International Association of Science and Technology for Development)
Conference on Software Engineering and Application (SEA), MIT, Cambridge, MA,
November 8-10, 2004.

31.Joon S. Park and Judith N. Froscher. 4 Strategy for Information Survivability. 4th
Information Survivability Workshop (ISW), Vancouver, Canada, March 18-20, 2002.

32.Joon S. Park and Ravi Sandhu. Binding Identities and Attributes Using Digitally Signed
Certificates. 16th IEEE Annual Computer Security Applications Conference (ACSAC),
New Orleans, Louisiana, December 11-15, 2000.

33.Ted Romer, Geoff Voelker, Dennis Lee, Alec Wol-man, Wayne Wong, Hank Levy, Brian
Bershad, and Brad Chen. Instrumentation and Optimization of Win32/Intel Executables
Using Etch. In Proceedings of the 1997USENIX Windows NT Workshop. August 1-7, 1997.

34.Jeffrey Voas. Software Fault Injection. IEEE Spectrum, appeared in 2000.

35.Jeffrey Voas, Keith W. Miller, and Jeffrey E. Payne. Pisces: A tool for predicting software
testability. In the Proceedings of the Symposium on Assessment of Quality Software
Development Tools, pages 297-309, New Orleans, LA, May 1992.

36.Jeffrey Voas and Jeffrey Payne. Dependability certification of software components.
Journal of Systems and Software, 2000.

