THE PROOF BY 2M-1: A LOW-COST METHOD
TO CHECK ARITHMETIC COMPUTATIONS

Sylvain Guilley and Philippe Hoogvorst
Ecole Nationale des Télécommunications, 46, rue Barrault, 75634 Paris CEDEX 13, France.

E-mail :sylvain.guilley@enst.fr ,philippe.hoogvorst@enst. fr

Abstract: Injecting faults into an arithmetic device is a way of attacking
cryptographic devices.The proof by 2"-1 is a method to detect
arithmetic errors induced by this attack without having to
duplicate the computations. This method is simple and not too
expensive, in terms of computation power when the arithmetic
in software and in terms of both silicon surface and power
consumption when the arithmetic operations are performed by a
hard-wired operator. In that the proof by 2™-1 is well-suited for
martcards, in which these resources are limited. The proof by
2"-1 is scalable, in that the designer can choose the parameter m,
which determines the level of protection offered and the
resources needed for the verification.

Key words: Fault injection, modular computations, Security, Modular Computations.

1. INTRODUCTION

The injection of errors during a cryptographic computation is an efficient
attack provided the attacker has access to the target. A smartcard is its
typical target. Its power is such that a single uccessful fault induction is
enough to break RSA cite [Boneh et al., 1997, Siefert, 2002].

590 Sylvain Guilley and Philippe Hoogvorst

The proof by 2"-1 is a self-test method which can verify arithmetic

computations either in Z or in Z/nZ, for some (big) integer n and thus
detect such fault induction. It is specific to countering fault injection: it does
not address any other class of attack, such as DPA [Kocher et al, 1999],
SPA, timing attack [Kocher et al., 1996] or EMA [Quisquater and Samyde,

2001].

The proof by 2"-1 is scalable, in that the designer can choose the parameter
m , which determines the level of protection offered and the resources
needed for the verification.

All cryptographic applications based on arithmetic operations can take
advantage of the proof by 2"-1, such as, [Rivest, Shamir and Adleman, 1978],
the Diffie & Hellman protocol [Diffie and Hellman, 1976].

Section 2 exposes the principles of using arithmetic residue codes to check
arbitrary size arithmetic computations. Section 3 shows the case of decimal
computation.Then we switch to a larger modulus. Section 4 exposes how to
check modular multiplications. Section 5 concludes the article.

2. PRINCIPLES OF THE PROOF BY 2"-1

Let (Z,+,><) be the ring of integers, M >1 an integer, (Z/MZ,+X) the
ring of residual classes modulo M , and P, (.) be the canonical ring
homomorphism (Z,+,x) = (Z/ MZ,4X) .

The proof by 2™-1 uses the properties of P, (.) to verify the computations
performed by a cryptographic device subject to fault injection with a small
computational overhead, which is nearly independent of the size of the
operands.

Other works [Noufal and Nicolaidis, 1999] use similar concepts but focuses
on the synthesis of hardware multipliers. The authors use dedicated
structures for fixed-width data paths that cannot be scaled to an arbitrary
operand size.

Our solution can be implemented using either regular software or off-shelf
hardware structures, available in CAD vendors libraries.

The Proof by 2m-1: A Low-cost Method to Check Arithmetic... 591

3. VERIFYING COMPUTATIONS IN Z

3.1 Proof by 9

When no pocket calculator is available, a simple way exists to check
multiplications, which is a lot simpler than doing them twice: the proof by 9,
which consists in repeating the multiplication modulo 9. If the actual result
of the multiplication and the one obtained with the reduced operands are not
congruent modulo 9, one of the results is wrong.

Calculating in Z/9Z is easy because any operation involves only 1-digit
numbers. As for any positive integer 7,10’ is congruent to 1 modulo 9,
reducing a number # modulo 9 comes down to adding its decimal digits and
reiterating the process until the sum is strictly smaller than 10. At the end a
result equal to 9 is replaced by a 0 if necessary.

This process is guaranteed to stop because, if 7 consists p >1 digits in base

p-1

p-1)
10, ie. n:ZnilO’ , then n':Zni is strictly smaller than n . The
0 0

successive sums form a strictly decreasing sequence of integers, which must
fall below 10 after a finite number of steps.

The process of reduction is roughly linear in complexity with the size of the
operands but the complexity of the multiplication in Z/9Z is independent
of this size as it always consist of always a single 1-digit by 1-digit
multiplication, followed by the reduction of a 2-digit number.

The proof by 9 does not prove correctness. To prove correctness the
process should be repeated with different prime numbers until the chinese
remainder theorem could be used. However F,(x)F,(y) # P,(xy) proves
that an error occurred. Otherwise a random mistake is detected with

probability 1/9. In addition, the proof by 9 will detect any error which affects
a single digit, except if a 9 was replaced by a 0 or vice versa.

592 Sylvain Guilley and Philippe Hoogvorst

3.2 Proof by M-1

A 1/9 probability of missing an error is not safe enough for security purposes.
Besides, if the operation AX B was to be checked, computing F,(A4) and
F,(B) would involve a lot of computations, each of them possibly subject

to other attacks.

However changing the modulus will at the same time yield a much better
fault coverage and make it very easy to compute the proof. In particular, any
error affecting a single digit in base M will be detected except ifa M —1 is
replaced by a zero or vice versa. As no single-bit fault can do that, any
single-bit fault will always be detected. Again the cost of the computation
modulo M —1 will be a lot lower than the one of the real computation. The
proof by M —1 is thus a lot cheaper than the repetition of the computations.

3.3 Notations

Let M >1 an integer. Though M will usually be 2”7 , with
me {8,16,32,64}, we will not use this fact in the rest of the article more
than deriving the name of the method from it.

An uppercase letter X represents a positive integer, whose base
B decomposition is denoted (...,X D G ¢ [O(B)]), in which the
XU are an infinite sequence of integers in [O,B - 1] among which only a
finite number of them is non-zero. Given a positive integer X , its size in
base B , denoted |X I g is the smallest integer Xx such that

V)= x, XU = 0.

To simplify the notations from now on we will use some shorthands.

Unless otherwise specified:

- the canonical ring homomorphism Z — Z /(M —1)Z is denoted P()
instead of P,,_(.),

- 4 and X operatein Z/(M -1)Z,

- the digits of X inbase M are denoted X' instead of X “I*)

- the size of X in base M is denoted lX l instead of IX l o

The Proof by 2m-1: A Low-cost Method to Check Arithmetic... 593

34 Mathematical basis

It is easy to prove that, for any positive integer 7 and any number M ,
Va>0,(M"-D)=(M-D)M""+M"?+..+M+1).
Computing modulo M —1, this identity becomes:
Vn>0,M" =1mod (M -1) (1)
4
From Eq. (1), given A= ZA[’]M ", the evaluation of 4 mod (M —1)
i=0

consists in the addition of the 4! with the following peculiarities:

1. a Carry,, has weight M , thus is congruent to 1 modulo (M —1),
it can be re-injected as the Carryy, of the next addition;

2. the reduction ends with the addition of a zero to ensure that the last
Carry,y is effectively added. This last addition can produce no
Carry,, because, at the preceding addition, each of the operands was
at most (M —1).Thus the value of the result was at most 2M — 2,
which can be rewritten as M + (M —1)—1 and, given than
M =1mod (M —1), the result of the last addition will be at most
(M —1) and no Carry,, can be generated;

3. atthe end if the result is exactly (M —1), it is replaced by zero.

The number of additions needed to reduce a number 4 modulo (M —1) is

]Al +1. It is proportional to log 4 and inversely proportional tolog M .

If this reduction has to be implemented in hardware, the data path consists in
a conventional adder, in which the Carry,, is connected to the Carryy,
together with the control circuitery which instructs the device to perform the

final addition of a zero and, if necessary, the replacement of a (M —1) by 0.

3.5 Checking additions and multiplications in Z

When computing with integers, the verification process is straightforward:
given two operands A and B, an operation * (which can be any of +, —
or X) is performed and verified as follows:

evaluate a = P(A4)and b= P(B),

evaluate R=A*B in Z,

evaluate r =a*bin Z/(M -1)Z,

check that P(R)=r.

e

594 Sylvain Guilley and Philippe Hoogvorst

The operations involved are: the evaluations of P(A4) and P(B), which cost
'AI +|BI + 2 additions, the evaluation of P(R) , which costs |R| +1
additions, the * operation between a and b, which is a single addition or
multiplication, the reduction modulo (M —1) of the result, which costs two
additions at most.

Although they add overhead, the reductions of the operands must be
performed only once, for the original operands. During the computation the
reduced results of any operation will be kept together with the real results for
use in the next operations. In that the overhead will be nearly independent of
the computation performed.

3.6 Security of the test

Again the proof by 2™-1 can only prove non-correctness: that the results of
the integer and of the modular operations are not congruent proves that an
error occurred. Otherwise, the probability of an undetected error is

exponentially decreasing with IM l , as shown on the table below.

1. l Ml 1. Probability of an undetected error
2
2.8 2. 278 =392x10"
3. 16 3. 279 =31.53%10°
4. 32 4. 2732 =233%107"
5. 64 5. 2% =542%x107
4. CHECKING MODULAR COMPUTATIONS

Cryptographic operations seldom involve multiprecision computations in Z
itself. Most of the time, the computations are done in Z/nZ , for some
integer number #. As there exists no non-trivial ring homomorphism from
Z/nZ into Z/(M —1)Z (unless n is a multiple of (M —1)) the checking

of the computations is a little more difficult.

4.1 Modular Addition

Given two operands in Z, A and B, each of them being in [0, N —1],
their addition modulo N is performed in three steps:

The Proof by 2m-1: A Low-cost Method to Check Arithmetic... 595

1. compute R'=A+Bin Z.As A<NandB< N, R'<2N;

2. if R'"< Nset R=R'elseset R=R'-N.
None of these low-level operations is modular. It is thus possible to check

the modular addition with two operations inZ /(M —1)Z :

1. compute r'= P(4)+ P(B);

2. if R'< N set r =7 elseset r =r'—P(N).
Normally P(N)will have been precomputed when N was set. Verifying a
modular addition costs thus only one addition more than verifying it in Z .

4.2 Modular Multiplication

The multiplication modulo N of 4and B, bothin [0, N —1] can be
performed as:
1. let T=AXB,
2. let Qand R be respectively the quotient and the remainder of the
division of T by N,
3. theresultis R.

As AXB=0xN +R, the relation P(4)X P(B) = P(Q)X P(N) + P(R)
must hold, which allows us to check the modular multiplication. However, a
modular multiplication is never computed like that: the division is too
expensive.

4.3 Binary modular multiplication

When no hard-wired multiplier is available, the multiplication in Z consists
in a sequence of additions, together with left shifts for the multiplicand and

bit tests for the multiplicator. Note that in all figures, the notation (X, x)
stands for the couple (X, P(X)).

To transform the binary integer multiplication into a verifiable modular
multiplication, we will first pretend to compute in Z but in base N . Each
of B and P will be represented as digits in base V. As we are computing
modulo N , we assume that A<N and B< N , thus we have:
P=AxB < N?and lPlN <2. As for B, its value will be under N until
the beginning of the last round of computation. The last doubling may yield
a wrong result but we don't use this last B . Fig. 4.3.1 shows the
multiplication with base N computations. For the sake of readibility, we

596 Sylvain Guilley and Philippe Hoogvorst

have replaced P! by P, PP py p UG by B and BIOO by
B,.

1. mulmod((4,4), (B,b), (N,n)) 1.
1. { 2.
1. P« 0;P«0;B,<0;B «0; 3. // Initialize
1. for(i<«0; i<'A'z : B, < 0it1) { 4. // Loop on bits of
A
1. if(A"™ 2 0){ 5. // Addition
necessary?
1 B, < P +B,;P < F+B,; 6.
1. 7. // Correction
if(FbE2N){P, <P, +1;P < F—-N;} modulo N
1. } 8.
1. B,«< B, +B,;B, < B, +B; 9. // Double B
1. 10.// Correction
if(B,=2N){B, < B,+1;B, < B, —N;} modulo N
1. } 11.
1. Check that 12.// Final check
aXb=P(P)XP(N)+P(P) ;
1. return (PI,P(P[)) ; 13.// Return both
2.} real and
' 14.// reduced
results.

Fig. 4.3.1 : binary integer multiplication in base N .

As only the projection of P, into Z /(M —1)Z is used in the verification,
we can compute this value directly in Z /(M —1)Z by replacing from the
beginning B, and P, by their projections, respectively denoted b and p,
into Z /(M —1)Z , which are single-word integers. Fig. 4.3.2 shows the final
binary multiplication algorithm with verification of the result using the proof

by 2" —1, in which we have yet more simplified the notations by replacing
P, by P and B, by B.

The Proof by 2m-1: A Low-cost Method to Check Arithmetic... 597

1. mulmod((4,4), (B,b), (N,n))

1. {

. p«0;P«0;

. a«0;a"«1;
for(ie0;i<|d,;iei+l){

[Sa—y

1. (A" 20) ¢

1. p<p+b;P— P+B,;

2.

if(P>2N){p<p+1;P<—P—-N;}

3. if(p>M-1) pe—p—-(M-1);

1. a'«— a+a'" ;
2. if(a'>M-1) dea—(M-1);

1 }

1. a'«<a''+a" ;

2. if¢(a'>M-1)
a''«— a"—(M—l) ;

. b«b+b;B< B+B;

if(B>N)

1

2

{beb+1;B<—B—-N ;}

3 if(b>M-1)be—b—(M-1);

)

}
1. Checkthat a=4';

1. Checkthat aXb=pXn+P ;
1. return (P,,P(P,)) ;

1.

2.
3. // Initialize

4. // Init eval of P(4)

5.// Loop on bits of
A

6.// Addition

necessary?

7./ Add B to P,

then

8. // correct modulo

N,

9.// then

M-1.

10.// Eval P(A), then

11.// correct modulo

M-1

12.

13.// Double a'', then

correct

14.// modulo M —1

15.// Double B, then
correct

16.// modulo N , then
modulo

17.// M —1

18.

19.// Final check on
tests

20.// Final check

21.// Return both real
and
22.// reduced results.

modulo

Fig. 4.3.2 : binary modular multiplication with verification.

598 Sylvain Guilley and Philippe Hoogvorst

4.4 Computational overhead

The computational overhead consists in:
1. the precomputation of the projections of the operands and of the
modulus, the result and each of the parameters consist of two fields:

the number itself and its projection in Z /(M —1)Z ;

2. one single-precision addition is added to each multiple-precision
operation, with possibly a reduction modulo M —1;

3. the final checking test implies one multiplication in Z /(M —1)Z .

Out of these sources of overhead, a single one is significant: the added
single-precision operands. If the operands are 1024-bit wide and the word
size is 32 bits, each big integer consists of 32 words. Thus the multiple-
precision addition consists of 32 additions and, consequently, as the
overhead consists of a single operation, its relative value is 1/32.

4.5 Evaluation of security

We already know that a random error is detected with probability 1 — .

However can an induced fault generate a non-random error, i.e. an error
which would preserve the result of the final test?

Obviously no arithmetic operation operates at the same time on the real
values and on the reduces ones. Only the tests will have an effect on both.
A single error, which changes a value x into x' such that

x'= x mod (M —1) will not be detected. However the only pair of numbers
in [0: M —1] which are congruent modulo (M —1) are 0 and (M —1). A
single error on a single bit will always be detected because 2’ cannot be a
multiple of (M —1) if M =2" for some m , which is always the case on a
binary processor.

Artificially changing the result of the test on the bits of 4 will add (resp.
subtract) Bx2' for some i to (resp. from) the result. Thus, the error will be
detected if B # 0 mod (M —1), which happens with probability 1— -1 if
the attacker cannot inject a specific B. Otherwise, a specific check must be
done on this test and it is why we added the statements to eval P(A) and
check it against the value passed as a parameter together with A4 .

The Proof by 2m-1: A Low-cost Method to Check Arithmetic... 599

A perturbation of a reduction modulo N will change p the reduced value 1

and the real value by N in the reverse direction. As a real N will never be a
multiple of M , the error will be detected.

A perturbation of a reduction modulo (M - 1) will also be detected for the
same reason.

4.6 Modular exponentiation

This operation is basically a sequence of modular multiplications. If each of
the multiplications is properly protected, there is a single waek point in the
exponentiation: the test on the bits of the exponent. However, the reduced
value of the exponent can again be directly computed from its value and
computed from the actual results of the tests of these bits as the bits of A
were protected in Fig. 4.3.2.

As the reduced modulo (M - 1) value of the result is returned at the same
time as the actual result of the modular multiplication, the additional penalty
for using the proof by 2™ —1 in a modular exponentiation is just the initial
reduction of the number to be exponentiated. In the case of the Diffie-
Hellmann protocol\cite {DH76}, even this number is constant.

S. CONCLUSION

From a simple arithmetic trick, the proof by 9, and a property of rings with a
unit, we have constructed coherent schemes, based on the proof by 2™ —1,
to protect the binary implementation of the modular multiplication and the
modular exponentiation from fault injection.

Even if the math behind them is relatively simple, these schemes will resist
any single-bit fault and a random fault will have an exponentially low
probability of not being detected.

Thus the proof by 2™ —1 is thus a cheap way to render the attack by fault
injection very chancy if the builtin arithmetic is 8-bit or 16-bit and
impractical if the builtin arithmetic is 32-bit or 64-bit.

600 Sylvain Guilley and Philippe Hoogvorst

Besides its cost is negligible in front of the cost of multiprecision
computations in case of a software implementation and, in case of a
hardware implementation, it requires very little additional hardware.

Further work, to be published soon, will extend this protection to the
multiplication of Montgomery.

REFERENCES

[Boneh at al., 1977] Boneh, Dan, DeMillo, Richar A. and Lipton, Richar J.
(1977) On the importance of checking cryptographic protocols for faults.
LNCS, 1233:37-51.

[Diffie and Hellmann, 1976] Diffie W. and Hellman M.E. (1976) New
directions in cryptography. In IEEE Transations on Information Theory,
volume 22, pages 644-654.

[Kocher et al., 1999] Kocher, Paul C., Jaffe, Joshua and Jun, Benjamin
(1999) Differential Power Analysis. LNCS, 1666:388-397.

[Kocher et al, 1996] Kocher, Paul C., Jaffe, Joshua and Jun, Benjamin
(1996) Tioming Attacks on Implementations of Diffie- Hellman, RSA, DSS
and other systems. LNCS, 1109:104-113.

[Noufal and Nicolaidis, 1999] Noufal, I. Alzaher and Nicolaidis M. (1999).
A CAD Framework for Generating Self-checking Multipliers Based on
Residue Codes. In Date’99, pages R122-129.

[Quisquater and Samyde, 2001] Quisquater J.J. and Samyde D. (2001)
Electromagnetic Analysis (EMA) measures and counter- measures for Smart
Cards. E-smartcard Programming and Security, 1. Attali and T. Jensen,
editors, 2140:200-210.

[Rivest, Shamir and Adleman, 1978] R.L.Rivest, A.Shamir and L. Adleman
(1978) A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, 21(2):120-126.

[Siefert, 2002] C. Siefert, C. Aumiiller, P. Bier, W. Fischer, P. Hofreiter and
J.P. (2002) Fault Attacks on RSA with CRT: Concrete Results and Practical
Countermeasures. In LNCS-CHES 2002, vol. 2523, pp 260-275.

